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On arbitrary assignability of initial conditions for
a discrete autonomous n-D system

Mousumi Mukherjee and Debasattam Pal

Abstract— The issue of initial/boundary conditions for a
general system of partial difference equations – called a
discrete n-D system – is resolved through the notion of
characteristic sets: the restriction of a solution trajectory
to a minimal characteristic set can be considered to be
the initial/boundary condition to the corresponding trajec-
tory. In the recent paper [8], it has been shown that every
autonomous n-D system admits a minimal characteristic
set that is the union of a sublattice (of rank equal to the
Krull dimension of the system) and its finitely many par-
allel translates. Treating the restrictions of every solution
trajectories to such a characteristic set as initial/boundary
conditions, in this paper, we provide a full parametrization
of the set of all initial/boundary conditions of a discrete
autonomous n-D system. The key to this parametrization is
that the set of allowable initial/boundary conditions itself
can be viewed as a discrete d-D system, where d is the
Krull dimension of the system: we prove this result here.
An upshot of this parametrization is the answer to free
assignability of these initial/boundary conditions.

Index Terms— n-D systems, characteristic sets, partial
difference equations, initial conditions, algebraic analysis.

I. INTRODUCTION

A. Motivation and Objectives

By a discrete n-D system, we mean a system of partial
difference equations (pdes) with real constant coefficients
having n independent variables. ‘Initial/boundary conditions’
play an important role in analyzing and explicitly solving such
a system of pdes. In the conventional pde literature, a physical
process modeled using pdes is often supplemented with initial
and/or boundary conditions. On the contrary, in the n-D
systems approach to analyzing pdes, it is often customary to
deduce ‘initial/boundary data’ using the system of equations.
For example, in [12], the canonical Cauchy problem [25], the
Oberst-Riquier algorithm [11], and for computing trajectories
in 2-D systems [16], initial data is specified by assigning
trajectories on a subset of the domain, where the subset
depends on the given system of equations. Following the
standard practice, we use characteristic sets [19] to formalize
the notion of initial/boundary1 data for discrete n-D systems.
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1For ease of referencing we use ‘initial condition(s)/data’ to mean ‘ini-
tial/boundary condition(s)/data’ in the sequel.

A characteristic set is a proper subset of the domain –
here Zn – with the defining property that for every trajectory,
the knowledge of the trajectory restricted to this set uniquely
determines the trajectory over the whole domain [19]. It is
important to note that a system of pdes having free variables
cannot have a proper subset of the domain as a characteristic
set. Therefore, in the context of initial data, we consider
systems without free variables; such systems are called au-
tonomous n-D systems.

It is known that for a discrete autonomous 1-D system
described by a set of ordinary difference equations, a char-
acteristic set is always given by finitely many points on the
domain [20]. Initial data, in this case, is obtained by freely
choosing the value of the solution trajectory at these finitely
many points. However, for an n-D system a characteristic
set is often infinite in size and can be of various shapes:
characteristic sets having algebraic structures, such as half-
spaces, cones, sublattices and finite unions of sublattices,
have been considered in the literature [8], [9], [13], [19].
Subsets having the algebraic structure of sublattices and finite
unions of sublattices play an important role in the theory of
characteristic sets as they address the issue of minimal initial
data for discrete autonomous n-D systems. Furthermore, it has
been recently shown in [8] that every discrete autonomous n-
D system admits a characteristic set given by a union of a
sublattice and finitely many parallel translates of it. This is
a key result that we base our paper on: we consider such
characteristic sets.

Naturally, once a characteristic set is obtained, initial con-
ditions can be obtained by restricting trajectories to the char-
acteristic set. However, this requires an explicit knowledge
of the solution trajectories. This requirement is unrealistic
and apparently impossible. It would be more practical if one
could arbitrarily assign the values of the trajectories on a
characteristic set so that they serve as initial conditions. In
other words, it is more reasonable to be able to choose initial
conditions freely. Therefore, the most pertinent question in this
regard is: can initial conditions (i.e., restrictions of trajectories
on a pre-identified characteristic set) be obtained without
the explicit knowledge of the trajectories? In this paper, we
provide a complete answer to this question for the case when
the characteristic set is given by a union of a sublattice and
finitely many parallel translates of it.

B. Contributions

The main contributions of this note are the following.
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1) For a characteristic set given by a union of a sublattice
and finitely many parallel translates of it, the collection
of restrictions of trajectories to this characteristic set is
called the set of allowable initial conditions. We show
that this set of allowable initial conditions admits a
characterization as a behavior (i.e., a set of solutions of
a system of partial difference equations) over a domain
of rank strictly less than n. Using this characterization,
it is shown that, in general, initial conditions cannot
be arbitrarily assigned for a discrete autonomous n-D
system.

2) A parametrization of the allowable initial conditions
using a free variable is provided.

3) A necessary and sufficient condition for arbitrary
assignability of initial conditions is provided.

The results of [8] establish that every discrete autonomous n-
D system admits a characteristic set given by a finite union of
sublattices. The results of this note provide conditions as to
how to specify trajectories on the characteristic set. Therefore,
[8] in conjunction with the results developed here provide a
complete answer to the open problem of obtaining minimal
initial data required to solve a discrete autonomous n-D
system. Preliminary results, relating to arbitrary assignability
of initial conditions for the scalar case, has been published in
[7].

II. NOTATION AND PRELIMINARIES

A. Notation

We use the symbols Z, and R, to denote the sets of integers,
and real numbers, respectively. The symbols Zn, and Rn,
are used to denote the sets of n-tuples of integers, and real
numbers, respectively. For a set Γ, |Γ| denotes the cardinality
of Γ. We use the symbol • to denote a quantity which is
unspecified. For example, R ∈ Rg×• denotes a matrix with
real entries having g rows and an unspecified number of
columns.

B. System Description

We consider discrete n-D systems described by linear
systems of pdes with real constant coefficients. A solution of a
discrete n-D system is called a trajectory. For an n-D system
having q dependent variables, a trajectory, w = (w1, . . . , wq),
is a q-tuple of multi-indexed real valued sequences; i.e. w :
Zn → Rq . We use the symbol

(
RZn)q to denote the set

of all possible trajectories. The collection of all trajectories
satisfying a given system of pdes is called the behavior of the
system and is denoted by B. Therefore, B ⊆

(
RZn)q .

A system of pdes is described using the n-D shift oper-
ators σ1, . . . , σn, where the i-th shift operator, σi, acts on
a trajectory w ∈

(
RZn)q in the following way: for κ :=

(κ1, . . . , κn) ∈ Zn,

(σiw) (κ1, . . . , κn) := w(κ1, . . . , κi + 1, . . . , κn). (1)

Define σ := (σ1, . . . , σn), and σ−1 := (σ−1
1 , . . . , σ−1

n ), as
the n-tuples of shift, and inverse shift operators, respectively.
The Laurent polynomial ring in n indeterminates with real

coefficients is denoted by R[ξ1, ξ
−1
1 , . . . , ξn, ξ

−1
n ]. For brevity,

we define A := R[ξ, ξ−1], where ξ = (ξ1, . . . , ξn) and ξ−1 =
(ξ−1

1 , . . . , ξ−1
n ). Note that, A is a commutative ring.

A system of linear pdes with real constant coefficients
having q dependent variables is written as

R(σ, σ−1)w = 0, (2)

where R(ξ, ξ−1) ∈ A•×q . The behavior, B, of the system is
equal to the kernel of R(σ, σ−1), i.e.,

B=
{
w ∈

(
RZn

)q
R(σ, σ−1)w = 0

}
=ker R(σ, σ−1). (3)

A system represented as in (3) is called a kernel representation
and R(ξ, ξ−1) is called a kernel representation matrix. The
terms behavior, discrete n-D system, or simply system are
used interchangeably to denote a linear system of pdes having
n independent variables. We use the symbol Lq to denote the
set of all discrete n-D systems having q dependent variables.

For the purpose of this paper, we use a more algebraic
description of the system. For a system of pdes as in (2),
let R ⊆ A1×q denote the rowspan of R(ξ, ξ−1) ∈ A•×q over
A, i.e., R := rowspanAR(ξ, ξ−1). Note that, R ⊆ A1×q is a
submodule of the free module A1×q and is called the equation
module. The behavior B, as in (3), is equivalently given by

B=
{
w∈
(
RZn

)q
r(σ, σ−1)w = 0 ∀ r(ξ, ξ−1)∈R

}
=:B(R).

Note that, B is a vector space over R. Also, B has the structure
of an A-module [21, Section 2.1].

Given an equation module R ⊆ A1×q , define the quotient
module M := A1×q/R. The quotient module M is naturally
an A-module by the operations of addition and scalar multi-
plication defined on A1×q . Further, M being a module over
the R-algebra A, M is naturally a vector space over R. The
action of M on B plays an important role in this paper. Let
f ∈ A1×q be such that f = m ∈ M. Then the action of m
on a trajectory w ∈ B is defined as mw :=

(
f(σ, σ−1)w

)
. It

can be verified that this action of M on B is well-defined.

C. Free variables and autonomous n-D systems

For a trajectory w = (w1, . . . , wq) ∈ B, define the
projection map

Πwi : B→ RZn , (w1, . . . , wq) 7→ wi. (4)

Then, wi is said to be a free variable if Πwi(B) = RZn .
By an autonomous n-D system, we mean a discrete n-D

system without free variables [21]. Discrete autonomous n-
D systems have been characterized using various equivalent
conditions in the literature [13], [15], [19], [22]. Some of
the characterizations are summarized in Proposition 2.1 below.
Proofs can be found in the above-mentioned references.

Proposition 2.1: Let B ∈ Lq be a discrete n-D system.
Then the following are equivalent:

1) B is autonomous, i.e., B has no free variables.
2) B = ker R(σ, σ−1), where R(ξ, ξ−1) ∈ A•×q has full

column rank over A.
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3) The quotient module M is a torsion module2.
4) The annihilator ideal, annAM :=
{f ∈ A | fm = 0 for all m ∈M}, is non-zero.

D. Krull dimension of a system

Let A be a commutative ring. An ideal p ⊆ A is said to
be a prime ideal if p is not equal to the full ring and for
every f1f2 ∈ p either f1 ∈ p or f2 ∈ p. A chain of prime
ideals in A of the form p0 ( p1 ( . . . ( p` is said to be of
length `. The Krull dimension of a ring A is defined to be the
supremum of the lengths of chains of prime ideals in A. The
Krull dimension of modules is defined using the annihilator
ideal (defined in Proposition 2.1).

Definition 2.2: [4, Chapter 9] The Krull dimension of an
A-module M is defined to be the Krull dimension of the
quotient ring A/annAM, i.e.,

Krull dim (M) := Krull dim
(

A
annAM

)
.

For a discrete n-D system B ∈ Lq with quotient module M,
Krull dim(B) := Krull dim(M).

E. Integral ring extension

Integrality and integral ring extension play a crucial role
in this paper. Let A1 and A2 be commutative rings such
that A1 ⊆ A2 as a subring. Then an element α ∈ A2 is
said to be integral over A1 if α satisfies a monic polynomial
equation with coefficients from A1. If every element of A2 is
integral over A1 then A2 is said to be an integral extension
of A1. Proposition 2.3 summarizes the results on integral ring
extension required for this paper. (For details and proofs please
see [1, Chapter 5].)

Proposition 2.3: Let A1 ⊆ A2 be commutative rings.
Further, let A2 be a finitely generated algebra over A1. Then
the following are equivalent.

1) A2 is integral over A1.
2) A2 is a finitely generated module over A1.
Krull dimension under integral ring extension is of special

importance to us. It is well known that, when A1 ⊆ A2 is an
integral ring extension, then Krull dimension of A1 is equal to
the Krull dimension of A2 (see, for example [4, Proposition
9.2]). Proposition 2.4 states the converse relation. A proof can
be found in [8, Lemma 4.6], [4, Corollary 10.13b].

Proposition 2.4: Let A1 ⊆ A2 be commutative rings. Fur-
ther, let A2 be a finitely generated algebra over A1. Suppose
Krull dimension of A2 is equal to the Krull dimension of A1.
Then A2 is integral over A1.

Remark 2.5: [1, Chapter 5, Remark after Corollary 5.3] Let
g : A1 ↪→ A2 be a ring homomorphism. Then g : A1 → A2

is said to be integral if A2 is integral over g (A1).

III. CHARACTERIZATION OF INITIAL DATA USING
CHARACTERISTIC SETS

2An A-module M is said to be a torsion module if for every element
m ∈M, there exists a non-zero element f ∈ A such that fm = 0 ∈M.

Definition 3.1: Given a trajectory w ∈
(
RZn)q and a subset

C ⊆ Zn, the restriction of w to C, denoted by w|C , is defined
as

w|C : C → Rq, k 7→ w(k). (5)
Applying Definition 3.1 to every trajectory w ∈ B, the

restriction of B to C, denoted by B|C , is defined as

B|C := {w|C such that w ∈ B} . (6)

Definition 3.2 ( [19]): Consider a system B ∈ Lq , a subset
C of Zn is said to be a characteristic set for B if for every
trajectory w ∈ B, the restriction of w to the set C, allows to
uniquely determine the remaining portion of w, i.e., w|Zn\C
can be uniquely determined if w|C is known.

At the heart of the theory presented in this paper lies
a special kind of characteristic sets: sublattices of Zn (see
Definition 3.3 for the definition sublattices) and finite unions
of their parallel translates. Such sets are particularly useful
because the issue of minimality of characteristic sets gets
naturally resolved via the rank of such sublattices (as a Z-
submodule of the free Z-module Zn). For details on this
property of such characteristic sets please see [8]. Importantly,
it is also a fact that every discrete autonomous n-D system
admits a characteristic set that is a finite union of parallel
translates of a sublattice; in this regard, minimality is achieved
when the sublattice is of rank equal to the Krull dimension of
the autonomous system (see [8, Corollary 4.19], see also [7]
for the special case of scalar systems).

By a sublattice of Zn, we mean a Z-submodule of the free
module Zn. Since Zn is a Noetherian module, every sublattice
is finitely generated. Also, Z being a principal ideal domain,
such a sublattice is freely generated [5, Chapter 3, section 7].
Therefore, we have the following definition.

Definition 3.3: A subset S ⊆ Zn, is called a sublattice of
rank r 6 n if there exists a set {s1, s2, . . . , sr} ⊆ Zn, of
cardinality r, linearly independent over Z, that generates S as
a Z-module:

S = {λ1s1 + λ2s2 + · · ·+ λrsr λ1, . . . , λr ∈ Z}. (7)
Given a sublattice S ⊆ Zn, a parallel translate of S is the

set given by S+ν := {s+ν | s ∈ S}, where ν ∈ Zn is fixed.
Remark 3.4: Note that Definition 3.3 is more general than

some existing notions of sublattices in the literature, for
example, in [2].

Corresponding to a sublattice S ⊆ Zn, we define the
sublattice algebra, R[S], as

R[S] :=

{∑
ν∈S1

ανξ
ν S1 ⊆ S, |S1| <∞, αν ∈ R

}
. (8)

In other words, R[S] is the algebra formed by taking finite
linear combinations of monomials corresponding to integer
tuples in S. Note that, R[S] is a sub-algebra of A.

Note that, for a discrete autonomous n-D system B ∈ Lq

and a sublattice S ⊆ Zn of rank d, the restriction of B to S,
B|S , is a d-D behavior [2]. For the above-mentioned special
kind of characteristic sets (i.e., a finite union of a sublattice
S and its parallel translates), it is crucial to have B|S to
be a non-autonomous d-D behavior. The importance of non-
autonomy of B|S lies in the minimality aspect of initial data.
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For if B|S is autonomous, a proper subset of S would be a
characteristic set for B|S and, by transitivity, the proper subset
of S would be a characteristic set for B, too (see [8, Section
3.3] for more details). Note that, the equation module of B|S
as a d-D behavior is given by RS := R∩ R[S]1×q (see [2]).
Consequently, the corresponding quotient module is given by
MS := R[S]1×q/

(
R∩ R[S]1×q

)
.

Before stating the result that gives a characteristic set for
a discrete autonomous n-D system (i.e., Theorem 3.8) we go
through some auxiliary results.

Lemma 3.5: Consider a discrete autonomous n-D system
B ∈ Lq with quotient moduleM. Let S ⊆ Zn be a sublattice
of rank d such that B|S is a d-D behavior with quotient module
MS . Then annR[S]MS = (annAM) ∩ R[S].
Proof: See [8, Proposition 3.10]. �

Proposition 3.6: Consider a discrete autonomous n-D sys-
tem B ∈ Lq with quotient module M. Let S ⊆ Zn be
a sublattice such that the rank of S is equal to the Krull
dimension of M. Then the following are equivalent.

1) B|S is non-autonomous.
2) (annAM) ∩ R[S] = {0}.
3) A/annAM is a finitely generated faithful3 module over

R[S].
4) M is a finitely generated faithful module over R[S].

Proof: (1⇔ 2): Recall that, when rank of S is equal to d,
B|S is a d-D behavior with quotient module MS . It follows
from Proposition 2.1 that, B|S is non-autonomous if and only
if annR[S]MS = {0}. Using Lemma 3.5, it then follows that
B|S is non-autonomous if and only if (annAM)∩R[S] = {0}.

(2⇒ 3): Consider the chain of R[S]-linear maps R[S] ↪→
A� A/annAM. Assuming 2, i.e., (annAM)∩R[S] = {0},
the composite map R[S] → A/annAM is injective. Thus,
A/annAM is a faithful R[S]-module. Now, A/annAM being
a finitely generated R[S]-algebra, using the rank condition
(rank(S) = Krull dim(M)), it follows from Proposition 2.4
that, the R-linear map R[S]→ A/annAM is integral as well.
Thus, using Proposition 2.3, A/annAM is a finitely generated
R[S]-module.

(3⇒2): A/annAM is a faithful module over R[S] implies
that (annAM) ∩ R[S] = {0}.

(3 ⇒ 4): Note that, M is naturally a finitely generated
faithful module overA/annAM. Assuming 3,A/annAM is
a finitely generated faithful module over R[S]. Therefore, by
transitivity,M is a finitely generated faithful module overR[S].

(4 ⇒ 3): Since M contains a copy of A/annAM as a
submodule, the fact thatM is a finitely generated R[S]-module
implies that A/annAM must also be a finitely generated
R[S]-module. Further,Mbeing a faithful R[S]-module implies
that the R[S]-linear map R[S] → A/annAM is injective.
Combining these two implications we haveR[S]→A/annAM
to be injective and integral. Thus from [1, Corollary 5.2], it
follows that A/annAM is a finitely generated and faithful
R[S]-module. �

Proposition 3.6 asserts that, when the rank of S is equal
to the Krull dimension of M, M is a finitely generated

3AnA-moduleM is said to be a faithful module overA if annAM={0}.

faithful module over R[S]. We now explicitly construct a finite
generating set for M as an R[S]-module. The significance
of this generating set is that it enables us to construct a
characteristic set of the special form for the given system. A
generating set for M as an R[S]-module can be constructed
using a generating set for A/annAM as an R[S]-module as
we show in Proposition 3.7 below. An important assumption
required in constructing a generating set for A/annAM as
an R[S]-module is that the sublattice S needs to be a direct
summand.4 The property of S being a direct summand is used
to establish the fact that A = R[S,S ′] (see [8, Lemma 4.8]).
This is crucial for constructing a generating set for A/annAM
as an R[S]-module. We do not show the construction of this
generating set here; please see [8, Lemma 4.10] for the same.
Let

G := {ξν | ν ∈ Γ ⊆ Zn} ⊆ A/annAM (9)

denote the finite generating set for A/annAM as an R[S]-
module. Note that, Γ ⊆ Zn is a finite set. Using G, Proposi-
tion 3.7 provides a generating set for M as an R[S]-module.

Proposition 3.7: Consider a discrete autonomous n-D sys-
tem B ∈ Lq with quotient module M. Let S ⊆ Zn be a
sublattice such that S is a direct summand of Zn and the rank
of S is equal to the Krull dimension of M. Further, let B|S
be non-autonomous. Then a generating set forM as a module
over R[S] is given by

GM :=
{
ξνeTj ν ∈ Γ ⊆ Zn, |Γ| <∞, 1 6 j 6 q

}
⊆M, (10)

where Γ ⊆ Zn is as defined in (9) and ej is the j-th standard
basis vector in Aq .
Proof: Note that, M is naturally finitely generated by{
eTj 1 6 j 6 q

}
as a module over A/annAM. When B|S

is non-autonomous and the rank of S is equal to the
Krull dimension ofM it follows from Proposition 3.6 that,
A/annAM is a finitely generated R[S]-module. Let G :={
ξν ν ∈ Γ ⊆ Zn, |Γ| <∞

}
⊆ A/annAM be a finite gen-

erating set for A/annAM as module over R[S]. Therefore,{
ξνeTj ν ∈ Γ, |Γ| <∞, 1 6 j 6 q

}
is a finite generating set

for M as an R[S]-module. �

We now prove Theorem 3.8 that gives a characteristic set
for a discrete autonomous n-D system.

Theorem 3.8: Consider a discrete autonomous n-D system
B∈Lq with quotient module M. Let S ⊆Zn be a sublattice
such that S is a direct summand and the rank of S is equal
to the Krull dimension of M. Further, let B|S be non-
autonomous. Then a union of S and finitely many parallel
translates of S is a characteristic set for B.
Proof: Note that, for a sublattice S ⊆ Zn, a parallel translate
of S is defined by S + ν := {s+ ν | s ∈ S}, where ν ∈ Zn
is fixed. Then for a finite set Γ ⊆ Zn,

C :=
⋃
ν∈Γ

S + ν (11)

denotes a union of S and finitely many parallel translates of
it. To show C ⊆ Zn is a characteristic set for B, it is sufficient

4A sublattice S ⊆ Zn is called a direct summand of Zn if there exists
another sublattice of Zn, say S′, such that Zn = S ⊕ S′.
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to show that for any w ∈ B, w|C = 0 implies w ≡ 0 ( [19,
Lemma 2.3]). Let κ ∈ Zn be arbitrary, then

w(κ) =

q∑
i=1

wi(κ)ei, (12)

where wi(κ) =
((
σκeTi

)
w
)

(0) is the i-th component of w.

Using Proposition 3.7, for all i ∈ {1, 2, . . . , q}, ξκeTi can be
written as a finite R[S]-linear combination of elements of GM,
where GM is as defined in (10). Suppose

ξκeTi =
∑
ν∈Γ

ανimνi , (13)

where ανi ∈ R[S] and mνi ∈ GM.
Recall that, elements in GM are of the form ξνeTj , where

ν ∈ Γ ⊆ Zn and since ανi ∈ R[S], ανi =
∑
ν̃∈S βν̃ξ

ν̃ , where
βν̃ ∈ R. Therefore, the i-th component of w can be written as

wi(κ)=
((
σκeTi

)
w
)
(0)=

(([
fi1(σ) . . . fiq (σ)

])
w
)
(0), (14)

where each fij (ξ) is of the form

fij =
∑
ν∈Γ

∑
ν̃∈S

βν̃ξν̃+ν =
∑
ν∈C

β̃νξν ,

where β̃ν ∈ R. Therefore, (14) can be written as

wi(κ) =

 q∑
j=1

fij (σ)wj

 (0) =

 q∑
j=1

∑
νj∈C

β̃νjσ
νjwj

 (0)

=

q∑
j=1

∑
νj∈C

β̃νjwj(νj).

Since w|C = 0, wj(νj) = 0 for all j ∈ {1, . . . , q} and νj ∈ C.
Therefore, wi(κ) = 0 and from (12), w(κ) = 0. Thus, C is a
characteristic set for B. �

Remark 3.9: The existence of a sublattice S ⊆ Zn, satis-
fying the specifications of Theorem 3.8, can always be guar-
anteed for any discrete autonomous n-D system [8, Theorem
4.18].

Stated in plain terms, if C is a characteristic set for B then
the elements in B|C are in one-to-one correspondence with the
trajectories in B. Thus, each element in B|C can be viewed as
an initial condition (say w|C) whence the trajectory (i.e., w)
can be uniquely determined (as done in the proof of Theorem
3.8 above). Such an initial condition is impractical; for it is
necessary to know w in order to know w|C . However, upon
deeper analysis, it is found that the set B|C itself has n-D
systems-like structure, which can be exploited to parametrize
it, and thus the initial conditions w|C can be obtained from
the system of pdes without knowing w. We elaborate on this
in the sequel.

IV. SET OF ALLOWABLE INITIAL CONDITIONS

Given a discrete autonomous n-D system B ∈ Lq , let C ⊆
Zn, as defined in (11), denote a characteristic set for B given

by a union of a sublattice S ⊆ Zn, of rank d, and finitely
many parallel translates of it. Let γ := |Γ|. Then

C =

γ⋃
i=1

(S + νi) , νi ∈ Γ. (15)

To analyze the behavior of the system restricted to C, we
first define the restriction of B ∈ Lq to the sublattice S ⊆ Zn,
of rank d. Let S ⊆ Zn be freely generated by {s1, . . . , sd} ⊆
Zn. Note that, S is isomorphic to Zd as Z-modules. For an
element κ = (κ1, . . . , κd) ∈ Zd, let s1κ1 + . . . + sdκd =: s.
Then the restriction of a trajectory w ∈ B to the sublattice S
is defined in the following manner: for κ ∈ Zd,

x1(κ) := w(s1κ1 + . . .+ sdκd) = w(s) = (σsw) (0). (16)

Note that, x1(κ) is a q-tuple of real valued sequences evolving
over Zd, i.e., x1 ∈ (Rq)Z

d

.
The restriction of a trajectory w ∈ B to the parallel translate

S + ν is defined as: for κ ∈ Zd,

xν(κ) := w(s1κ1 + . . .+ sdκd + ν) =
(
σs+νw

)
(0), (17)

wheres=
∑d
i=1siκi. Note that, xν(κ)is a q-tuple of real valued

sequences evolving overZd, i.e., xν ∈(Rq)Z
d

and xν =w|S+ν .
For the characteristic set C ⊆ Zn, given by (15), following

(17), the restriction of a trajectory w ∈ B to C is defined in
the following manner: for κ ∈ Zd

x(κ)=

x1(κ)
...

xγ(κ)

:=


σ

s+ν1

...
σs+νγ

w
(0)=


σ

s+ν1

...
σs+νγ

w
(0), (18)

where s =
∑d
i=1 siκi. Here, each component of x(κ) is

a q-tuple of real valued sequences evolving over Zd. Thus,
x ∈

(
(Rq)Z

d
)γ

and as a whole x can be identified with the
restriction of a trajectory w to C, i.e., x = w|C .

Recall, from (10), the generating set,GM, ofM as anR[S]-
module. Then, (18) is rewritten by acting the elements ofGM
on a trajectoryw∈B, i.e., for G :={gi 1 6 i 6 γ},

x(κ) =

x1(κ)
...

xγ(κ)

 =


g1Iq

...
gγIq

w
 (0). (19)

The collection of all trajectories in B restricted to C forms
the set of allowable initial conditions, i.e.,

X :=

x =

x1

...
xγ

∈((Rq)Z
d
)γ

x=

w|S+ν1
...

w|S+νγ

, w ∈ B

 . (20)

Recall, from Proposition 3.6, thatM is a finitely generated
module over R[S]. Let the finite generating set for M as an
R[S]-module be given by {m1, . . . ,mqγ} ⊆ M. Then there
exists a surjective R[S]-module homomorphism φ defined in
the following manner: for i ∈ {1, . . . , qγ}, and mi ∈M,

φ : R[S]1×qγ � M
eTi 7→ mi,

(21)
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where eTi is the i-th standard basis vector of R[S]1×qγ . It
follows from the first isomorphism theorem [1] that,

M∼=
R[S]1×qγ

ker φ
as R[S]-modules. (22)

Define the R[S]-module Mφ := R[S]1×qγ/ker φ. Let
HomR (Mφ,R) denote the algebraic dual of Mφ, i.e., the set
of all R-linear maps fromMφ to R. Note that, HomR (Mφ,R)
is an R[S]-module. Theorem 4.1 shows that the set of allow-
able initial conditions, X, is isomorphic as an R[S]-module to
HomR (Mφ,R). This gives an algebraic characterization of
the set of allowable initial conditions.

Theorem 4.1: Let X be the set of allowable initial condi-
tions as defined in (20). Let HomR (Mφ,R) be the algebraic
dual ofMφ, whereMφ := R[S]1×qγ/ker φ. Define the R[S]-
module homomorphism Ψ? : X → HomR (Mφ,R) in the
following manner: for x ∈ X and f ∈ R[S]1×qγ ,

Ψ? : X → HomR (Mφ,R)

(Ψ? (x))
(
f
)

:=
(
f(σ, σ−1)(x)

)
(0).

(23)

Then Ψ? is an isomorphism of R[S]-modules.
Proof: It is easy to verify that Ψ? is well-defined and R[S]-
linear. To show Ψ? is an isomorphism we show that Ψ? is
injective and surjective.
(Ψ? is injective) Let Ψ? (x) = 0 ∈ HomR (Mφ,R). This
implies (Ψ? (x))

(
f
)

= 0 for all f ∈ Mφ. Let ρ :
M →Mφ denote the isomorphism in (22). Then for ev-
ery element {m1, . . . ,mqγ} ⊆ M there exist unique el-
ements ρ(m1), . . . , ρ(mqγ) in Mφ. As (Ψ? (x)) = 0 ∈
HomR (Mφ,R), in particular (Ψ? (x)) (ρ(mi)) = 0 for all
i ∈ {1, . . . , qγ}. Therefore, for w ∈ B and i ∈ {1, . . . , qγ},
mi(w) = 0. This implies x ≡ 0 .
(Ψ? is surjective) Note that, HomR(M,R) ∼= HomR (Mφ,R)
as R[S]-modules as M ∼= Mφ ((22)). It follows from a
variant of the well-known Malgrange’s theorem that B ∼=
HomR(M,R) as A-modules [6, Proposition 6]. Since R[S] ⊆
A, B ∼= HomR(M,R) as R[S]-modules, as well. Therefore,
we obtain the following chain of isomorphisms of R[S]-
modules

B ∼= HomR(M,R) ∼= HomR (Mφ,R) . (24)

To show Ψ? is surjective, let µ ∈ HomR (Mφ,R). Using (24),
there exists a unique wµ ∈ B. Defining the action of the
elements {m1, . . . ,mqγ} ⊆ M on wµ, we obtain x ∈ X.
Thus Ψ?(x) = µ. �

Now, using the variant of Malgrange’s Theorem [6, Propo-
sition 6], we define the behavior Bφ as

Bφ := HomR (Mφ,R) . (25)

Thus, Bφ is a d-D behavior, where d = rank(S), with equa-
tion module ker φ ⊆ R[S]1×qγ and corresponding quotient
module Mφ. Therefore, using (25), the isomorphism in (23)
can be rewritten as

X ∼= Bφ as R[S]-modules. (26)

Because of the above identification of the set of allowable
initial conditions X with a d-D behavior Bφ, the question

of parametrization, vis-à-vis its freeness, boils down to the
question as it applies to behaviors. The parametrization of n-
D behaviors is one of the central problems in systems theory
and has been long resolved via controllability (see [15], [20],
[13], [14], [21] among others). This observation plays a key
role in the next section.

Example 4.2: We illustrate the results of this section by a
simple example of a discrete 2-D autonomous system. In order
to get such a system of practical importance, we consider
the following system from iterative learning control (ILC)
[3] described by a family of differential algebraic equations
(DAEs).[

Y
(i)
1 (z)

Y
(i)
2 (z)

]
=

[ 1
z2+0.5z+0.5 0

0 1
z+1

][
U

(i)
1 (z)

U
(i)
2 (z)

]
Y

(i)
1 (z) = Y

(i)
2 (z).

(27)

Here i is the index of iteration, Yj(z) and Uj(z) are z-
transforms5 of yj(k) and uj(k), respectively, for j = 1, 2.
For the purpose of tracking the zero trajectory, suppose the
following iterative learning control is provided u

(i)
1 (k) = 0

for all k and all i, and u
(i)
2 (k) = −y(i−1)

2 (k) for all k. With
this control, the closed-loop ILC system can be rewritten as a
2-D system. Indeed, using the standard 2-D system notation
yj(i, k) to denote y(i)

j (k), the closed-loop ILC system is equal
to a 2-D system that satisfies the following equations.

y1(i, k + 2) + 0.5y1(i, k + 1) + 0.5y1(i, k) = 0
y2(i, k + 1) + y2(i, k) + y2(i− 1, k) = 0

y1(i, k)− y2(i, k) = 0.

 (28)

Defining y(i, k) := y1(i, k) = y2(i, k) we get that the 2-D
system of (28) is equivalent to the scalar 2-D behavior B :={
y ∈ RZ2

|
[
y(i, k + 2) + 0.5y(i, k + 1) + 0.5y(i, k)
y(i, k + 1) + y(i, k) + y(i− 1, k)

]
= 0

}
.

It easily follows from these equations that y(i, 0) and y(i, 1)
together forms the initial condition for the 2-D system. Equiv-
alently, C := {spanZ(1, 0)} ∪ {(0, 1) + spanZ(1, 0)} is a
characteristic set for B. However, it must be noted that y(i, 0)
and y(i, 1) both cannot be chosen to be free simultaneously.
Indeed, the second equation necessitates that y(i, 0) and y(i, 1)
must satisfy y(i, 1) + y(i, 0) + y(i− 1, 0) = 0, i.e.,[

(1 + σ−1
1 ) 1

] [y(i, 0)
y(i, 1)

]
= 0. (29)

In the language of Theorem 4.1, equation (29) translates to

X ∼= ker
[
(1 + σ−1) 1

]
,

where X :=

{[
y(i, 0)
y(i, 1)

]
| y ∈ B

}
= B|C is the set of

allowable initial conditions.
Note that, in order for the initial conditions to be free the

2-D system must admit an equation ideal that is principal (see
[10, Theorem 6.10]). It can be easily verified that the 2-D
behavior B does not admit such an equation ideal.

5Note that, the z-transform requires signals to be defined over an infinite
time horizon. However, for ILC, the signals are over finite duration. Thus, the
z-domain representation is an approximation of the ILC system [3] which is
often used in practice to derive various useful properties of the original ILC
system.
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V. FREE-NESS OF THE SET OF ALLOWABLE INITIAL
CONDITIONS

Recall that, for a discrete autonomous n-D system B ∈
Lq having a characteristic set C ⊆ Zn given by a union of
a sublattice S ⊆ Zn, of rank d, and finitely many parallel
translates of it (see (15)), the set of allowable initial conditions
X, as defined in (20), is isomorphic as a d-D behavior to Bφ

(defined in (25)).
Proposition 5.1: Consider a discrete autonomous n-D sys-

tem B ∈ Lq with quotient module M. Let C ⊆ Zn, given
by (15), be a characteristic set for B and X be the set of
allowable initial conditions for B. Then X has free variable(s)
if and only if M is a faithful module over R[S].
Proof: Note that, it follows from Statement 1 of Proposition
2.1 that, a behavior is non-autonomous if and only if it has
free variables. Using the isomorphism X ∼= Bφ, as defined in
(23), X having free variables is equivalent to saying that Bφ

is non-autonomous. Now, annR[S]Mφ = {0} is equivalent
to saying Bφ is non-autonomous (Statement 4 of Proposition
2.1). Using the isomorphism M ∼= Mφ as R[S]-modules
((22)) (annAM) ∩ R[S] = {0}, i.e., M is a faithful module
over R[S]. �

Remark 5.2: It follows from Propositions 3.6 and 5.1 that
the set of allowable initial conditions always has free variables.
In other words, for an autonomous n-D system B ∈ Lq , the
set of allowable initial conditions X, or equivalently Bφ, is
non-autonomous, i.e., there exists some freedom in choosing
initial conditions.

In Theorem 5.3, using the notion of controllability, we
provide a parametrization of the allowable initial conditions
using free variables. We simply utilize the well-known fact
that every controllable n-D system admits an equivalent image
representation (see [21] for the n-D discrete case).

Theorem 5.3: Consider a discrete autonomous n-D system
B ∈ Lq with quotient moduleM. Let C ⊆ Zn, given by (15),
be a characteristic set for B and X be the set of allowable
initial conditions for B. Then the following are equivalent.

1) M is torsion-free as an R[S]-module.
2) X is controllable.
3) X has an image representation.
4) There exists a Laurent polynomial ma-

trix M ∈ R[S]qγ×• such that X ={
x = M(σ, σ−1)` | ` ∈

(
RZd

)•}
.

Proof: Follows from the characterization of controllability;
see, for example, [13], [22, Theorem 5], [21, Theorem 5],
[14, Section 3, Corollary 2] among others. �

Statement 4 of Theorem 5.3 provides a parametrization of
the initial conditions w|C by a free variable `. The free variable
` is much akin to a potential function. Note, however, that this
does not guarantee freeness of the initial conditions. It turns
out that a stronger notion of controllability guarantees that the
initial condition vector x ∈ X can be partitioned into a free
part and a non-free part such that the set X can be parametrized
by the free part of x. Once again, this notion of controllability

is well-known in n-D systems theory; it is often called strong
controllability (see [17], [18], [24], [23]).

Theorem 5.4: Consider a discrete autonomous n-D system
B ∈ Lq with quotient moduleM. Let C ⊆ Zn, given by (15),
be a characteristic set for B and X be the set of allowable
initial conditions for B. Then the following are equivalent.

1) M is free as an R[S]-module.
2) X is strongly controllable.
3) X has an observable image representation.
4) For every allowable initial condition x ∈ X, there exists

an input-output6 partitioning of x as x = (xu, xy) such
that xy = M2M

−1
1 xu, where xu is free.

Proof: Follows from the characterization of strong controlla-
bility. �

The significance of an observable image representation
is the following: X has an observable image representation
implies that for x = M(σ, σ−1)`, M ∈ R[S]qγ×• is zero-

right-prime7. Let ` ∈
(
RZd

)λ
. Then the ideal formed by the

λ × λ minors of M is equal to R[S]. Thus, there exists a
submatrix M1 ∈ R[S]λ×λ which is co-maximal with respect
to all other λ × λ minors of M . This leads to an input-

output partitioning of x. Let M =

[
M1

M2

]
. Partitioning x as

x = (xu, xy), xy can be written as xy = M2M
−1
1 xu, where

M2M
−1
1 is a transfer function matrix (see [22, Section 6]

for more details). The fact that the operator M2M
−1
1 is well-

defined and is a legitimate operator follows from the fact that
M is zero-right-prime. Thus, xy can be inferred from xu.

Note that, Theorem 5.4 provides a stronger condition as
compared to Theorem 5.3. However, for the condition when
the Krull dimension of the system is equal to one, the
conditions given by Theorems 5.3 and 5.4 are equivalent. We
state this in Corollary 5.5 below.

Corollary 5.5: Consider a discrete autonomous n-D system
B ∈ Lq with quotient module M. Let the Krull dimension
of M be equal to one. Let C ⊆ Zn, given by (15), be a
characteristic set for B and X be the set of allowable initial
conditions for B. Then X is controllable if and only if X has
an observable image representation.
Proof: The Krull dimension ofM being equal to one implies
that rank(S) = 1. Therefore, R[S] is a principal ideal domain
(PID) and thus M is torsion-free if and only if M is free as
an R[S]-modules. �

Example 5.6: Continuing with the simplistic 2-D sys-
tem of Example 4.2, recall that the set of allowable
initial conditions X, as a 1-D behavior, is given by
ker

[
(1 + σ−1) 1

]
. This is a controllable 1-D system,

therefore, it admits an observable image representation, as
well as representation by a transfer function. Indeed, X =

6An input is defined to be a maximal set of free components. The notion
of causality is not considered.

7A matrix M ∈ Ag×q , with g > q is said to be zero-right-prime if all the
q × q minors of M do not have a common zero in (C∗)n.
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{[
y(·, 0)
y(·, 1)

]
=

[
1

−(1 + σ−1)

]
` | ` ∈ RZ

}
is an observable im-

age representation. For the representation of X by a transfer
function, note that if y(·, 1) is taken as input (i.e., free) and
y(·, 0) as output (i.e., non-free) then the input-output transfer
function is given by − 1

1+z−1 .

VI. CONCLUDING REMARKS

An essentially complete answer to the open problem of
characterizing minimal initial data for discrete autonomous n-
D systems was recently proposed in [8] using the notion of
characteristic sets. However, the procedure of obtaining initial
conditions, by assigning trajectories on a characteristic set, was
not addressed. In this paper, we provided a complete answer to
the question of assignability of initial conditions for a given
discrete autonomous n-D system having a characteristic set
given by a union of a sublattice and finitely many parallel
translates of it. In this regard, an algebraic characterization
of the set of allowable initial conditions was given. Using
this characterization, it was shown that initial conditions, in
general, cannot be arbitrarily chosen. This bears an analogy to
choosing initial conditions for a descriptor 1-D system where
initial conditions need to satisfy some algebraic constraints.
For an n-D system a parametrization of the set of allowable
initial conditions was provided which showed that every
allowable initial condition can be obtained using an arbitrary
function. Finally, a necessary and sufficient condition as to
when trajectories can be arbitrarily assigned was provided.
With these results in place, the algorithms for computing
solutions of discrete n-D systems can be implemented in a
better way.

It is evident that assigning initial conditions on a charac-
teristic set, based on the results developed in this paper, is
not always possible by inspection. Developing implementable
algorithms requires the computation of syzygies, which is a
standard problem in computational commutative algebra and
can be done using tools, such as, Gröbner basis. This is
a matter of future research. Other possible future directions
include stability analysis of discrete n-D systems in this
context of initial conditions.
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