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Abstract In this paper, we study the restrictions of solutions of a scalar system of PDEs to a
proper subspace of the domain R

n . The object of study is associated with certain intersection
ideals. In the paper, we provide explicit algorithms to calculate these intersection ideals. We
next deal with when a given subspace is “free” with respect to the solution set of a system
of PDEs—this notion of freeness is related to restrictions and intersection ideals. We again
provide algorithms and checkable algebraic criterion to answer the question of freeness of a
subspace. Finally, we provide an upper bound to the dimension of free subspaces that can be
associated with the solution set of a system of PDEs.

Keywords Systems of PDEs · Restriction ideals · Computational algorithms

1 Introduction

By n-D systems, we mean systems of linear partial differential equations (PDEs) over reals in
n independent variables. The word ‘scalar’ indicates that the number of dependent variables
is just 1. As is the usual practice, we denote the independent variables by x1, x2, . . . , xn , and
the dependent variable by w. A time-tested general approach to dealing with such systems
has been to look into restrictions of the solutions to smaller subsets of the domain (that
is, the n-dimensional Euclidean space R

n). The well-known method of characteristics [see
for example Renardy and Rogers (2004)] is an example of this approach. Interestingly,
many key ideas in the analysis of such n-D systems fall broadly under the purview of this
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general approach of restriction. These include the theory of positivity/path-independence of
various functionals (Pillai and Willems 2002), conic stability (Valcher 2001; Shankar 2000),
Lyapunov-type stability of 2-D/n-D systems (Napp Avelli et al. 2011; Kojima et al. 2010),
the notion of autonomy degree of Napp (2010), the problem of minimal initial conditions
for the Cauchy problem (Zerz and Oberst 1993), etc. In this article, we look at restrictions
of solutions of an n-D system to a special type of subsets of the domain R

n , namely, its
non-trivial subspaces. We provide various algebraic characterizations of such restrictions,
with a focus on algorithms for computation of the relevant algebraic objects.

This article can be thought simultaneously as a companion to and an extension of Pal and
Pillai (2014). In Pal and Pillai (2014) restrictions to only 1-D subspaces of R

n were considered.
There it was shown that the dual operation to such restrictions yields the algebraic entity
called intersection ideals. Intersection ideals are obtained from the ideal of the equations
by intersecting it with a suitable subring of the ring of partial differential operators. In Pal
and Pillai (2014), this suitable subring was determined by the chosen generator of the 1-D
subspace to which restriction was done. In this article, we show that this operation extends
to higher dimensional subspaces. We call such general intersection ideals for restrictions
to r -D subspaces of R

n r -D intersection ideals. We provide Gröbner basis algorithms for
computation of such r -D intersection ideals from a given equation ideal.

We also address the issue of free subspaces of a scalar n-D system. Scalar systems, being
autonomous systems, have the property that its solutions are completely determined by their
restrictions on a proper subset of R

n (Rocha 1990; Fornasini et al. 1993). The issue of free-
ness comes in connection to whether these restrictions can be arbitrary, or whether they
satisfy certain equations. This issue was addressed in Pal and Pillai (2014) for restrictions of
scalar n-D systems to 1-D subspaces. In this article we extend that result to higher dimen-
sional subspaces. This notion of freeness plays an important role in half-line stability of n-D
autonomous systems.
Notation: We use standard notation. R, C, Z denote the sets of real numbers, complex num-
bers and integers. R

n , C
n and Z

n denote the vector-space or free module (for Z) with n
copies of R, C and Z, respectively. We use bold-face letters to denote vectors; the compo-
nents of a vector are denoted by the same letter in normal font with subscripted indices.
For example, x = (x1, x2, . . . , xn). To denote the the i th partial derivative with respect
to x, that is, ∂

∂xi
, we use ∂xi . For the n-tuple {∂x1 , ∂x2 , . . . , ∂xn } we use ∂x . Similarly,

we use ∂ti to denote the i th partial derivative with respect to t, that is ∂
∂ti

, and for the
r -tuple {∂t1 , ∂t2 , . . . , ∂tr }, we use ∂t . To denote multi-variable polynomial rings over R, we
use R[∂x ] or R[∂t ], where the variables are {∂x1 , ∂x2 , . . . , ∂xn } or {∂t1 , ∂t2 , . . . , ∂tr }, respec-
tively. We consider mostly two kinds of function-spaces to look for solutions of the sys-
tems of PDEs; they are: the set of smooth functions, denoted by C∞ (Rn, R), and that of
real analytic functions of exponential type, denoted by Exp (Rn, R). We sometimes use W
to denote a general function-space for discussions not specific to any particular function-
space.

2 Restriction of solutions to a subspace

The central object of study in this article is the solution set of a system of linear PDEs.
Following Willems’ (1991) notation for 1-D systems, we denote such a solution set by B,
and call it the behavior of the given system. We write a system of linear scalar PDEs in the
vector form as

123



Multidim Syst Sign Process

F(∂x )w =

⎡
⎢⎢⎢⎣

f1(∂x )

f2(∂x )
...

fd(∂x )

⎤
⎥⎥⎥⎦ w = 0,

where w ∈ W and F(∂x ) ∈ R[∂x ]d×1. This gives us a succinct way to write down the
behavior B as

B = {w ∈ W | F(∂x )w = 0, F(∂x ) ∈ R[∂x ]d×1} = ker(F(∂x )). (1)

Since we do not put any restriction (for example degree constraints) on the operators, we
require W to be a module over R[∂x ], where scalar multiplication is defined by partial
differentiation. Note that both the function-spaces C∞ (Rn, R) and Exp (Rn, R) have this
property.

Equation (1) is called a kernel representation of B. Many different systems of equations
may result in the same B. In fact, if F̃(∂x ) ∈ R[∂x ]d̃×1 is such that the ideal generated by the
entries of F̃(∂x ) is exactly equal to that generated by the entries of F(∂x ) then ker(F̃(∂x )) =
ker(F(∂x )). It is indeed the ideal generated by the equations that determines the behavior.
This ideal generated by the equations plays an important role throughout this article; it is
called the equation ideal of B. We denote the equation ideal by I.

Although the non-uniqueness of kernel representation can be avoided by considering
equation ideals, instead of only equations, still there can be distinct equation ideals resulting
in the same behavior. This non-uniqueness is a consequence of the function-space. It follows
from Oberst’s theorem (Oberst 1990) that for both the function-spaces we are considering—
that is, C∞ (Rn, R) and Exp (Rn, R)—such a situation does not arise. In other words, we get
a one-to-one correspondence between ideals of R[∂x ] and scalar n-D behaviors. This allows
us to associate another algebraic object with a behavior: the quotient ring, M := R[∂x ]/I.

The principal object of study in this article is the method of restriction of trajectories
in a given behavior B to a nontrivial subspace S ⊆ R

n . We now formalize the notion of
restriction. Suppose w ∈ C∞ (Rn, R), and S ⊆ R

n a subspace of dimension r . We denote
the restriction of w to S as w|S and define it as a function from S to R in the following
manner

w|S : S → R

v �→ w(v).

By fixing a basis for S , w|S can be viewed as an element of C∞ (Rr , R). This is done as
follows. Suppose S ∈ R

n×r is such that its columns form a basis of S . So every element of
S can be written uniquely as St where t ∈ R

r is a real parameter. This way w|S can be
identified uniquely with the function w̃ ∈ C∞ (Rr , R) as

w̃(t) = (w|S ) (St) = w(St).

The smoothness of w̃ follows from that of w.
It is important to note that it is possible that with a different choice of basis for S , the same

w|S gets identified with a different w̃. However, these distinct w̃’s are equivalent modulo
a coordinate change on R

r . In this article, we do not attempt at making these restrictions
representation-free. We assume that S is always specified by a fixed matrix S. Hence, we
take the following as a definition of restriction:

(w|S ) (t) := w(St) ∈ C∞ (
R

r , R
)
. (2)

With Eq. (2) we now define an important object central to this article.
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Definition 1 Let B be the behavior of a given system of scalar PDEs, and let S ⊆ R
n be

a subspace with dimension equal to r . Further, let the columns of S ∈ R
n×r be a basis of

S . Then by B|S we denote the following set of trajectories in C∞ (Rr , R) and call it the
S -restricted behavior:

B|S := {w|S | w ∈ B} ⊆ C∞ (
R

r , R
)

(3)

Example 2 Consider the 3-D system of equations (∂x1 − α1)w = (∂x2 − α2)w = (∂x3 −
α3)w = 0, where α1, α2, α3 ∈ R. Then every solution w ∈ B is of the form

w(x1, x2, x3) = keα1x1+α2x2+α3x3

for some constant k ∈ R. Suppose S = span{e1, e1 + e2}, where e1, e2 are the first two
standard basis vectors of R

3. Then trajectories in B|S are given by

w|S (t1, t2) = keα1t1+(α1+α2)t2

for k ∈ R.

3 Intersection ideal

It was shown in Pal and Pillai (2014) that for the case when dimension of S is equal to 1, the
S -restricted behavior is always contained in a certain 1-D behavior. The equation ideal of
this 1-D behavior is obtained by intersecting the original equation ideal with a certain subring
of R[∂x ] determined by the spanning vector of S . In this section we extend this result to the
case when dim S > 1. In order to do this, we require the following construction.

Let S ⊆ R
n have a basis {s1, s2, . . . , sr } ⊆ R

n . These basis vectors can be used to define
an R-algebra homomorphism �S : R[∂t ] → R[∂x ] as

�S : f (∂t1 , ∂t2 , . . . , ∂tr ) �→ f (sT
1 ∂x , sT

2 ∂x , . . . , sT
r ∂x ). (4)

With the help of this map �S we now define the S -intersection ideal of a given ideal
I ⊆ R[∂x ].
Definition 3 Let I ⊆ R[∂x ]be an ideal, and S ⊆ R

n a subspace with basis {s1, s2, . . . , sr } ⊆
R

n . Then the S -intersection ideal IS ⊆ R[∂t ] is defined as:

IS := { f (∂t ) | �S ( f (∂t )) ∈ I} ⊆ R[∂t ]. (5)

Remark 4 Note that Definition 3 does not explicitly state that IS is an ideal of R[∂t ].
However, it is a consequence of the definition of �S that IS as defined above is indeed an
ideal of R[∂t ].

Related with IS is the following r -D behavior.

BS := {w ∈ C∞ (
R

r , R
) | f (∂t )w = 0 for all f (∂t ) ∈ IS }. (6)

Equivalently, BS can be defined as

BS := ker(FS (∂t )), (7)

where FS (∂t ) ∈ R[∂t ]•×1 is such that its rows generate IS as an ideal of R[∂t ]. Since
R[∂t ] is a noetherian ring, IS is finitely generated by elements from R[∂t ]. These elements
constitute the column vector FS (∂t ). With this we now state our first main result.
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Theorem 5 Let B be a scalar n-D behavior with equation ideal I ⊆ R[∂x ]. Further, let
S ⊆ R

n be an r-dimensional subspace with basis {s1, s2, . . . , sr } ⊆ R
n. Suppose B|S is

the S -restricted behavior, and let IS ⊆ R[∂t ] and BS ⊆ C∞ (Rr , R) be as defined by
Eqs. (5) and (6), respectively. Then we have the following:

B|S ⊆ BS . (8)

Proof Let v ∈ C∞ (Rn, R) be a typical element in B|S . This means there exists w ∈ B

such that v(t) = w(St), where S ∈ R
n×r is the matrix with {s1, s2, . . . , sr } as its columns. In

order to show that v ∈ BS it is enough that we show f (∂t )v = 0 for all f (∂t ) ∈ IS . First
observe that for any w ∈ C∞ (Rn, R) and any g(∂t ) ∈ R[∂t ] we have the following identity
by applying chain rule of differentiation:

g(∂t )(w(St)) = (�S (g(∂t )))w)(St). (9)

It then follows from Eq. (9) that for f (∂t ) ∈ IS and v = w|S ∈ B|S we have

f (∂t )(w|S (t)) = f (∂t )w(St) = (�S ( f (∂t )))w)(St)

= 0,

as f (∂t ) ∈ IS implies �S ( f (∂t )) ∈ I and g(∂x )w = 0 for all g(∂x ) ∈ I. ��
Example 6 Consider the situation of Example 2. Here the S -intersection ideal is given by

IS = 〈(∂t1 − α1), (∂t2 − α1 − α2)〉.
Clearly, the behavior of IS contains the S -restricted behavior B|S . In fact, in this case,
the two are equal. This is a consequence of the fact that B is finite dimensional. See Pal and
Pillai (2014) where this result was derived for the case when dimS = 1.

Remark 7 At this point, we would like to emphasize an important open issue in connection
with the contrast between the result of Theorem 5 and its discrete systems analogue. It has
been shown in Napp (2010) that for discrete systems (that is, nD systems with Z

n as the
domain), the restriction of a behavior B to any proper sublattice of Z

n is also a behavior.
Further, it was also shown that the restricted behavior is equal to the behavior given by
the corresponding intersection submodule. For continuous systems, however, it is not clear
whether the inclusion, B|S ⊆ BS , shown in Theorem 5 is a proper inclusion or not. In fact, it
is not even clear whether B|S is a behavior. Extension of the methods used in Napp (2010) to
show that B|S is a behavior in the discrete setting (Theorem 6) do not work for the continuous
case. This is due to the fact, that showing B|S is a closed set in the C∞ (R, R)-topology (the
topology of uniform convergence over compact sets), does not guarantee B|S is a behavior.
For continuous systems, it was shown in Willems (1991, Footnote 12) a closed shift-invariant
set need not be a differential behavior. Thus, strengthening the result of Theorem 5 remains
an important open issue.

Remark 8 However, it can be shown that BS happens to be the ‘smallest’ differential behav-
ior containing B|S . The proof follows essentially by the techniques used in proving Theorem
7 of Napp (2010). We elaborate on this now. By the ‘smallest’ behavior containing B|S we
mean that BS is such that if B̃ is any r -D behavior that contains B|S as a subset (r is the
dimension of S ) then B̃ must also contain BS as a subbehavior. In order to show this, let
us first define

I(B|S ) := { f (∂t ) ∈ R[∂t ] | f (∂t )w|S = 0 for all w ∈ B}.
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By the inclusion reversing one-to-one correspondence between scalar behaviors and ideals
of R[∂x ], the claim of BS being the smallest behavior containing B|S follows if we show
that I(B|S ) = IS . Note that Theorem 5 essentially means that I(B|S ) ⊇ IS . Therefore,
it is enough that we show I(B|S ) ⊆ IS . Suppose f (∂t ) ∈ I(B|S ). So, for all w ∈ B, we
must have by the chain rule of differentiation

f (∂t )(w|S ) = (�S ( f (∂t ))w) |S = 0. (10)

Suppose that f (∂t ) �∈ IS . This means �S ( f (∂t )) = f (sT
1 ∂x , sT

2 ∂x , . . . , sT
r ∂x ) �∈ I. There-

fore, there exist a w ∈ B and a v ∈ R
n such that (�S ( f (∂t ))w) (v) �= 0. Now, since B

is given by PDEs with constant coefficients, it is shift-invariant. Hence, the trajectory w̃—a
shifted version of w by v, that is w̃(x) := w(x + v) for all x ∈ R

n—too is an element of B.
Therefore, (�S ( f (∂t ))w̃) (0) = (�S ( f (∂t ))w) (v) �= 0. Since 0 ∈ S , this means w̃ ∈ B

is such that (�S ( f (∂t ))w̃) |S is not the zero trajectory. This is a contradiction to Eq. (10).
We would like to point out that this issue of whether BS is the smallest behavior containing

B|S for a 1-D subspace S was also raised in Pal and Pillai (2014, Remark 7). The discussion
above settles this issue.

In the rest of this section we provide algorithms for computing the S -intersection ideal
from a given ideal I ⊆ R[∂x ] and a subspace S ⊆ R

n . The method of obtaining IS relies
crucially on the following observation.

Proposition 9 Suppose I is given by the row-span of the matrix F(∂x ) ∈ R[∂x ]g×1. Also
suppose that the subspace S has basis {s1, s2, . . . , sr } ⊆ R

n. Then consider the following
column-vector:

Fcol(∂x , ∂t ) :=

⎡
⎢⎢⎢⎢⎣

∂t1 − sT
1 ∂x

∂t2 − sT
2 ∂x

...

∂tr − sT
r ∂x

⎤
⎥⎥⎥⎥⎦

∈ R[∂x , ∂t ]r×1.

And now, consider the following augmented matrix

Faug(∂x , ∂t ) :=
[

F(∂x )

Fcol(∂x , ∂t )

]
∈ R[∂x , ∂t ](g+r)×1. (11)

Let the ideal generated by the entries of Faug(∂x , ∂t ) over the bigger ring R[∂x , ∂t ] be called
Iaug. Then

IS = Iaug ∩ R[∂t ].
Proof Suppose f (∂t ) ∈ R[∂t ]. Consider the polynomial

q(∂x , ∂t ) := f (∂t ) − �S ( f (∂t )).

Note that q(∂x , ∂t ) vanishes at {∂ti = sT
i ∂x }i∈{1,2,...,r}. Hence it follows that there exist

polynomials αi (∂x , ∂t ) ∈ R[∂x , ∂t ] for i ∈ {1, 2, . . . , r} such that

q(∂x , ∂t ) = f (∂t ) − �S ( f (∂t )) =
r∑

i=1

αi (∂x , ∂t )(∂ti − sT
i ∂x ). (12)

Since the right most side of Eq. (12) is in Iaug, it follows that f (∂t ) ∈ Iaug if and only if
�S ( f (∂t )) ∈ Iaug. Note that f (∂t ) ∈ R[∂t ] and �S ( f (∂t )) ∈ R[∂x ]. Therefore, (12) in
fact implies that f (∂t ) ∈ Iaug ∩ R[∂t ] if and only if �S ( f (∂t )) ∈ Iaug ∩ R[∂x ]. The result
then follows by noting Iaug ∩ R[∂x ] = I. ��
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Proposition 10 below is a well-known result in Gröbner basis theory. It is usually called
the Elimination Theorem; see Cox et al. (2007) for a proof. We use this result to give an
algorithm for computing intersection ideals.

Proposition 10 (Elimination Theorem) Let I ⊆ R[∂x ] be an ideal, and ≺ a term ordering in
R[∂x ]. Further, let G ⊆ R[∂x ] be a Gröbner basis of I under the term ordering ≺. Suppose
≺ is such that ∂i ≺ ∂ j for all 1 � i < j � n. Then Gr := G ∩ R[∂x1 , ∂x2 , . . . , ∂xr ] is a
Gröbner basis for Ir = I ∩ R[∂x1 , ∂x2 , . . . , ∂xr ].

Utilizing the result of Proposition 9 and the Elimination Theorem (Proposition 10) the
following algorithm can be given for computing the S -intersection ideal IS .

Algorithm 11 (computation of IS )
Input:

• F(∂x ) ∈ R[∂x ]g×1.
• S ⊆ R

n with a basis {s1, s2, . . . , sr } ⊆ R
n (r = dimS ).

Computation:

• Form the matrix Faug(∂x , ∂t ) ∈ R[∂x , ∂t ](g+r)×1.
• Fix a term ordering ≺ in R[∂x , ∂t ] such that ∂t j ≺ ∂xi for all 1 � i � n and 1 � j � r .
• With this ordering of R[∂x , ∂t ] compute a Gröbner basis G ⊆ R[∂x , ∂t ] of the ideal

Iaug = rowspan(Faug(∂x , ∂t )) over R[∂x , ∂t ].
• Define GS := G ∩ R[∂t ].
Output: The column-vector FS ∈ R[∂t ]•×1 whose entries are the elements of GS .

4 Free subspaces

In this section we explore the notion of free subspaces of scalar n-D systems. Scalar n-D
systems are a special class of what are called autonomous systems. Autonomous systems are
characterized by the property that their behaviors (that is, the sets of solutions) are completely
determined by their restrictions to a proper subset of R

n (Rocha 1990; Valcher 2001). We
say that a given subspace S ⊆ R

n is free in a given autonomous system if the restriction of
its behavior B to the subspace S , that is, B|S , is the whole function-space W with domain
R

r , r being the dimension of S . The notion of free subspaces of an autonomous system is
important from the point of view of explicitly solving for the given system of equations. It
gives us an idea about the ‘size’ of the initial data required for a complete description of
the behavior. For example, if the restriction of a behavior to an r dimensional subspace is
free then the initial data set is at least as big as the function space with R

r as the domain.
See Wood et al. (1998) where these questions have been dealt with in the context of discrete
systems. We make the notion of free subspaces precise below, but before that a few technical
details are in order for further development.

In this section we consider a subspace of smooth functions for the solutions, namely real
analytic functions of exponential type, in short, exponential functions. We denote this set
by Exp (Rn, R). Elements in Exp (Rn, R) are characterized by possessing convergent power
series expansions. That is, w(x) ∈ Exp (Rn, R) if w(x) can be written in the following form

w(x) =
∑
ν∈Nn

aν

xν

ν! , (13)
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where aν ∈ R for all ν, and the symbols xν , ν! are shorthand notation for xν1
1 xν2

2 . . . xνn
n ,

ν1!ν2! . . . νn !, respectively. Moreover, the power series expression on the right-hand-side of
Eq. (13) is such that w(x) ∈ R for all x ∈ R

n .

Definition 12 Let S ⊆ R
n be a subspace of dimension r �= 0. Then a given autonomous

system with behavior B is said to be S -free if

B|S = Exp
(
R

r , R
)
.

In this case S is said to be free in B.

4.1 Characterization of free subspaces of scalar systems

We now characterize free subspaces for scalar systems. This characterization is based on an
algorithm for finding formal power series solutions to a scalar n-D system using a Gröbner
basis of the equations. This algorithm has been elaborated in Oberst (1990, 2006). Algo-
rithm 14 is a short description of this method for formal integration of PDEs. In Pal and Pillai
(2014), free 1-D subspaces for scalar systems were characterized using the same strategy. In
this article, we extend the result to subspaces of higher dimensions.

In the above-mentioned method, first a Gröbner basis G, of the equation ideal I is computed
for some fixed term ordering, say ≺. We denote by in≺(I) the initial ideal of I with respect
to the term ordering ≺. The monomials not belonging to in≺(I) are called the standard
monomials. We denote the set of standard monomials by �≺(I). (Note that there is a bijection
between monomials in R[∂x ] and the lattice of non-negative integers N

n . We often consider
�≺(I) ⊆ N

n without explicitly mentioning it since there is no risk of ambiguity). In Pommaret
(1994), Oberst (2006), an idea similar to Algorithm 14 was traced back to the works of
Riquier (1910). Interestingly, in the 1920’s, French mathematician Maurice Janet obtained
algorithmic techniques for solving nonlinear PDEs, which, when applied to linear PDEs,
turn out to be equivalent to the above mentioned method based on Gröbner basis (Plesken
and Robertz 2005). This fact, too, was brought out in Pommaret (1994). We provide below
a sketch of the working principle of this algorithm; details can be found in Oberst (1990),
Oberst (2006), Pommaret (1994), Plesken and Robertz (2005).

The idea behind Algorithm 14 stems from the algebraic fact that each element in R[∂x ],
modulo the ideal I, can be written as a unique R-linear combination of the standard mono-
mials. Recall that every exponential solution can be written as a convergent power series

w(x) =
∑
ν∈Nn

wν

ν! xν,

where wν ∈ R. This means that, for any ν ∈ N
n , the action of the monomial ∂ν

x on w must
follow the equation

(
∂ν

x w
)
(0) = wν.

Now suppose the monomial ∂ν
x , upon division by the Gröbner basis G, reduces to∑

ν′∈�≺(I) αν′∂ν′
x . In other words,

∂ν
x =

∑
ν′∈�≺(I)

αν′∂ν′
x + q(∂x ),

123



Multidim Syst Sign Process

where q(∂x ) ∈ I. It then follows that if w is a solution to the given set of PDEs it must satisfy
the following: for all ν ∈ N

n ,

wν = (
∂ν

x w
)
(0) =

⎛
⎝ ∑

ν′∈�≺(I)

αν′∂ν′
x + q(∂x )

⎞
⎠w(0)

=
⎛
⎝ ∑

ν′∈�≺(I)

αν′∂ν′
x

⎞
⎠w(0) (since q(∂x ) ∈ I, q(∂x )w = 0)

=
∑

ν′∈�≺(I)

αν′wν′ . (14)

On the other hand, a power series w(x) = ∑
ν∈Nn

wν

ν! xν that satisfies Eq. (14) will be a
solution to the given set of PDEs. This essentially follows from the fact that the standard
monomials form a basis for the quotient ring R[∂x ]/I as a vector space over R. This is the
key idea behind the following Algorithm 14. In the sequel, for notational convenience, we
use just � to denote �≺(I) when the ideal and the term ordering are clear from the context.

Algorithm 13 (Gröbner basis of equations)
Input: A set of PDEs f1(∂x )w = 0, f2(∂x )w = 0, . . . , fd(∂x )w = 0.
Computation:

• Fix a term ordering ≺ in R[∂x ].
• Compute a Gröbner basis G of the ideal I := 〈 f1, f2, . . . , fd〉.
• Construct the set of standard monomials � := {ν ∈ N

n | ∂ν
x �∈ in≺(I)}.

Output: Standard monomial set �.

Algorithm 14 (Formal integration of the PDEs)
Input:

• A Gröbner basis G of the equation ideal I.
• The set of standard monomials � := {ν ∈ N

n | ∂ν
x �∈ in≺(I)}.

• Initial data: {wν ∈ R}ν∈� .

Computation:
for ν �∈ �

• Compute by division algorithm using G to obtain

∂ν
x ≡

∑
i=1,νi ∈�

αi∂
νi
x modulo I.

• Set wν = ∑k
i=1 αiwνi .

end
Output: The sequence1 w := {wν}ν∈Nn .

In Oberst (1990, 2006) it was shown that the output of the above algorithm, written as
a formal power series w(x) = ∑

ν∈Nn
wν

ν! xν , is indeed a solution to the given set of PDEs.
And, conversely, every formal power series solution is obtained from this algorithm by giving

1 We came to know from an anonymous reviewer that Janet had obtained an explicit way of returning this
(usually infinite) sequence.
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different initial conditions {wν}ν∈� . However, Algorithm 14 says nothing about convergence
of the solution. In Oberst (2006), Oberst and Pauer (2001), it was proved that if the initial
data itself is an exponential trajectory then the solution obtained following Algorithm 14 is
guaranteed to be an exponential one. We paraphrase this result in the following proposition.2

Proposition 15 (Oberst and Pauer 2001, Theorems 24 and 26) Given a set of PDEs
f1(∂x )w = 0, f2(∂x )w = 0, . . . , fd(∂x )w = 0, and a term ordering ≺ of R[∂x ], let � be the
set of standard monomials, that is, monomials that do not belong to in≺(〈 f1, f2, . . . , fd〉).
Further, let win := {wν}ν∈� be an arbitrary sequence of real numbers indexed by �. With
this win as the initial data, let {wν}ν∈Nn be the output of Algorithm 14. Suppose the following
formal power series

ŵ(x) :=
∑
ν∈�

wν

ν! xν

obtained from win converges for all x ∈ R
n. Then so does the power series

w(x) :=
∑
ν∈Nn

wν

ν! xν

obtained from the solution of Algorithm 14. That is, ŵ(x) ∈ Exp (Rn, R) implies w(x) ∈
Exp (Rn, R).

Keeping the above result in mind, we call an initial condition win (or ŵ(x) = ∑
ν∈�

wν

ν! xν)
valid if ŵ(x) ∈ Exp (Rn, R). Now, define the following sub-monoid of the monoid N

n :

�̃r := {ν = (ν1, ν2, . . . , νn) ∈ N
n | νi = 0 for r + 1 � i � n}, (15)

where 1 � r < n is a positive integer. Further, define the following power series expression
in the variables t = (t1, t2, . . . , tr )

w̃(t) =
∑
ν̃∈Nr

wν̃

t̃ν

ν̃! . (16)

Note that Exp (Rr , R) injects into Exp (Rn, R) by mapping ti to xi for 1 � i � r . That is the
map

ι : Exp (Rr , R) → Exp (Rn, R)

ti �→ xi
(17)

is an injection. In that case w̃(t) of Eq. (16) gets mapped to

ι(w̃(t)) = ŵ(x) =
∑
ν̃∈Nr

wν̃

x ν̃1
1 x ν̃2

2 . . . x ν̃r
r

ν̃!

=
∑

ν∈�̃r

wν

xν

ν! ,

where wν = wν̃ with ν = (̃ν, 0) ∈ �̃r .

2 It was brought to our notice by an anonymous reviewer that this result, too, was contained in Janet’s work
on more general classes of systems of PDEs.
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Lemma 16 Given a set of PDEs f1(∂x )w = 0, f2(∂x )w = 0, . . . , fd(∂x )w = 0, and a term
ordering ≺ of R[∂x ], let � be the set of standard monomials, that is, monomials that do not
belong to in≺(〈 f1, f2, . . . , fd〉). Let B be the behavior of the system, and �̃r be as defined
by Eq. (15). Consider the subspace S = span{e1, e2, . . . , er }. If �̃r ⊆ � then S is free in
B.

Proof Suppose w̃(t) is an arbitrary trajectory in Exp (Rr , R), which is given by Eq. (16). Let
ŵ(x) be the image of this w̃(t) ∈ Exp (Rr , R) under the map ι : Exp (Rr , R) → Exp (Rn, R)

defined in Eq. (17). Therefore, we can write ŵ(x) as

ŵ(x) =
∑

ν∈�̃r

wν

xν

ν! ,

where wν = wν̃ with ν = (̃ν, 0) ∈ �̃r . Since �̃r ⊆ �, ŵ(x) can also be written as

ŵ(x) =
∑
ν∈�

wν

xν

ν! ,

where

wν =
{

wν̃ when ν ∈ �̃r and ν = (̃ν, 0),

0 when ν �∈ �̃r .
(18)

Therefore, the data given by Eq. (18) is an initial condition specified on the standard monomial
set �. Further, since ŵ(x) ∈ Exp (Rn, R), it is a valid initial condition. Hence, by Proposition
15 the solution w(x) obtained by Algorithm 14 with ŵ(x) as the initial condition is in
Exp (Rn, R). Moreover, this solution w(x) is such that

w|S (t) = w̃(t).

Since w̃(t) can be chosen arbitrarily in Exp (Rr , R), it follows that w|S (t) is arbi-
trary in Exp (Rr , R). Thus, for every trajectory w̃(t) ∈ Exp (Rr , R) there exists w(x) ∈
B ∩ Exp (Rn, R) such that the restriction of w to S , w|S (t) = w̃(t). In other words,
B|S = Exp (Rr , R), that is S is free in B. ��

The next result is a technical lemma required in the sequel. The lemma deals with the
effect on the equation ideal and the behavior due to a change of basis in the domain. This is
closely related to the differential geometric notions of push-forward and pull-back of a map
between two smooth manifolds.

Let T : R
n → R

n be an invertible linear map. We call the coordinate functions of
the domain and the co-domain spaces x and y, respectively. Then x and y are related by
y = T x. This induces a map between the tangent spaces, T∗ : TxR

n → TyR
n , as follows.

Let y �→ w(y) be in C∞ (Rn, R). Define for all 1 � i � n
(

T∗
∂

∂xi

)
(w(y)) := ∂

∂xi
w(T x).

T∗ is called the push-forward of the map T . For the case when T is linear, T∗ naturally turns
out to be linear too. In fact, by making T∗ ∂

∂xi
act on the coordinate functions y j ’s, we can get

an expression for T∗ ∂
∂xi

’s in terms of derivatives in y coordinates, i.e., ∂
∂y j

’s. Let T be given
by the matrix (more precisely, the Jacobian of the linear map T )
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T =

⎡
⎢⎢⎢⎣

t11 t12 · · · t1n

t21 t22 · · · t2n
...

...
. . .

...

tn1 tn2 · · · tnn

⎤
⎥⎥⎥⎦ .

Then it follows from the definition of T∗ that
(

T∗
∂

∂xi

)
y j = ∂

∂xi

n∑
k=1

t jk xk = t j i .

It then follows by varying j that
(

T∗
∂

∂xi

)
=

n∑
j=1

t j i
∂

∂y j
.

This can be written in the matrix-vector form as

T∗

⎡
⎢⎢⎢⎢⎣

∂
∂x1
∂

∂x2
...
∂

∂xn

⎤
⎥⎥⎥⎥⎦

= T T

⎡
⎢⎢⎢⎢⎣

∂
∂y1
∂

∂y2
...
∂

∂yn

⎤
⎥⎥⎥⎥⎦

. (19)

For ease of explanation, and to avoid cumbersome notation, we use ∂x and ∂y to denote

the n-tuples of partial derivatives
{

∂
∂x1

, . . . , ∂
∂xn

}
and

{
∂

∂y1
, . . . , ∂

∂yn

}
, respectively. These

partial derivatives correspond to the two coordinate functions x and y, which are related by
the linear coordinate transformation T . Note that the push-forward can be naturally extended
to an automorphism of polynomial rings as

T∗ : R[∂x ] → R[∂y]
∂x �→ T T∂y .

(20)

The linear map T also induces a map from C∞ (Rn, R) to itself in the following manner:

T ∗ : C∞ (Rn, R) → C∞ (Rn, R)

w(y) �→ w(T x).
(21)

This map is called the pull-back of T .

Lemma 17 Let T ∈ R
n×n define an invertible linear change of coordinates of R

n by x �→
T x =: y. Let T∗ : R[∂x ] → R[∂y] and T ∗ : C∞ (Rn, R) → C∞ (Rn, R) be the push-forward
and pull-back of T as defined by Eqs. (20) and (21), respectively. Suppose I ⊆ R[∂x ] is an
ideal, and let B be its behavior. Then we have the following:

T ∗(B(T∗(I))) = B. (22)

Further, let S ⊆ R
n be a subspace. Then

B(T∗(I))|T S = B|S . (23)

Finally, the intersection ideals satisfy the following:

T∗(I)|T S = IS . (24)

Proof First observe that it follows from Eq. (19) and the definition of push-forward that for
w ∈ C∞ (Rn, R)
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⎡
⎢⎢⎢⎢⎣

∂
∂x1
∂

∂x2
...
∂

∂xn

⎤
⎥⎥⎥⎥⎦

w(T x) = T∗

⎡
⎢⎢⎢⎢⎣

∂
∂x1
∂

∂x2
...
∂

∂xn

⎤
⎥⎥⎥⎥⎦

w(y) = T T

⎡
⎢⎢⎢⎢⎣

∂
∂y1
∂

∂y2
...
∂

∂yn

⎤
⎥⎥⎥⎥⎦

w(y). (25)

Therefore, we have
⎡
⎢⎢⎢⎢⎣

∂
∂x1
∂

∂x2
...
∂

∂xn

⎤
⎥⎥⎥⎥⎦

w(T x) = T T

⎡
⎢⎢⎢⎢⎣

∂
∂y1
∂

∂y2
...
∂

∂yn

⎤
⎥⎥⎥⎥⎦

w(y).

More generally, for m(∂x ) ∈ R[∂x ]
m(∂x )w(T x) = T∗(m)(∂y)w(y) = m(T T∂y)w(y).

Hence it follows that w(y) ∈ C∞ (Rn, R) is in the kernel of T∗(m)(∂y) if and only if
T ∗(w(y)) = w(T x) is in the kernel of m(∂x ). Therefore, for the ideal I ⊆ R[∂x ],
T ∗(w(y)) ∈ B(I) if and only if w(y) ∈ B(T∗(I)). That is, T ∗(B(T∗(I))) ⊆ B(I). Since
T is invertible, we get the converse inclusion by substituting T by T −1 and I by T∗(I).

For the restriction, we first show that B(T∗(I))|T S ⊆ B|S . Let the columns of the matrix
S ∈ R

n×r form a basis of S . A typical element from B(T∗(I))|T S is given by w(T St),
where w(y) ∈ B(T∗(I)). Note that w(T St) = (T ∗w)(St). But, by Eq. (22) T ∗w ∈ B(I).
Therefore, w(T St) = (T ∗w)(St) ∈ B(I)|S .

In order to show the inclusion B(T∗(I))|T S ⊇ B|S we first note that it follows from
Eq. (22) that every element in B(I) can be written as v(x) = w(T x) with w(y) ∈ B(T∗(I)).
Hence every element in B(I)|S is of the form v(St) = w(T St) ∈ B(T∗(I))|T S .

For the third part, that is, Eq. (24), it follows from the definition of intersection ideals that

IS = { f (∂t ) ∈ R[∂t ] | f (sT
1 ∂x , . . . , sT

r ∂x ) ∈ I}
= { f (∂t ) ∈ R[∂t ] | f (sT

1 T T∂y, . . . , sT
r T T∂y) ∈ T∗(I)}

= T∗(I)T S .

��
Theorem 18 Let B be the behavior of a scalar autonomous system defined by the equation
ideal I ⊆ R[∂x ] and let S ⊆ R

n be a subspace of dimension r �= 0. Then the following
conditions are equivalent:

1. S is free in B.
2. The intersection ideal IS ⊆ R[∂t ] is the zero ideal.
3. The R-algebra homomorphism ϕ in the following commutative diagram is an injection.

R[∂x ] �� �� R[∂x ]/I

R[∂t ]��

�S

��
ϕ

�����������

.

Proof (1 ⇒ 2) Consider the behavior BS , the behavior corresponding to the intersection
ideal IS . By Theorem 5, B|S ⊆ BS . Since B is S -free, we have B|S = Exp (Rr , R).
Therefore, Exp (Rr , R) ⊆ BS . Now consider the set
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I(BS ) := { f (∂t ) | f (∂t )w = 0 for all w ∈ BS }.
Since Exp (Rr , R) ⊆ BS , it follows that I(BS ) = {0}. But, I(BS ) = IS because
Exp (Rr , R) is a large injective cogenerator. Thus we get IS = {0}.

(2 ⇔ 3) This follows from the fact that ker ϕ = IS .
(2 ⇒ 1) In order to prove this implication we will first prove a simpler case, and then

we will make use of an earlier result, Lemma 17, that will render the general case into the
simpler one.

Case 1 (S = span{e1, e2, . . . , er }): First notice that in this case the map �S maps
each of the ∂ti to the corresponding ∂xi . Thus, the intersection ideal can be identi-
fied with I ∩ R[∂x1 , ∂x2 , . . . , ∂xr ]. Therefore, the problem here reduces to proving I ∩
R[∂x1 , ∂x2 , . . . , ∂xr ] = {0} implies that B is S -free. We claim that I∩R[∂x1 , ∂x2 , . . . , ∂xr ] =
{0} implies there exists a term ordering such that the standard monomials set � contains �̃r ,
where �̃r is defined by Eq. (15). By Lemma 16, it will then follow that B is S -free. Indeed,
if we take a term ordering with ∂xi � ∂x j for all r +1 � i � n and 1 � j � r , then a Gröbner
basis for I, say G, with this term ordering will have no element whose leading term will be
purely in the variables {∂x1 , ∂x2 , . . . , ∂xr }. For if G had a polynomial, say f (∂x ) ∈ R[∂x ],
with leading term purely in {∂x1 , ∂x2 , . . . , ∂xr }, then since ∂xi � ∂x j for all r + 1 � i � n
and 1 � j � r , the rest of the monomials in f (∂x ) will also be in {∂x1 , ∂x2 , . . . , ∂xr } only.
But this would mean f (∂x ) ∈ I ∩ R[∂x1 , ∂x2 , . . . , ∂xr ]. This contradicts the assumption that
I ∩ R[∂x1 , ∂x2 , . . . , ∂xr ] = {0}. Now since G has no element with leading term purely in
{∂x1 , ∂x2 , . . . , ∂xr }, the initial ideal in≺(I), too, does not contain any monomial purely in
{∂x1 , ∂x2 , . . . , ∂xr }. In other words, the standard monomial set � ⊇ �̃r .

Case 2 (general S ): For the general case we make use of Lemma 17. Let S be given by

S = imS,

where S ∈ R
n×r is of full column-rank. Since S has full column-rank it can be completed into

a square non-singular matrix by adding (n − r) columns. That is, there exist S′ ∈ R
n×(n−r)

full column-rank, such that
[

S S′ ] is invertible. Define

T := [
S S′ ]−1

.

We use this T to do a change of coordinates. Recall from Eqs. (20) and (21) that this T
induces two maps, namely the push-forward T∗ and the pull-back T ∗. Note that under this
change of coordinates

T S = [
e1 e2 . . . er

]
.

So T S = span{e1, e2, . . . , er }. Thus, with T∗(I) as the equation ideal and T S as the
subspace of restriction, we are exactly in the situation of Case 1. By Lemma 17,

T∗(I)T S = IS = {0}.
Therefore, by Case 1, T S is free in B(T∗(I)). That is, B(T∗(I))|T S = Exp (Rr , R) But,
by Lemma 17,

B|S = B(T∗(I))|T S = Exp
(
R

r , R
)
.

That is, S is free in B. ��
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4.2 Maximally free subspace

A relevant fundamental question concerning free subspaces is: what should be the highest
dimension possible for a free subspace? Obviously, scalar systems, being autonomous ones,
cannot have the full space R

n as free. So the dimension of a free subspace is always upper-
bounded by n −1. This, however, is a very slack upper-bound; we would like to have a tighter
one. In this subsection, we show that the tightest upper-bound is the Krull dimension of the
quotient ring M.

Krull dimension of a commutative ring is defined as the length of the longest chain of
prime ideals. For the quotient ring M = R[∂x ]/I, this number turns out to be equal to the
length of the longest chain of prime ideals in R[∂x ] containing the equation ideal I. We
illustrate the relation between the Krull dimension of M and dimensions of free subspaces
in the following example.

Example 19 Consider the following system of equations in 3-D:

∂x1w = ∂x2w = 0.

So the equation ideal is I = 〈∂x1 , ∂x2〉. The Krull dimension of the quotient ring M =
R[∂x1 , ∂x2 , ∂x3 ]/I can be shown to be equal to 1. Using the result of Theorem 18 we can
readily see that x3-axis is a free subspace. We claim that no 2-dimensional subspace can be
free in this case.

In order to see this consider a generic 2-dimensional subspace S spanned by vectors
⎧⎨
⎩

⎡
⎣

s11

s12

s13

⎤
⎦ ,

⎡
⎣

s21

s22

s23

⎤
⎦

⎫⎬
⎭ .

If either of s13 or s23 is zero then either (s11∂x1 + s12∂x2 + s13∂x3) ∈ I, or, respectively,
(s21∂x1 + s22∂x2 + s23∂x3) ∈ I. In either case the intersection ideal IS �= {0}. Hence, by
Theorem 18, S cannot be free. On the other hand, if both s13 and s23 are nonzero, then the
non-zero polynomial

− s23

s13
(s11∂x1 + s12∂x2 + s13∂x3) + (s21∂x1 + s22∂x2 + s23∂x3) ∈ I.

This, again, means the intersection ideal IS �= {0}, and hence S cannot be free.

Remark 20 It is interesting to note that the results we derive in this subsection are analogous
to their respective discrete versions derived in Wood et al. (1998): Lemma 7.3 and Theorem
7.4. However, the results are markedly different in their approach. For one, in Wood et al.
(1998) restrictions of an autonomous behavior have been done to gradually lower dimensional
sublattices of Z

n and it has been checked whether the autonomy is retained. Whereas, in this
article, we look at restrictions to gradually higher dimensional subspaces and check whether
the restriction is free. However, finally the notion of autonomy degree of Wood et al. (1998),
that is the lowest possible dimension of a sublattice on which the restriction is autonomous,
and that of the dimension of a maximally free subspace coincides. Furthermore, as per our
knowledge, no straightforward extension of the techniques used in Wood et al. (1998) to the
continuous case is possible in order to obtain the analogous results that we derive here.

Our first observation of this subsection is that the Krull dimension of M is an upper-bound
on the dimension of a free subspace. In order to prove this result we need the following
alternative formulation of Krull dimension of finitely generated algebras over a field. The
proof of this result can be found in textbooks like (Cox et al. 2007; Eisenbud 1995).

123



Multidim Syst Sign Process

Proposition 21 Let K be a field and consider the n-variable polynomial ring
K[ξ1, ξ2, . . . , ξn]. Let I ⊆ K[ξ1, ξ2, . . . , ξn] be an ideal. Then the Krull dimension
of K[ξ1, ξ2, . . . , ξn]/I is equal to the cardinality of a maximal set of elements in
K[ξ1, ξ2, . . . , ξn]/I that is algebraically independent over K.

Theorem 22 Let B be the behavior of a scalar n-D system with equation ideal I. Further, let
S ⊆ R

n be a free subspace in B. Suppose the dimension of S is r and the Krull dimension
of the quotient ring M = R[∂x ]/I is d. Then we have

r � d.

Proof Suppose {s1, s2, . . . , sr } ⊆ R
n be a basis of S . From Theorem 18 it follows that S

is free if and only if the R-algebra homomorphism ϕ in the following commutative diagram

R[∂x ] �� �� R[∂x ]/I

R[∂t ]��

�S

��
ϕ

�����������

.

is an injection. This, in turn, is equivalent to saying that the canonical R-algebra homo-
morphism R[sT

1 ∂x , sT
2 ∂x , . . . , sT

r ∂x ] → R[∂x ]/I is injective. Therefore, the images of

sT
1 ∂x , sT

2 ∂x , . . . , sT
r ∂x in R[∂x ]/I, that is, {sT

1 ∂x , sT
2 ∂x , . . . , sT

r ∂x } ⊆ R[∂x ]/I, form a set of
elements algebraically independent over R. By Proposition 21, this means the Krull dimen-
sion of R[∂x ]/I is at least r . This proves the desired inequality. ��

Our next result shows that if the quotient ring of a scalar system has Krull dimension equal
to d , then one can always find a free subspace of dimension equal to d . This result follows
from a much stronger result of commutative algebra, known as Noether’s Normalization
Lemma. We quote only a portion of the general result here. Full details can be found in
textbooks, for example (Kreuzer and Robbiano 2000, Tutorial 78).

Proposition 23 Let K be an infinite field. Consider K[ξ1, ξ2, . . . , ξn], the n-variable poly-
nomial ring over K, and let I ⊆ K[ξ1, ξ2, . . . , ξn] be an ideal such that Krull dimension of
K[ξ1, ξ2, . . . , ξn]/I is d. Then there exists an upper triangular matrix A ∈ K

n×n such that
if we define

⎡
⎢⎢⎢⎣

η1

η2
...

ηn

⎤
⎥⎥⎥⎦ = A

⎡
⎢⎢⎢⎣

ξ1

ξ2
...

ξn

⎤
⎥⎥⎥⎦ ,

then the canonical K-algebra homomorphism K[η1, η2, . . . , ηd ] → K[ξ1, ξ2, . . . , ξn]/I is
an injection.

With this we now state and prove the second main result of this subsection.

Theorem 24 Let B be the behavior of a scalar n-D system with equation ideal I. Suppose
the Krull dimension of the quotient ring M = R[∂x ]/I is equal to d. Then there exists a
d-dimensional subspace S ⊆ R

n that is free in B.
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Proof By Proposition 23, there exists an upper triangular matrix A ∈ R
n×n such that if we

define

⎡
⎢⎢⎢⎣

∂t1
∂t2
...

∂tn

⎤
⎥⎥⎥⎦ = A

⎡
⎢⎢⎢⎣

∂x1

∂x2
...

∂xn

⎤
⎥⎥⎥⎦

then the canonical R-algebra homomorphism R[∂t1 , ∂t2 , . . . , ∂td ] → R[∂x ]/I is an injection.
Suppose A is written row-wise as

A =

⎡
⎢⎢⎢⎣

aT
1

aT
2

...

aT
n

⎤
⎥⎥⎥⎦ ,

where ai ∈ R
n . Then, note that for 1 � i � n we have ∂ti = aT

i ∂x . Therefore, the above-
mentioned canonical R-algebra homomorphism being injective is equivalent to the following
R-algebra homomorphism

R[aT
1 ∂x , aT

2 ∂x , . . . , aT
d ∂x ] → R[∂x ]/I (26)

being injective. Define the d-dimensional subspace

S := span{a1, a2, . . . , ad} ⊆ R
n .

By Theorem 18 then it follows from Eq. (26) that S is free in B. ��

5 Concluding remarks

In this article we looked at certain issues related to the method of restrictions of solutions of
a scalar system of PDEs to a proper subspace of the domain R

n . One crucial finding is the
close relation between the method of restrictions and an algebraic object called intersection
ideal. We showed that the set of restricted trajectories is always contained in the solution set
corresponding the intersection ideal. We then gave an algorithm for computing the intersection
ideal from a given ideal and a subspace of R

n . We then concentrated on an important question
concerning restrictions, namely, the question of whether a given subspace is free. We gave an
algebraic criterion for answering this question. For this we made use of an existing algorithm
for formal solutions of PDEs; the algorithm requires computing a Gröbner basis of the ideal
of the given PDEs. This algebraic criterion also happens to involve the intersection ideal.
Finally, we considered the question of the highest possible dimension of free subspaces. Using
the algebraic characterization of free subspaces and some existing results in commutative
algebra we showed that this highest dimension is equal to the Krull dimension of the quotient
ring corresponding to the equation ideal.

An immediate next step in the exploration of the kind of algebraic analysis of restrictions
done in the article would be extending the results general non-scalar systems.
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