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Abstract In this paper, we show that every discrete 2D autonomous system, that is described
by a set of linear partial difference equations with constant real coefficients, admits a finite
union of parallel lines as a characteristic set. In order to prove our claim, we first look at a
special class of scalar discrete 2D systems and provide such characteristic sets for systems
in this class. This special class has the property that systems in this class have their quotient
rings to be finitely generated modules over a one-variable Laurent polynomial subring of
the original two-variable Laurent polynomial ring in the shift operators. We show that such
systems always admit a finite collection of horizontal lines for a characteristic set. We then
extend this result to non-scalar discrete 2D autonomous systems. We achieve this in two
steps: first, we show that every scalar discrete 2D system can be converted into a system in
the above-mentioned class by a coordinate transformation on the independent variables set,
Z
2. Using this we then show that characteristic sets for the original system can be found

by applying the inverse coordinate transformation on characteristic sets of the transformed
system. Since the transformed system, by virtue of being in the special class, admits a finite
union of horizontal lines as a characteristic set, the original system is guaranteed to admit a
characteristic set that is a coordinate transformation applied to a finite union of horizontal
lines. The coordinate transformationmaps this union of horizontal lines to a union of parallel,
but possibly tilted, lines. In the next step, we generalize the scalar case to the general vector
case: that is, systems with more than one dependent variables. The main motivation for
studying characteristic sets that are unions of finitely many parallel lines is that, arguably,
such sets can be called “thin” in Z

2 in comparison to the prevalent notions of convex cones
and half-spaces as characteristic sets (see “Appendix 1”).
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1 Introduction

Multidimensional systems are fast becoming ubiquitous in systems and control theory.
Indeed, various state-of-the-art engineering applications—for example, earth-quake engi-
neering (Valcher 2000), image/video processing, cognitive radio systems, and many others
(Madanayake et al. 2013)—utilize space-time filters and other multidimensional filters. One
of the fundamental issues in multidimensional systems theory is concerning their character-
istic sets. Roughly speaking, characteristic sets are special subsets of the domain (the set over
which the system trajectories evolve—usually Z

n or R
n) with the defining property that, for

every trajectory in the system, the knowledge of its values on the characteristic set uniquely
identifies the trajectory over the whole domain. The question of finding out characteristic sets
in a given system becomes crucial in many situations: for example, stability (Shankar 2000;
Valcher 2000; Napp et al. 2011; Oberst 2006;Wood et al. 2005), Markovian-ness (Rocha and
Willems 2006), the canonical Cauchy problem (Zerz and Oberst 1993), etc. In this paper,
we deal with characteristic sets of discrete 2D systems—that is, systems that are described
by linear partial difference equations in two independent variables with constant real coeffi-
cients. Note that the question of characteristic sets is irrelevant for systems having inputs/free
variables; for the free variables can take arbitrary values over the entire domainZ

2, therefore,
no proper subset of Z

2 can be a characteristic set. Systems having no free variables are called
autonomous. As is expected, such systems always admit proper subsets of the domain as
characteristic sets (Rocha and Willems 1989). In this paper, we show that every discrete 2D
autonomous system admits characteristic sets that are much more than just proper subsets
of Z

2: these characteristic sets are finite unions of parallel lines. Arguably, such subsets of
the domain can be called “thin” with respect to the whole domain (see “Appendix 1” for a
discussion on thin-ness of these sets).

Characteristic sets for discrete 2D systems were analyzed in meticulous detail in Valcher’s
seminal work (Valcher 2000), where the typical characteristic sets considered are convex
cones (a convex cone in R

2 intersected with Z
2) or half-spaces. Interestingly, the existing

notion of characteristic sets of discrete 2D systems appears to have taken shape following
(Valcher 2000): the characteristic sets of discrete 2D systems dealt with in the literature
are predominantly either convex cones or half-spaces (see Napp et al. 2011; Rapisarda and
Rocha 2012; Napp et al. 2011 for some recent examples that incorporate similar notions of
characteristic sets). Perhaps the important significance of such characteristic sets lies in their
applications in conic stability analysis. However, when it comes to quantifying the a priori
knowledge that is required to uniquely specify trajectories in the system, characteristic sets
such as convex cones or half-spaces appear to have a critical shortcoming. Both of these
sets are—in a not-so-precise sense—2D subsets of the domain Z

2, while a line (or a finite
union of lines) is a 1D subset of Z

2. Thus, intuitively, a line (or a finite union of lines) should
be thin compared to convex cones or half-spaces. Consequently, characteristic sets that are
finite unions of lines would mean a much less knowledge about a trajectory is required in
order to deduce it completely. Such are the types of sets shown to be characteristic sets in
this paper for every autonomous discrete 2D system. It should be noted at this point that
this idea of a finite union of lines being thin compared to convex cones or half-spaces is
indeed only intuitive, and is true only under special circumstances; unfortunately, making
this idea precise is beyond the scope of this paper. See “Appendix 1”, where this issue has
been discussed briefly. We do not aim, in this paper, to settle this debatable issue of whether
a finite union of parallel lines is indeed thin or not, but, instead, we just show that every
autonomous discrete 2D system admits a characteristic set that is a finite union of parallel
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lines. However, one must also note that in discrete 1D autonomous systems, given by linear
difference equations, the initial conditions that uniquely specify the solutions, are given by
the values of the solution trajectories on finitely many points in the independent variable
axis (see Willems 1991). Thus every autonomous 1D linear system that is described by
difference equations admits a finite set of points as a characteristic set. Such a finite set of
points is certainly thin in the whole domain Z. Note, however, that the 1D analogue of a
cone (or a half-space) in Z

2 would be the half-line Z+ or Z−. While such sets do qualify as
characteristic sets for discrete 1D autonomous systems, they are a little too bigger than what
is required because, as already mentioned, these systems admit finite sets as characteristic
sets. Therefore, it is only natural to expect that for 2D systems, too, cones and half-spaces
as characteristic sets would be bigger than what is required. Thus, arguably, a true analogy
of the 1D situation would necessitate discrete 2D autonomous systems to have characteristic
sets that are thinner than cones or half-spaces. The main results of this paper (Theorems 20
and 24) show that this is indeed true for discrete 2D autonomous systems that are described
by linear partial difference equations.

It is interesting to note that, for discrete 2D autonomous systems, the expectation of
a characteristic set that is a finite union of lines is also supported by at least two other
alternative approaches documented in the literature. The first one is the constructive approach
to solving 2D partial difference equations utilizing variants of Gröbner basis methods (see
Oberst 1990; Zerz and Oberst 1993; Oberst 2006). From this approach it follows that for
autonomous systems, the entire solution can be constructed once the initial condition is
specified. This initial condition, as it turns out, has a one-to-one correspondence with the
standard monomials set of the constructed Gröbner basis of the system of partial difference
equations. Thus a standard monomials set can be viewed as a characteristic set. The standard
monomials set turns out to be much smaller than the entire Z

2 (see Oberst 1990; Zerz and
Oberst 1993; see also Pauer and Unterkircher 1999). The reason for this smallness of the
standard monomials set is that they are the complements of finitely many translations of the
2D positive integer grid (N2) in Z

2 (see Zerz and Oberst 1993; Pauer and Unterkircher 1999).
Existence of characteristic sets that are much smaller compared to entire Z

2 can hence be
argued. However, unlike the case we prove in this paper, these standard monomials sets need
not always be finite unions of parallel lines; see various examples constructed in Pauer and
Unterkircher (1999).

The second approach involves the notion of autonomy degree introduced in Wood et al.
(1998) and later extended in Avelli and Rocha (2010). The autonomy degree of a general nD
autonomous system is (n − d), where d is the highest possible dimension of a sublattice of
Z
n having the property that the restriction of the solution trajectories to the sublattice is not

autonomous. It has been shown inWood et al. (1998) for continuous systems and inAvelli and
Rocha (2010) for discrete systems that the autonomy degree of an nD autonomous system is
equal to n minus the Krull dimension of the quotient module (see Sect. 2.5 for the definition
of the quotient module of a discrete 2D system). For the 2D case, it follows from this result
that autonomy degree of non-trivial autonomous discrete 2D systems must be either 2 or
1. Autonomy degree being 2 means that the trajectories are completely determined by their
values on a finite set because restriction to no line can be free. On the other hand, autonomy
degree being 1 would imply that restriction to only lines (that is 1D sublattices) can be free
but not to higher dimensional sublattices. This fact is corroborated in this paper. However,
what we show further is that for every discrete 2D autonomous system, there exists a line
such that the restriction of a trajectory to the line and a finitely many parallel translates of it
is enough to determine that trajectory uniquely.
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2 Notation and preliminaries

In this section, we provide the notation used throughout the paper, and some preliminary
notions and definitions required for the main text of the paper.

2.1 Notation

We use R, Z to denote the field of real numbers, and the ring of integers, respectively.
Consequently the n-dimensional Euclidean space overR is denoted byR

n , whileZ
2 is used to

denote the 2D integer grid. An ordered pair of integers inZ
2 is denoted by (ν1, ν2).We denote

the set of doubly indexed sequences over the real numbers byR
Z
2
, i.e.,RZ

2 := {w : Z
2 → R}.

To denote the set of vector-valued (q-tuple) doubly indexed sequences we use the symbol

(Rq)Z
2
. The Laurent polynomial ring in two variables σ1 and σ2 is denoted by R[σ±1

1 , σ±1
2 ],

and the same in one variable σ1 by R[σ±1
1 ]. In this paper, for brevity, we use A and A1 to

denote R[σ±1
1 , σ±1

2 ] and R[σ±1
1 ], respectively. By Aq we denote the free A-module of rank

q; since elements from Aq “act” on elements of (Rq)Z
2
, we consider, as a convention, that

elements ofAq are written as row vectors and those of (Rq)Z
2
are written as column vectors.

This enables us to write the action of r(σ) ∈ Aq on w ∈ (Rq)Z
2
as the product r(σ)w. For

an integer pair ν = (ν1, ν2) ∈ Z
2, the symbol σ ν denotes the monomial σ

ν1
1 σ

ν2
2 . In this

paper, we use the “bar” notation for equivalence classes, i.e., given a submodule R ⊆ Aq ,
the equivalence class of a row-vector r(σ ) ∈ Aq belonging to the quotient module Aq/R is
denoted by r(σ ). We use • to denote a number, size or dimension, which is unspecified.

2.2 Discrete 2D systems

2D systems are thosewhere the trajectories evolve over two independent variables; in discrete
2D systems the evolution is over Z

2. In this paper, we are going to look at discrete 2D
systems described by linear partial difference equations with constant real coefficients. These
difference equations can be written succinctly using two shift operators σ1 and σ2. These shift
operators act on discrete 2D trajectories in the following manner: (σ i

1w)(h, k) = w(h+ i, k)

and (σ
j
2 w)(h, k) = w(h, k + j) for all h, i, j, k ∈ Z, where w ∈ R

Z
2
is a discrete 2D

trajectory. This defines the action of a monomial σ ν := σ
ν1
1 σ

ν2
2 on a 2D trajectory w ∈ R

Z
2

as
(
σ νw

)
(h, k) = w(h + ν1, k + ν2).

ALaurent polynomial in the shift operators σ1 and σ2 is a finite linear combination of various
monomials in σ1 and σ2:

f (σ) =
∑

ν∈Γ

ανσ
ν,

where Γ ⊆ Z
2 is finite. Naturally, such an f (σ) ∈ A acts on w ∈ R

Z
2
as

f (σ)w =
∑

ν∈Γ

ανσ
νw.

The action of a row vector of Laurent polynomial operators on a column vector of 2D
discrete trajectories gets defined likewise: for r(σ) = [

r1(σ), r2(σ), . . . , rq(σ)
] ∈ Aq and

w = col(w1, w2, . . . , wq) ∈ (Rq)Z
2
we get
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r(σ)w :=
q∑

i=1

ri (σ)wi ∈ R
Z
2
.

In this way, a system of linear 2D partial difference equations with real constant coefficients
can be written as

R(σ)w = 0,

where R(σ) ∈ A•×q is a matrix with entries that are Laurent polynomials in σ1 and σ2.
FollowingWillems (1991),we call the set of all solutions of such a systemof partial difference
equations the behavior of the system, and denote it by the symbol B:

B :=
{
w ∈ (Rq)Z2

R(σ)w = 0
}

,

where R(σ) ∈ A•×q . For example, the system given by the set of equations:

2w(h + 1, k) + w(h + 2, k + 1) + w(h, k) = 0,

3w(h + 1, k + 1) + w(h, k) = 0,

has its behavior B given as

B :=
{
w ∈ R

Z
2
[
2σ1 + σ 2

1 σ2 + 1
3σ1σ2 + 1

]
w = 0

}
.

The above description ofB is oftenwritten in short asB = ker R(σ). Such a representation is
called a kernel representation ofB, and R(σ) is called a kernel representation matrix. In this
paper, we denote the set of all discrete 2D systems having q number of dependent variables
and are described by linear partial difference equations with constant real coefficients by
the symbol Lq

2D. We shall often abuse the notation slightly and write B ∈ L
q
2D with the

understanding thatB is the behavior of a system that is in Lq
2D. Also, we shall often suppress

the details and write just “discrete 2D system” to mean a system in L
q
2D.

2.3 The Laurent polynomial ring in the shifts

The Laurent polynomial ring in the shift operators σ1, σ2, denoted by A in this paper, is
the algebra generated by both positive and negative powers of the variables σ1, σ2 with
coefficients from R. It was shown in Willems (1991) that in discrete 1D systems, both
positive and negative powers of the shift operator are legitimate operators on the trajectories,
and hence, the operator algebra turns out to beA, and not the polynomial ring. In this paper,
we also need the one variable Laurent polynomial ring in the shift operator σ1. We denote
this ring by A1. This ring A1 is contained in A as a subring. The free modules of all row
vectors of size q with entries in A (A1) is denoted by Aq (Aq

1).

2.4 The equation module R

The kernel representation of a behavior is not unique. The algebraic object that is
uniquely associated with the behavior is the module generated by the equations. Suppose
R1(σ), R2(σ) ∈ A•×q are such that the modules generated by the rows of R1(σ) and those
of R2(σ) (the row-spans of R1(σ) and R2(σ) over A) are the same. Then, it easily fol-
lows that ker R1(σ) = ker R2(σ). Remarkably, it follows from a strong result in Oberst
(1990) that the converse is also true. That is, ifB1,B2 ∈ L

q
2D are given byB1 = ker R1(σ),
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B2 = ker R2(σ) and themodules generated by the rows of R1(σ), R2(σ) areR1,R2, respec-
tively, then B1 = B2 if and only if R1 = R2. Note that R1 and R2 are both submodules of
the free module Aq . So, in other words, the submodules of Aq and discrete 2D behaviors in
L
q
2D are in (an inclusion reversing) one-to-one correspondence with each other. Hence, given

a behaviorB = ker R(σ), the module generated by the rows of R(σ) is uniquely associated
with B, although the matrix R(σ) need not be so. This module generated by the rows of a
kernel representation matrix is called the equation module ofB, and, in this paper, we denote
this module by R. Also, given a submodule R ⊆ Aq , we denote by B(R) the behavior
corresponding to the module R:

B(R) :=
{
w ∈ (Rq)Z2

f (σ)w = 0 for all f (σ) ∈ R
}

. (1)

In this paper, behaviors with a single dependent variable, that is, q = 1, play a significant
role. Such behaviors are called scalar behaviors. It is worth mentioning here that for a scalar
behavior the equation module turns out to be an ideal in A. We denote this ideal by a and
call it the equation ideal.

2.5 The quotient module M

Given a behaviorB ∈ L
q
2D letR be its equationmodule. Themodule obtained by quotienting

Aq byR is of crucial importance in this paper. In fact, exploring andmanipulating the structure
of this quotient module are the keys behind the main results. We denote this module by M,
that is,

M := Aq/R,

and call it the quotient module of B. For an element f (σ) ∈ Aq , we denote by f (σ) the
image of f (σ) under the canonical surjection Aq � M. In the sequel, we shall often let
elements ofM act on the trajectories in the corresponding behavior. This is done as follows:
let m ∈ M, and w ∈ B. Then

m(w) := f (σ)w, (2)

where f (σ) ∈ Aq is such that f (σ) = m; such an f (σ) is called a lift of m. Note that, if
f1(σ), f2(σ) ∈ Aq are two distinct lifts of m then they must satisfy

0 �= f1(σ) − f2(σ) ∈ R.

Therefore, the actions of these distinct lifts on a w will result in the same:

( f1(σ) − f2(σ)) w = 0 ⇒ f1(σ)w = f2(σ)w,

because for w ∈ B, f (σ)w = 0 for all f (σ) ∈ R Eq. (1). Thus the action ofM onB as per
Eq. (2) is well-defined.

2.6 Characteristic sets

Characteristic sets are the central objects of study in this paper. Given a B ∈ L
q
2D, a subset

S of Z
2 is said to be a characteristic set of B if for every trajectory w ∈ B, the knowledge

of w on S uniquely specifies w over all of Z
2. In Definition 1 we give a precise definition of

characteristic sets following the one given inValcher (2000). For the purpose of this definition
we need the notion of restriction of a trajectory to a subset S of Z

2. Given a discrete 2D
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trajectory w : Z
2 → R

q , and S ⊆ Z
2, the restriction of w to S, denoted by w|S , is a map

w|S : S → R
q defined as

w|S(h, k) = w(h, k) for all (h, k) ∈ S.

Definition 1 (Valcher 2000) Given B ∈ L
q
2D, a subset S ⊆ Z

2 is said to be a characteristic
set for B if for every trajectory w ∈ B, the restriction of w to the set S, that is w|S , allows
to uniquely determine the remaining portion of w, namely w|Z2\S .

In Fornasini et al. (1993), Rocha and Willems (1989), autonomous discrete 2D systems
were defined as those which have a proper subset of Z

2 for their characteristic sets. It was
shown in Fornasini et al. (1993) that this property of autonomy is equivalent to the behavior
admitting a kernel representation with a full column rank kernel representation matrix. Con-
sequently, it was shown that autonomy is equivalent to M being a torsion module1 (Pillai
and Shankar 1998). This, in turn, is equivalent to the annihilator ideal, ann M, defined as

ann M := { f (σ) ∈ A | f (σ)m = 0 for all m ∈ M},
being non-zero. Thus, forB ∈ L

q
2D, there exits a proper subset S ⊆ Z

2 which is a character-
istic set if and only if M is a torsion module, or, equivalently, ann M �= {0}. A special case
of this is when the characteristic set turns out to be finite. Such systems are called strongly
autonomous (Pillai and Shankar 1998). A behavior B ∈ L

q
2D is strongly autonomous if and

only if M is a finite dimensional vector space over R. So, for strongly autonomous sys-
tems it is already known that thin characteristic sets (in fact, finite) exist. Therefore, in this
paper we are concerned with characteristic sets of autonomous systems that are not strongly
autonomous. It was shown in Valcher (2000) that such systems always admit convex cones
as characteristic sets. But, convex cones, as argued earlier, are bigger compared to lines or
finite unions of parallel lines. In this paper, we show that all discrete 2D systems, in partic-
ular, those which are not strongly autonomous, admit finite collections of parallel lines as
characteristic sets. As pointed out earlier in this paper, such a finite collection of lines in Z

2

can be viewed as thin compared to convex cones (see “Appendix 1”).
Since a key factor in establishing the main result of this paper is showing existence of the

claimed type of characteristic sets for scalar systems, we point out the following fact about
scalar systems. Kernel representation matrices of scalar systems are column vectors, and any
column vector with at least one non-zero entry is clearly full column rank. Therefore, every
scalar discrete 2D system (with a nonzero kernel representation matrix) is autonomous.

3 The special case: strongly σ2-relevant scalar systems

We first consider a special class of scalar discrete 2D systems called strongly σ2-relevant
systems (Pal and Pillai 2013). As mentioned in Pal and Pillai (2013), the concept of strongly
σ2-relevant systems is inspired by that of “time/space-relevant systems” introduced in Napp
et al. (2011). In Definition 2 below, we adapt the definition of time/space-relevant systems
of Napp et al. (2011) to suit the purpose of this paper. To avoid confusion with strong σ2-
relevance, we call the adapted version of time/space relevance of Napp et al. (2011), the
(weak) σ2-relevance.

1 For every element m ∈ M, there is a 0 �= f (σ) ∈ A such that f (σ)m = 0 ∈ M.
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Definition 2 ((Weak) σ2-relevance) (Napp et al. 2011) A 2D system with behavior B is
called (weakly) σ2-relevant if for every k ∈ Z the subset of Z

2 of the form

Sk := {(ν1, ν2) ∈ Z
2|ν2 � k} (3)

is a characteristic set of B.

Note that these characteristic sets Sk , half-spaces as they are often called, consist of infinitely
many horizontal lines.

In contrast to this trajectory level definition of (weak) σ2-relevance, the notion of strongly
σ2-relevant systems, as introduced in Pal and Pillai (2013), is defined using a purely algebraic
property.

Definition 3 (Strong σ2-relevance) ConsiderB ∈ L1
2D with equation ideal a. ThenB is said

to be strongly σ2-relevant if the quotient ring M = A/a is a finitely generated module over
A1.

Note that the quotient ring is trivially a module over A1; what makes the M of a strongly
σ2-relevant system special is that M is finitely generated as a module over A1.

Although, Definition 3 is purely algebraic, Theorem 13 brings out the trajectory level
meaning of strong σ2-relevance: Theorem 13 shows that a scalar strongly σ2-relevant system
admits a finite collection of horizontal lines for its characteristic set. Proposition 4 belowgives
another algebraic property equivalent toB being strongly σ2-relevant. This result, proved in
Pal and Pillai (2013), will be useful for us in the sequel.

Proposition 4 SupposeB ∈ L1
2D has equation ideal a. ThenB is strongly σ2-relevant if and

only if a contains an element, say f (σ) ∈ A, of the form

f (σ) = σ L
2 + aL−1(σ1)σ

L−1
2 + · · · + a1(σ1)σ2 + a0(σ1), (4)

where L ∈ Z and L > 0, a0(σ1), a1(σ1), . . . , aL−1(σ1) ∈ A1, with a0(σ1) being a unit in
A1.

Remark 5 ((weak) σ2 -relevance versus strong σ2 -relevance) At this point, it is important
to note the difference between (weakly) σ2-relevant systems and strongly σ2-relevant ones.
According to Napp et al. (2011), Proposition 6, a ‘square’2 behavior B ∈ L1

2D is (weakly)
σ2-relevant if and only if it admits a kernel representationB = ker f (σ)where f (σ) is of the
form of Eq. (4) with no condition on the term a0(σ1) being a unit. It then clearly follows from
Proposition 4 that every square strongly σ2-relevant B ∈ L1

2D is also (weakly) σ2-relevant,
but the converse is not true. Here is an example of a square B that is (weakly) σ2-relevant,
but not strongly σ2-relevant: B = ker (σ2 + σ1 + 1).

Remark 6 (Evolution: unidirectional versus bidirectional) Note that (weak) σ2-relevance is
equivalent to saying that the behavior is composed entirely of trajectories that ‘evolve’ in the
σ2-direction from an ‘initial condition’ specified on the half-spaces, Sk , of the type described
in Eq. (3). Although, the definition requires the whole half-space Sk to be a characteristic
set, it follows from Napp et al. (2011), Proposition 6, that the restriction of any trajectory
w ∈ B to only a finite collection of horizontal lines contained in Sk’ uniquely determines
w(ν1, ν2) for all ν2 � k + 1. Thus, it appears that every (weakly) σ2-relevant system would
admit a finite collection of horizontal lines as a characteristic set. However, such an inference

2 ‘Square’ means the equation ideal is principal.
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would in general be erroneous. This is because w, by this restriction on a finitely many
horizontal lines, gets specified uniquely only in the ‘future’ (ν2 � k+1) and not in the ‘past’
(ν2 � k − L − 1, where L is the so called time lag, Napp et al. 2011). For example, consider
again the (weakly) σ2-relevant behavior B = ker (σ2 + σ1 + 1). Here, every trajectory w

satisfies the equationw(ν1, ν2+1) = −w(ν1+1, ν2)−w(ν1, ν2).Hence, restriction ofw on
the line {(ν1, 0) | ν1 ∈ Z} uniquely determinesw(ν1, ν2) for all ν2 � 1. However, observe that
the information ofw restricted to this line cannot uniquely determinew(ν1, ν2) for ν2 � −1.
Theorem 13 shows that for strongly σ2-relevant systems, restriction of every trajectory w to
finitely many horizontal lines uniquely determines both the ‘future’ and the ‘past’ of w.

Remark 7 (Is it enough to look at only the square part ofB?) The following observation has
played a crucial role in the literature on characteristic sets: a set S ⊆ Z

2, which is a proper
cone3, is a characteristic set for B if and only if it is a characteristic set for Bsq, the ‘square
part’ of B (Valcher 2000, Proposition 2.6). However, when it comes to dealing with the
type of characteristic sets considered in this paper, it is observed that the above-mentioned
situation changes drastically. There exists B ∈ L1

2D such that a set S, which is not a proper
cone, is a characteristic set forBsq, but S is not a characteristic set forB. Here is an example:

B = ker

[
σ1σ2 − σ1 − σ2 + 1

σ 2
2 − 2σ2 + 1

]
. Here,Bsq = ker (σ2 − 1). Clearly, S = {(ν1, 0) | ν1 ∈ Z}

is a characteristic set forBsq. However,S is not a characteristic set forB. To see this, consider
the trajectory

w(ν1, ν2) = −ν2.

It can be checked easily thatw ∈ B, butw|S ≡ 0. Therefore, S cannot be a characteristic set
forB because if it were so thenw|S ≡ 0 would have impliedw is the zero trajectory (Valcher
2000, Lemma 2.3), which it clearly is not. This example shows that reducing the question
of finding characteristic sets to only square autonomous systems by applying (Valcher 2000,
Proposition 2.6) does not work out for all types of subsets of Z

2. The method works well,
provided the purported characteristic set in question is a proper cone. Thus,while dealingwith
characteristic sets such as lines or finite unions of lines, it is imperative that the corresponding
algebraic criteria must have provisions for non-square systems. Note that this quality is
already present in the definition of strong σ2-relevance (Definition 3).

Remark 8 (Strongly autonomous systems are strongly σ2 -relevant) Systems that are strongly
autonomous are also strongly σ2-relevant. For in case of strongly autonomous systems, the
quotient ring M is a finite dimensional vector space over R, and thus, trivially, a finitely
generated module over A1. However, the two notions are clearly not equivalent.

Our main tool for proving Theorem 13 is a certain representation formula for trajectories
in strongly σ2-relevant discrete 2D autonomous behaviors provided in Pal and Pillai (2013).
We paraphrase this result of Pal and Pillai (2013) as Proposition 10 here. However, before
we get to Proposition 10 we need to familiarize with certain objects associated with it. The
existence of these objects follow from the assumption thatM is finitely generated as amodule
over A1.

3.1 Consequences of M being a finitely generated module over A1

The quotient ring M being finitely generated as a module over A1 means that one can fix
a finite generating set for M as an A1-module. Suppose {g1, g2, . . . , gn} ⊆ M is such a

3 A proper cone is a closed, pointed and solid convex cone in R2 intersected with Z2. See Valcher (2000) for
more details.
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generating set. Once a generating set is fixed it can be used to set up a map ψ from the free
module An

1 to M as shown below:

ψ : An
1 → M

ei �→ gi for all 1 � i � n,
(5)

where ei is the standard i th basis row-vector4 of the free module An
1. Note that the map

ψ is an A1-module homomorphism, and is surjective. Using this map ψ , we construct the
following two matrices: A(σ1),C(σ1).

3.1.1 The flow matrix A(σ1)

Consider the map μ : M → M given by μ(m) = σ2m for m ∈ M. Clearly μ is an
A1-module homomorphism. Now, since M is finitely generated as an A1-module, this map
μ can be represented by a matrix. This is done as follows: suppose {g1, g2, . . . , gn} ⊆ M
is a generating set for M as an A1-module. For 1 � i � n consider the action of μ on
the generator gi . Since {g1, g2, . . . , gn} is a generating set, the image of gi under μ can be
expressed as an A1-linear combination of these g1, g2, . . . , gn . That is, for 1 � i � n, there
exist ai,1(σ1), ai,2(σ1), . . . , ai,n(σ1) ∈ A1 such that

μ(gi ) = ai,1(σ1)g1 + ai,2(σ1)g2 + · · · + ai,n(σ1)gn .

Using this observation, we define the flow matrix A(σ1) as

A(σ1) := [
ai, j (σ1)

]
1�i, j�n ∈ An×n

1 . (6)

Remark 9 It has been shown in Pal and Pillai (2013) that there always exists a generating
set for which the corresponding A(σ1) turns out to be invertible in A1 (that is, det A(σ1) is
a unit in A1).

3.1.2 The output matrix C(σ1)

Let C(σ1) ∈ An
1 be such that ψ(C(σ1)) = 1, the image of 1 ∈ A under the canonical map

A � M. We call C(σ1) the output matrix.
With the matrices A(σ1),C(σ1) defined as above we now state a slightly modified version

of Theorem 3.7 of Pal and Pillai (2013) as Proposition 10 below. It is important at this point to
recall that a row-vector r(σ1) of operators fromAn

1 acts on a column vector of 1D trajectories
x ∈ (RZ

)n
to produce a trajectory in R

Z: for r(σ1) = [r1(σ1), r2(σ1), . . . , rn(σ1)] ∈ An
1 and

x = [x1, x2, . . . , xn]T ∈ (RZ
)n
, the action r(σ1)x is given by

r(σ1)x =
n∑

i=1

ri (σ1)xi .

Proposition 10 Suppose B ∈ L1
2D, let B be strongly σ2-relevant, that is the quotient ring

M is finitely generated as a module over A1. Fix a generating set {g1, g2, . . . , gn} for M
as an A1-module. Let the matrices A(σ1),C(σ1) be as defined above in Sects. 3.1.1, 3.1.2,

4 As a convention, we consider the elements in An
1 to be written as row-vectors.
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respectively. Assume that {g1, g2, . . . , gn} is chosen so as to ensure A(σ1) is invertible in
An×n

1 . Let w ∈ B be arbitrary. Define the vector 1D trajectory x ∈ (RZ
)n

as

x(ν1) :=

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

g1
g2
...

gn

⎤

⎥
⎥
⎥
⎦

w

⎞

⎟
⎟
⎟
⎠

(ν1, 0), for all ν1 ∈ Z.

Then w ∈ B can be written as

w(ν1, ν2) = (
C(σ1)A(σ1)

ν2 x
)
(ν1) (7)

at all points (ν1, ν2) ∈ Z
2.

Proposition 10 is the key to proving Theorem 13. The representation formula (7) asserts
that if the vector-valued 1D trajectory x(•) is known then w can be uniquely derived from
it. Note that x(•) is derived from w(•, 0) by making a vector of (Laurent) polynomials of
difference operators act on it. Thus, it appears that the construction of x requires only a
portion of the knowledge of w, which, in turn, uniquely specifies w. A natural question that
arises now is: can this portion of knowledge of w be identified with w|S for S ⊆ Z

2, where S
has desirable properties like being a line or a finite union of lines, etc?We show in Theorem
13 that this is indeed the case: a suitable set of generators {g1, g2, . . . , gn} results in x being
nothing but the restriction of w on a finite union of horizontal lines. For this purpose, we
need the crucial algebraic result Lemma 11. In Lemma 11, we establish that whenever the
quotient ringM is finitely generated as amodule overA1 (that is, the corresponding behavior
is strongly σ2-relevant), the desired suitable generating set for M as an A1-module exists.
Due to the technical nature of the proof, it has been presented in the “Appendix 2”.

Lemma 11 Let a ⊆ A be an ideal such that the quotient ringM := A/a is finitely generated
as a module over A1. Then there exists a positive integer L such that

{1, σ2, σ22, . . . , σ2L−1}
is a generating set for M as a module over A1.

Remark 12 To proceed any further, it is crucially important to verify whether the chosen
generating set as per Lemma 11 leads to a flow matrix A(σ1) that is invertible. We show here
that this is indeed the case. By Proposition 4 we know that the equation ideal a contains a
polynomial f (σ) of the form given by Eq. (4). It then follows from the construction of A(σ1),
as delineated in Sect. 3.1.1, that under the generating set {σ2i }0�i�L−1, the matrix A(σ1)

gets the following form:

A(σ1) =

⎡

⎢⎢⎢
⎣

0 1 ··· 0

0 0 ··· 0

...
...

. . .
...

−a0(σ1) −a1(σ1) ··· −aL−1(σ1)

⎤

⎥⎥⎥
⎦

,

where ai (σ1) come from the expression of f (σ) of Eq. (4). As a consequence of this, we get
that det A(σ1) = (−1)La0(σ1), which is a unit because a0(σ1) is a unit as per Proposition 4.
Therefore, this A(σ1) is invertible in AL×L

1 .

With the above results we now show that every strongly σ2-relevant B ∈ L1
2D admits a

finite number of horizontal lines as a characteristic set.
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Theorem 13 Let B ∈ L1
2D be strongly σ2-relevant. Then B admits a finite number of hori-

zontal lines as a characteristic set.

Proof SinceB is stronglyσ2-relevant, the quotient ringM is a finitely generatedmodule over
A1. By Lemma 11 the set {1, σ2, . . . , σ2L−1} is a generating set forM as anA1-module. Let
the matrices A(σ1),C(σ1) be constructed as in Sects. 3.1.1, 3.1.2, respectively. By Remark
12, A(σ1) can be constructed to be invertible in AL×L

1 . Let w ∈ B be arbitrary. Following

Proposition 10 we define the vector 1D trajectories x ∈ (RZ
)L

as

x(ν1) :=

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

1
σ2
...

σ2
L−1

⎤

⎥
⎥
⎥
⎦

w

⎞

⎟
⎟
⎟
⎠

(ν1, 0), for all ν1 ∈ Z. (8)

Then it follows from Proposition 10 that this w admits the following representation

w(ν1, ν2) = (
C(σ1)A(σ1)

ν2 x
)
(ν1)

at all points (ν1, ν2) ∈ Z
2. Therefore, the knowledge of x (derived fromw) uniquely specifies

w. Now recall Eq. (2) that defines the action of elements in M on w ∈ B. Using Eq. (2),
Eq. (8) can be simplified as

x(ν1) =

⎛

⎜⎜⎜
⎝

⎡

⎢⎢⎢
⎣

1
σ2
...

σ2
L−1

⎤

⎥⎥⎥
⎦

w

⎞

⎟⎟⎟
⎠

(ν1, 0) =

⎡

⎢⎢⎢
⎣

w(ν1, 0)
w(ν1, 1)

...

w(ν1, L − 1)

⎤

⎥⎥⎥
⎦

.

Since w ∈ B was chosen as arbitrary, it follows that the set

S := {(ν1, ν2) ∈ Z
2 0 � ν2 � L − 1},

is a characteristic set for B, which consists of finitely many horizontal lines. 	

We illustrate the result of Theorem 13 by an example below.

Example 14 Consider the behavior

B = ker

[
σ 2
2 + 5σ2 + 6

σ1σ2 + 2σ1 − σ2 − 2

]
.

The equation ideal is given by

a = 〈σ 2
2 + 5σ2 + 6, σ1σ2 + 2σ1 − σ2 − 2〉.

Presence of the polynomial σ 2
2 +5σ2 +6 in amakes the quotient ringM a finitely generated

module over A1 (Proposition 4). It follows from Lemma 11 that {1, σ2} is a generating set
for M as an A1-module. With this generating set we get the following matrices:

A(σ1) =
[
0 1

−6 −5

]
, C(σ1) = [

1 0
]
.

Therefore, any w ∈ B is given by

w(ν1, ν2) =
( [

1 0
] [ 0 1

−6 −5

]ν2
[
x1
x2

])
(ν1), (9)
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Fig. 1 Characteristic set forB
in Example 14

ν2

S

ν1

where
[ x1
x2

]
(ν1) =

[
w(ν1,0)
w(ν1,1)

]
. This means the entire trajectory w can be found once we find

its values at the points on the lines {(ν1, ν2) ∈ Z
2 | ν2 = 0} and {(ν1, ν2) ∈ Z

2 | ν2 = 1}.
This means the set S defined below is a characteristic set for B:

S = {(ν1, 0) | ν1 ∈ Z} ∪ {(ν1, 1) | ν1 ∈ Z}.
This is shown pictorially in Fig. 1.

4 The first general case: arbitrary scalar discrete 2D systems

As is expected, there is a significantly large number of scalar discrete 2D systems that are
not strongly σ2-relevant. Indeed, for example, the behavior B = ker(σ1σ2 − σ1 − σ2 + 1)
is not strongly σ2-relevant. Naturally, for these systems, the theory presented so far in this
paper does not hold. Consequently, for these systems, existence of characteristic sets of
the type shown in Sect. 3 cannot be inferred directly. On the contrary, however, using the
existing results in the literature it can be shown that the exemplary system, that is, B =
ker(σ1σ2 − σ1 − σ2 + 1), cannot admit finitely many horizontal lines as a characteristic set.
By Valcher (2000), Lemma 2.7, it follows that the entire lower half-space of any horizontal
line, that is, Sk = {(ν1, ν2) ∈ Z

2 | ν2 � k}, cannot be a characteristic set ofB for any k ∈ Z.
Consequently, since any finite union of horizontal lines must be a subset of Sk for some k, it
turns out that such a finite union cannot be a characteristic set for B.

It then seems reasonable to ask: does a system that is not strongly σ2-relevant, too, admit
a characteristic set that is a union of finitely many parallel lines?

An immediate partial answer to this question can be obtained by noting that in our analysis
so far, the roles of σ1 and σ2 can be interchanged, and the analysis will still hold perfectly
well. Thus, any system that perhaps is not strongly σ2-relevant, but happens to be strongly
σ1-relevant can be shown to admit a finite union of vertical lines for a characteristic set. This,
however, is in no way a complete answer to the above-mentioned question. For there are still
a large number of systems that are neither strongly σ2-relevant nor strongly σ1-relevant. For
example, the behaviorB = ker(σ1σ2 −σ1 −σ2 + 1) considered above is such a behavior. In
the remaining part of this paper, we resolve this issue in complete generality. In this section,
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we show that every scalar discrete 2D system admits a finite union of parallel lines (need not
always be vertical or horizontal, could be tilted) as a characteristic set. And later in Sect. 5, we
show the same holds for every autonomous discrete 2D systemwith more than one dependent
variables. The trick in obtaining the result for general scalar systems lies in doing a suitable
invertible coordinate change in the domain Z

2.

4.1 Coordinate transformations on Z
2 and their effects

By a coordinate transformation on Z
2 we mean a mapping T : Z

2 → Z
2 that is bijective and

satisfies the property of Z-linearity: for all ν, ν′ ∈ Z
2 and k ∈ Z, T must satisfy

T (ν + ν′) = T (ν) + T (ν′), and T (kν) = kT (ν).

When the elements of Z
2 are written as column vectors, then coordinate transforms are

represented by (2×2) integer matrices whose determinants are±1. Suchmatrices are known
as unimodular integer matrices.

Given a coordinate transformation T on Z
2 (or, equivalently, a unimodular matrix T ∈

Z
2×2), it induces a map T ∗ : R

Z
2 → R

Z
2
in the following manner: for an arbitrary w ∈ R

Z
2

and ν ∈ Z
2

(
T ∗(w)

)
(ν) := w(T (ν)). (10)

The map T ∗ is often called the pull-back of the coordinate transformation T . Note that the
bijectivity of T forces T ∗ to be bijective, too. Indeed, (T ∗)−1 = (T−1)∗. Another noteworthy
property of T ∗ is that it is R-linear. It then follows that, for aB ∈ L1

2D, sinceB is a subspace

ofR
Z
2
, the image ofB under T ∗, that is, T ∗(B), must also be a subspace ofR

Z
2
. Interestingly,

it turns out that T ∗(B) is more than just a subspace of R
Z
2
, it is, in fact, a scalar discrete 2D

behavior. We elaborate on this fact now.
The fact that T ∗(B) ∈ L1

2D can be inferred by showing that T ∗(B) is the solution set of a
system of 2D linear partial difference equations. It turns out that the ideal of these equations
is related to the original equation ideal through yet another map induced by the coordinate
transformation T . This map is known as the push-forward of T , denoted as T∗, and is defined
thus:

T∗ : A → A, T∗(σ ν) = σ T (ν). (11)

Since every polynomial inA is a finite R-linear combination of the monomials σ ν , the action
of T∗ on every element of A gets uniquely specified once it is defined on the monomials σ ν

as done in Eq. (11) above, and it is imposed that T∗ must be R-linear. Thus, T∗ is a map of
R-algebras that keeps the base fieldR fixed. The coordinate transformation being unimodular
forces T∗ to be bijective, too. Hence, the image of an ideal a ⊆ A under this map, T∗(a), too,
turns out to be an ideal.

Now, to see the relation between the two maps T ∗ and T∗, first observe that for any
ν, ν′ ∈ Z

2, and w ∈ R
Z
2
, we get the following:
(
σ ν(T ∗(w))

)
(ν′) = T ∗ (σ T (ν) (w)

)
(ν′). (12)

Indeed,
(
σ ν(T ∗(w))

)
(ν′) = (T ∗(w)) (ν + ν′) = w(T (ν + ν′)) = (

σ T (ν)w
)
(T (ν′)) =

T ∗ (σ T (ν) (w)
)
(ν′). Equation (12) can be rewritten using the push-forward as

σ ν(T ∗(w)) = T ∗ (T∗
(
σ ν
)
(w)

)
. (13)

The above equation shows equality of trajectories: ν′ is omitted because Eq. (12) holds for
arbitrary ν′ ∈ Z

2. Following this we get that, for a general Laurent polynomial f (σ) =
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∑
ν∈Γ aνσ

ν , where Γ ⊆ Z
2 is finite,

f (σ)
(
T ∗(w)

) =
∑

ν∈Γ

aνσ
ν
(
T ∗(w)

)

=
∑

ν∈Γ

aνT
∗ (T∗

(
σ ν
)
(w)

)

= T ∗
(
∑

ν∈Γ

aνT∗
(
σ ν
)
(w)

)

⇒ f (σ)
(
T ∗(w)

) = T ∗ (T∗ ( f (σ) (w)) . (14)

Proposition 15 Consider B ∈ L1
2D with equation ideal a. Further, let T ∈ Z

2×2 be a
unimodular matrix defining a coordinate transformation on Z

2. Define the two maps T ∗ :
R
Z
2 → R

Z
2
and T∗ : A → A as in Eqs. (10) and (11), respectively. Then we have

B = T ∗ (B (T∗(a))) . (15)

Proof Follows easily from Eq. (14): see the proof of Pal and Pillai (2013), Theorem 2.6. 	


Proposition 16 below shows the effect of coordinate transformations on characteristic
sets. Given a coordinate transformation T , and two behaviors B1,B2 ∈ L1

2D such that
B2 = T ∗(B1), it turns out that characteristic sets of B1 and B2 are directly related by the
coordinate transformation T .

Proposition 16 Let T : Z
2 → Z

2 be a coordinate transformation. Further, let B1,B2 ∈
L1
2D be related to each other byB2 = T ∗(B1). Then a subset S ⊆ Z

2 is a characteristic set
for B1 if and only if T−1(S) is a characteristic set for B2.

Proof (Only if part) Suppose S ⊆ Z
2 is a characteristic set for B1, we have to show that

T−1(S) is a characteristic set for B2. In order for that, let us assume w ∈ B2 is arbitrary,
then we must show that w|T−1(S) uniquely determines w over the whole of Z

2. Now, since
w ∈ B2 = T ∗(B1), there exists a unique w̃ ∈ B1 such that w = T ∗(w̃). That is, for all
ν ∈ Z

2, w(ν) = w̃(T (ν)). The uniqueness follows from the fact that unimodularity of T
forces its pull-back T ∗ to be bijective. The bijectivity of T ∗ also means that w̃, too, uniquely
determines w.

Suppose now that ν ∈ T−1(S), that is, ν = T−1(ν′), where ν′ ∈ S. Then

w(ν) = w̃(T (ν)) = w̃(T (T−1(ν′))) = w̃(ν′).

Hence it follows that w|T−1(S) uniquely determines w̃|S . Since, S has been assumed to be a
characteristic set forB1, w̃|S uniquely determines w̃, which in turn, determines w uniquely
because T ∗ is bijective. Therefore, effectively,w|T−1(S) determinesw uniquely. Sincew was
taken to be an arbitrary element ofB2, it follows that for allw ∈ B2, the restrictionw|T−1(S)

uniquely determines w; hence, T−1(S) is a characteristic set for B2.
(If part) Suppose T−1(S) is a characteristic set for B2, we have to show that S is a

characteristic set for B1. Note that B2 = T ∗(B1) implies that B1 = (T ∗)−1 (B2) =(
T−1

)∗
(B2). It then follows from the proof of the only if part that T (T−1(S)) = S is a

characteristic set of B1. 	
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4.2 Discrete Noether’s normalization lemma

Recall that a system is not strongly σ2-relevant if and only if its quotient ring,M = A/a, is
not a finitely generated module over A1. In this subsection, we shall see that if M is not a
finitely generated module over A1, it can be made so by the push-forward, T∗, of a suitable
coordinate transformation T . We state this result in Theorem 18. Theorem 18 can be viewed
as an analogue of Noether’s normalization lemma (see Eisenbud 1995 to get a comprehensive
exposition on the conventional Noether’s normalization lemma). We refer to Theorem 18 by
discrete Noether’s normalization lemma (DNNL). DNNL follows from Lemma 17 below,
which shows that given a 2D Laurent polynomial, there exists a unimodular T ∈ Z

2×2

such that under T∗ the given Laurent polynomial is mapped to a Laurent polynomial with
a special structure: when written as a Laurent polynomial in σ2 with coefficients from A1,
these coefficients are all units inA1. A similar result can be found in Park (2004), where the
result was used in the context of designing 2D filters. See Pal and Pillai (2013), Lemma 4.1,
for a proof of Lemma 17.

Lemma 17 Let 0 �= f (σ) ∈ A be given by

f (σ) =
∑

ν∈Z2

ανσ
ν, αν ∈ R,

with only finitely many αν �= 0. Then there exists a unimodular T ∈ Z
2×2 such that under

the push-forward T∗ given by Eq. (11), we have

T∗( f (σ)) =
(

δ∑

k=0

uk(σ1)σ
k
2

)

u(σ2), (16)

where u0(σ1), u1(σ1), . . . , uδ(σ1) ∈ A1 and u(σ2) ∈ R[σ±1
2 ] are all units inA and δ is some

finite positive integer.

We now state and prove the DNNL adapted from Pal and Pillai (2013) to suit the purpose
of this paper.

Theorem 18 (DNNL)Let a ⊆ A be a nonzero ideal such thatA/a is not finitely generated as
a module overA1. Then there exists T ∈ Z

2×2 unimodular, such that under its push-forward
map T∗ : A → A we have A/T∗(a) to be a finitely generated module over A1.

Proof Let 0 �= f (σ) ∈ a. By Lemma 17 above, there exists a unimodular matrix T such that
T∗( f (σ)) has the form of Eq. (16). Let us define b := T∗(a). As we have mentioned earlier,
b is an ideal. Note that T∗( f (σ)) ∈ b. Since T∗( f (σ)) ∈ b, and u(σ2), uδ(σ1) in Eq. (16) are
units in A, we also have g(σ) := u(σ2)

−1uδ(σ1)
−1T∗( f (σ)) ∈ b. Now note that g(σ) is of

the following form:

g(σ) = σ δ
2 + uδ(σ1)

−1uδ−1(σ1)σ
δ−1
2 + · · · + uδ(σ1)

−1u0(σ1).

Thus, g(σ2) is a monic polynomial in σ2 with coefficients from A1 such that the constant
term is uδ(σ1)

−1u0(σ1), which is a unit in A1. It then follows from Proposition 4 that A/b

is a finitely generated module over A1. 	

4.3 Finite union of parallel lines as a characteristic set for arbitrary B ∈ L1

2D

With the help of DNNL we are now in a position to prove the first main result of this paper:
every scalar discrete 2D system admits a characteristic set that is a finite union of parallel
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lines. The key idea behind the result is the following three observations: suppose B ∈ L1
2D,

with equation ideal a, is not strongly σ2-relevant, then

(i) by Theorem 18 (DNNL) there exists a coordinate transformation T of Z
2, such that

A/T∗(a) is finitely generated as a module over A1.
(ii) The behavior B̃ corresponding to the ideal T∗(a) is then strongly σ2-relevant. Hence it

admits a finite union of horizontal lines, say S, as a characteristic set.
(iii) ByProposition 15we haveB = T ∗(B̃), and byProposition 16we have the inverse-image

of S under T must be a characteristic set for B. Since S is a finite union of horizontal
lines, its inverse image under T must be a finite union of parallel lines.

In Theorems 19 and 20 we state and prove these observations formally.

Theorem 19 Consider B ∈ L1
2D with equation ideal a. Then there exists a unimodular

matrix T ∈ Z
2×2 and a strongly σ2-relevant B̃ ∈ L1

2D such that

B = T ∗ (B̃
)
. (17)

Proof Suppose B is already strongly σ2-relevant. Then the result trivially holds by taking
T := diag(1, 1), and B̃ := B. The non-trivial case is whenB is not strongly σ2-relevant. In
that case, the quotient ring M is not a finitely generated module over A1. By Theorem 18,
then, there exists a unimodular matrix T ∈ Z

2×2 such that under the push-forward, T∗, we
get A/T∗(a) is a finitely generated module over A1. Define

B̃ := B(T∗(a)).

Since A/T∗(a) is finitely generated as a module over A1, it follows that B̃ is strongly σ2-
relevant. Further, from Proposition 15 we get that

B = T ∗(B̃).

Hence, for every scalar discrete 2D behavior B there exist T ∈ Z
2×2 unimodular and a

strongly σ2-relevant scalar discrete 2D behavior B̃ such that B = T ∗(B̃). 	

Theorem 20 Every scalar discrete 2D system admits a finite union of parallel lines as a
characteristic set.

Proof Given a B ∈ L1
2D, by Theorem 19, there exist T ∈ Z

2×2 unimodular, and a strongly
σ2-relevant B̃ ∈ L1

2D, such that

B = T ∗(B̃).

Now, since B̃ is strongly σ2-relevant, it follows from Theorem 13 that B̃ admits a character-
istic set, say S, that consists of finitely many horizontal lines. But, by Proposition 16, since
B and B̃ are related by the pull-back of the coordinate transformation T , it follows that if S
is a characteristic set for B̃ then T−1(S)must be a characteristic set forB. Since S is a union
of finitely many horizontal lines, T−1(S) is a union of finitely many parallel (but, possibly,
tilted) lines. Thus B admits a finite union of parallel lines for a characteristic set. 	


We illustrate the result of Theorem 20 in the following example.

Example 21 SupposeB = ker (σ1σ2 − σ1 − σ2 + 1). We have seen at the beginning of this
section that thisB is neither strongly σ2-relevant nor strongly σ1-relevant. Here the equation
ideal, a = 〈σ1σ2 − σ1 − σ2 + 1〉. Let us choose coordinate transformation matrix T = [

1 0
2 1

]

to apply the DNNL. Under the corresponding push-forward, T∗, the generator of a goes to
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σ1σ
3
2 −σ1σ

2
2 −σ2+1. Sinceσ1 is a unit,we get that the ideal T∗(a) = 〈σ 3

2 −σ 2
2 −σ−1

1 σ2+σ−1
1 〉.

It then follows from Proposition 4 that A/T∗(a) is finitely generated as an A1-module.
Define B̃ := ker (σ 3

2 − σ 2
2 − σ−1

1 σ2 + σ−1
1 ). Since A/T∗(a) is a finitely generated

A1-module, B̃ is strongly σ2-relevant. And, by Proposition 15, B = T ∗(B̃).
Now, by Lemma 11, {1, σ2, σ22} is a generating set for A/T∗(a) as an A1-module. Thus

we get

A(σ1) =
⎡

⎣
0 1 0
0 0 1

−σ−1
1 σ−1

1 1

⎤

⎦ , C(σ1) = [
1 0 0

]

Applying Proposition 10 now we get that every w̃ ∈ B̃ is given by

w̃(ν1, ν2) =
⎛

⎝
[
1 0 0

]
⎡

⎣
0 1 0
0 0 1

−σ−1
1 σ−1

1 1

⎤

⎦

ν2

x

⎞

⎠ (ν1),

where x(ν1) :=
([

1
σ2
σ2

2

]
w̃

)
(ν1, 0) =

[
w̃(ν1,0)
w̃(ν1,1)
w̃(ν1,2)

]
. Therefore, by Theorem13 we have the

following subset S of Z
2

S := {(ν1, ν2) ∈ Z
2 | 0 � ν2 � 2}

as a characteristic set of B̃. By Proposition 16 we get that T−1(S) must be a characteristic
set for B. An explicit description of T−1(S) can be given as

T−1(S) = {(ν1,−2ν1 + ν2) ∈ Z
2 | ν1 ∈ Z, 0 � ν2 � 2}

= {(ν1,−2ν1)} ∪ {(ν1,−2ν1 + 1)} ∪ {(ν1,−2ν1 + 2)}.

These characteristic sets of B and B̃ are shown in Fig. 2.

T−1(S) S

Fig. 2 Characteristic sets forB and B̃
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5 The second general case: autonomous (non-scalar) discrete 2D systems

In this section, we prove the second main result of this paper: the existence of a union
of finitely many parallel lines as a characteristic set for a general (non-scalar) discrete 2D
autonomous system. This is achieved by reducing a given non-scalar autonomous discrete
2D behavior B to a corresponding auxiliary scalar behavior, called Bsc in this paper, and
then applying Theorem 20 to thisBsc. The key observation is that a characteristic set forBsc

is also a characteristic set for the corresponding B. By Theorem 20, the auxiliary behavior
Bsc, being scalar, admits a finite union of parallel lines as a characteristic set, and hence so
does the original non-scalar autonomous behavior B. This key observation was suggested
by an anonymous reviewer, we thank the reviewer for this crucial suggestion.

Given an autonomous behaviorB ∈ L
q
2D, we start by showing the constructions ofBsc—

the above-mentioned auxiliary scalar behavior, and of Bvec
sc ∈ L

q
2D an auxiliary non-scalar

autonomous behavior that is constructed out of Bsc. Since the given B is autonomous, as
mentioned in Sect. 2.6, it follows that the quotient module M is a torsion module, and
consequently, the annihilator ideal, ann M is a non-zero proper ideal. Define the auxiliary
scalar behavior Bsc now as

Bsc := B(ann M).

With Bsc, now define Bvec
sc ∈ L

q
2D as

Bvec
sc := Bsc × Bsc × · · · × Bsc︸ ︷︷ ︸

q times

. (18)

Note that Bvec
sc is indeed a behavior in L

q
2D and its equation module Rvec

sc is given by

Rvec
sc = {[

f1(σ) f2(σ) · · · fq(σ)
] ∈ Aq | fi (σ) ∈ ann M for all i = 1, 2, . . . , q

}
.

The following observation will be important for proving the main result, Theorem 24.

Proposition 22 Suppose B ∈ L
q
2D is autonomous with equation module R and quotient

module M. Define Bvec
sc as in Eq. (18). Then

B ⊆ Bvec
sc .

Proof Let w = col(w1, w2, . . . , wq) ∈ B be arbitrary. In order to prove w ∈ Bvec
sc it is

enough to show that
wi ∈ Bsc for all i = 1, 2, . . . , q. (19)

Equation (19) will be proven true if we show that

f (σ)wi = 0 for all f (σ) ∈ ann M, and for all i = 1, 2, . . . , q.

Let f (σ) ∈ ann M be arbitrary. Note that, since f (σ) ∈ ann M, we must have f (σ)ei ∈ R
for all i = 1, 2, . . . , q , where ei ∈ Aq is the i th standard basis row-vector. It then follows
that

f (σ)wi = f (σ)eiw = 0,

because, as w ∈ B, with R being the equation module of B, we must have r(σ)w = 0 for
all r(σ) ∈ R. 	
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It has been shown in Valcher (2000), Lemma 2.5 that if B1,B2 ∈ L
q
2D are autonomous

with B1 ⊆ B2 then S ⊆ Z
2 is a characteristic set for B1 if S is a characteristic set for B2.

Therefore, in order to prove B has a finite union of parallel lines as a characteristic set, it
is sufficient that we show that the corresponding Bvec

sc has such a characteristic set because
B ⊆ Bvec

sc by Proposition 22. Lemma 23 below shows that this is indeed the case: it is a
consequence of the construction ofBvec

sc that it must have a finite union of parallel lines as a
characteristic set.

Lemma 23 Let B ∈ L
q
2D be autonomous with quotient module M. Define Bvec

sc as done in
Eq. (18). Then Bvec

sc has a finite union of parallel lines as a characteristic set.

Proof Recall Eq. (18), where Bvec
sc has been defined as

Bvec
sc := Bsc × Bsc × · · · × Bsc︸ ︷︷ ︸

q times

,

with Bsc := B(ann M). From this definition, it follows that if S ⊆ Z
2 is a charac-

teristic set for Bsc then S must be a characteristic set for Bvec
sc , too. Indeed, suppose

w = col(w1, w2, . . . , wq) ∈ Bvec
sc is such that

w|S = 0,

where S ⊆ Z
2. Let S be a characteristic set for Bsc. Now, w|S = 0 means wi |S = 0 for

all i = 1, 2, . . . , q . From the structure of Bvec
sc it follows that for each i = 1, 2, . . . , q , the

scalar trajectory wi ∈ Bsc. But, by assumption, S is a characteristic set for Bsc, therefore,
wi |S = 0 implies wi ≡ 0 for all i = 1, 2, . . . , q . Thus it follows that w ≡ 0. Hence we
get that for all w ∈ Bvec

sc , w|S = 0 implies w ≡ 0, which is equivalent to saying S is a
characteristic set for Bvec

sc (see Valcher 2000, Lemma 2.3).
Now, by the above argument, in order to showBvec

sc has a characteristic set that is a finite
union of parallel lines, it is enough that we show Bsc has a characteristic set that is a finite
union of parallel lines. But this is true by Theorem 13 because Bsc ∈ L1

2D. Hence Bvec
sc

admits a characteristic set that is a finite union of parallel lines. 	

With these results, the proof of the main result Theorem 24 now follows immediately.

Theorem 24 LetB ∈ L
q
2D be autonomous. ThenB admits a characteristic set that is a finite

union of parallel lines.

Proof Suppose B has quotient module M. Since B is autonomous we have ann M �= {0}.
This allows us to defineBvec

sc as in Eq. (18). By Lemma 23,Bvec
sc admits a characteristic set,

say S, that is a finite union of parallel lines. SinceB ⊆ Bvec
sc (Proposition 22), it follows from

Valcher (2000), Lemma 2.5, that S must be a characteristic set for B, too. This concludes
the proof. 	


6 Conclusion

In this paperwe have shown that every discrete 2D autonomous system admits a characteristic
set that is composed of only finitely many parallel lines. We have argued that such charac-
teristic sets are ‘thin’ in Z

2 compared to the prevalent notion of characteristic sets which are
either convex cones or half-spaces. We arrived at this result broadly in two steps. First we
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showed that a certain special class of scalar discrete 2D systems, called strongly σ2-relevant,
always admit a finite union of horizontal lines as their characteristic sets. This was done, in
this paper, by utilizing a representation formula of trajectories in discrete 2D autonomous
systems derived in Pal and Pillai (2013). After that, we showed that every scalar discrete 2D
system can be converted into a strongly σ2-relevant scalar discrete 2D system by a suitable
coordinate transformation on the domain Z

2. Such coordinate transformations, as we showed
in this paper, map characteristic sets of one system to those of the transformed system. Thus,
we get a characteristic set for the original system by applying the inverse coordinate trans-
formation on a characteristic set for the transformed system. Since the transformed system is
strongly σ2-relevant, it admits finitely many horizontal lines as a characteristic set. Thus we
get a characteristic set for the original system by applying the inverse coordinate transforma-
tion on these finitely many horizontal lines. This set turns out to be a finite union of parallel
(possibly tilted) lines. This constituted our first main result of this paper, Theorem 20. Theo-
rem 20 was then extended to non-scalar systems that are autonomous. Using the well-known
relation between an autonomous behavior, B, and the corresponding scalar behavior given
by the annihilator ideal ann M, and the result of Theorem 20, we showed in our second main
result, Theorem 24, that B, too, admits a characteristic set that is a finite union of parallel
lines.

We believe that the idea of thin characteristic sets—like finite unions of lower dimensional
sublattices—should also prevail in nD discrete autonomous systems with general n. This
could be a possible direction of future research. Also, in this paper, we have not concentrated
on algorithms for implementation of the main results. This will be done in future.

Acknowledgments The author would like to thank Prof. Harish K. Pillai for many insightful discussions
on the subject matter of this paper. The author is indebted to two anonymous reviewers for their invaluable
comments and suggestions on the manuscript. Especially, the author would like to express his gratitude to
one of the reviewers who suggested the direction that solves the problem of extending the main result to the
non-scalar case.

Appendix 1: On “thin”ness of finite unions of parallel lines in Z
2

We have mentioned that a finite union of parallel lines is a thin set in Z
2. While this statement

intuitively appears to be true, it is not beyond all reasonable doubts and hence requires a
proof. In order for this, a suitable notion of thin sets in Z

2 must first be formulated because
the above-mentioned sets are thin only under special circumstances.However, giving a precise
definition of thin sets in Z

2 turns out to be a rather tricky issue, and is, unfortunately, beyond
the scope of this article. The main difficulty seems to arise from the fact that various sets
like—a half-space in Z

2, a quadrant in Z
2, a line in Z

2 (e.g., an axis of Z
2), or the entire Z

2—
all of them have the same cardinality: the countable infinity, ℵ0. Hence it follows that these
sets can be put into a one-to-one correspondence with each other. Therefore, from this point
of view, a trajectory defined over the whole of Z

2, or over a half-space, or over a quadrant,
or over an axis, would all require countably infinite amount of data. Thus, if we go by this
notion of quantifying the information required to specify a trajectory, a characteristic set that
is finitely many lines would not be any better than a characteristic set that is a half-space or
a quadrant.

Having said this, one must also note that specifying a 2D trajectory over an axis amounts
to specifying a 1D trajectory, and that way, having a characteristic set that is a line is indeed
better for it cuts down the ‘dimension’ of the set, over which a trajectory is being specified. In
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Wood et al. (1998) this fact has been called the “order of magnitude” of the initial condition
set. Subsequently, in Wood et al. (1998) for continuous nD autonomous systems, and in
Avelli and Rocha (2010) for discrete nD autonomous systems, it was shown that this order
of magnitude is strictly smaller than the dimension of the indexing set, that is n. Our main
results of this paper, too, echo this fact.

To promote this view-point of finite unions of parallel lines as characteristic sets as a
possible improvement over the current state-of-the-art, that is, convex cones, quadrants and
half-spaces as characteristic sets, we provide below two constructions that indicate thin-ness
of finitely many parallel lines in Z

2 in comparison to quadrants, cones and half-spaces.
First, suppose A ∈ Z

2×2 is such that det(A) = ±1, that is, A is a unimodular integer
matrix (see Sect. 4.1). Such an A acts on an integer vector ν = col(ν1, ν2) ∈ Z

2 as Aν to
produce another vector in Z

2. This transformation is invertible, because A is invertible and its
inverse, too, is an integer matrix. Thus, A defines a linear change of coordinates on Z

2. Now,
for S1,S2 ⊆ Z

2, let us define S1 to be equivalent to S2 if there exists A ∈ Z
2×2 unimodular

and ν̂ ∈ Z
2 such that

S2 = A(S1) + ν̂.

It can be checked that it is indeed an equivalence relation. With this equivalence relation it
can then be shown that if S is a line or a finite union of parallel lines then Z

2 can never be
written as a finite union of sets that are equivalent to S. On the other hand, if S is a convex
cone, or a quadrant or a half-space, then a finite union of S and its equivalent sets covers the
entire Z

2.
The second construction that indicates thinness of a finite union of parallel lines compared

to quadrants or half-spaces or convex cones is as follows. Define the following family of finite
subsets of Z

2. For i = 0, 1, 2, . . .,

Vi := {
(ν1, ν2) ∈ Z

2 | − i � ν1 � i, − i � ν2 � i
}
.

Note that Vi ’s form an ascending chain that ultimately covers the entire Z
2:

{(0, 0)} = V0 � V1 � V2 � · · ·
and

∞⋃

i=1

Vi = Z
2.

Now, let S be any subset of Z
2. Then for i = 1, 2, . . ., define

ρi (S) := |S ∩ Vi |
|Vi | ,

where |S| denotes the cardinality of the set S. It can then be easily checked that if S is a finite
union of parallel lines then

lim
i→∞ ρi (S) = 0,

but, if S is a convex cone, or a quadrant, or a half-space then

lim
i→∞ ρi (S) > 0.
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Appendix 2: Proof of Lemma 11

We need the following standard result—Euclidean division algorithm over polynomial over-
rings—for the proof.

Proposition 25 Let A be an arbitrary commutative ring with 1 ∈ A, and let ξ be transcen-
dental over A. Suppose p(ξ) ∈ A[ξ ] is a monic polynomial, that is,

p(ξ) = ξ L + aL−1ξ
L−1 + · · · + a1ξ + a0,

where L is a finite positive integer and aL−1, . . . , a1, a0 ∈ A. Then for all f (ξ) ∈ A[ξ ] there
exist q(ξ) ∈ A[ξ ] and r0, r1, . . . , rL−1 ∈ A such that

f (ξ) = q(ξ)p(ξ) +
L−1∑

i=0

riξ
i .

Proof of Lemma 11 Since M is finitely generated as a module over A1, by Proposition
4, a must contain a polynomial p(σ) of the form p(σ) = σ L

2 + aL−1(σ1)σ
L−1
2 + · · · +

a1(σ1)σ2 + a0(σ1), where L is a finite positive integer, aL−1(σ1), . . . , a1(σ1), a0(σ1) ∈ A1

and a0(σ1) is a unit in A1. Then, by Proposition 25, for every f (σ) ∈ A1[σ2] (that is
f (σ) ∈ Awhose terms do not contain negative powers of σ2), there exist q(σ) ∈ A1[σ2] and
r0(σ1), r1(σ1), . . . , rL−1(σ1) ∈ A1 such that

f (σ) = q(σ)p(σ) +
L−1∑

i=0

ri (σ1)σ
i
2. (20)

Because a0(σ1) is a unit we can multiply p(σ) by a0(σ1)−1 and σ−1
2 to get that

σ−1
2 a0(σ1)−1 p(σ) = a0(σ1)−1σ L−1

2 + bL−1(σ1)σ
L−2
2 + · · · + b1(σ1) + σ−1

2 ∈ a, where
bi (σ1) = a0(σ1)−1ai (σ1) for all 1 � i � L − 1. Note that in the above expression
every term except the last one has non-negative powers in σ2. Therefore, defining g(σ) :=
σ−1
2 a0(σ1)−1 p(σ) and h(σ) := −

(
a0(σ1)−1σ L−1

2 + bL−1(σ1)σ
L−2
2 + · · · + b1(σ1)

)
we

can write
σ−1
2 = g(σ) + h(σ). (21)

Note here that in Eq. (21), we have g(σ) ∈ a and h(σ) ∈ A1[σ2] (that is, h(σ) contains only
non-negative powers of σ2).

By taking positive powers on both sides of Eq. (21) and utilizing the binomial theorem, it
follows that for every positive integer i there exists gi (σ) ∈ a and hi (σ) ∈ A1[σ2] such that

σ−i
2 = gi (σ) + hi (σ). (22)

Since any Laurent polynomial f (σ) ∈ A can be viewed as a finite linear combination of
negative and positive powers of σ2 with coefficients coming from A1, we can write from
Eq. (22) above that for every f (σ) ∈ A there exist g(σ) ∈ a and h(σ) ∈ A1[σ2] such that

f (σ) = g(σ) + h(σ). (23)

The right hand side of Eq. (23) can be further broken up by applying Eq. (20) to h(σ) ∈
A1[σ2]. That is, there exist q(σ) ∈ A and ri (σ1) ∈ A1 such that h(σ) = q(σ)p(σ) +∑L−1

i=0 ri (σ1)σ i
2. This leads us to conclude that for every f (σ) ∈ A there exist g(σ) ∈ a and
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r0(σ1), . . . , rL−1(σ1) ∈ A1 such that

f (σ) = g(σ) +
L−1∑

i=0

ri (σ1)σ
i
2. (24)

Note that, since p(σ) ∈ a we have q(σ)p(σ) ∈ a, too. Therefore q(σ)p(σ) + g(σ) ∈ a. We
have utilized this fact in the right-hand-side of Eq. (24) to merge q(σ)p(σ) and g(σ) together
and call this sum as g(σ).

Now under the canonical surjection A � M Eq. (24) translates to

f (σ) =
L−1∑

i=0

ri (σ1)σ2
i . (25)

Thus every element in M can be written as a linear combination of {σ2i }0�i�L−1 with
coefficients from A1/a ∩ A1. In other words, {σ2i }0�i�L−1 generates M as a module over
A1. 	
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