
This article was downloaded by: [Debasattam Pal]
On: 15 November 2011, At: 21:51
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcon20

Lyapunov stability of n-D strongly autonomous systems
Debasattam Pal a & Harish K. Pillai a
a Department of Electrical Engineering, IIT Bombay, Mumbai, Maharashtra, India

Available online: 02 Nov 2011

To cite this article: Debasattam Pal & Harish K. Pillai (2011): Lyapunov stability of n-D strongly autonomous systems,
International Journal of Control, 84:11, 1759-1768

To link to this article:  http://dx.doi.org/10.1080/00207179.2011.624551

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tcon20
http://dx.doi.org/10.1080/00207179.2011.624551
http://www.tandfonline.com/page/terms-and-conditions


International Journal of Control
Vol. 84, No. 11, November 2011, 1759–1768

Lyapunov stability of n-D strongly autonomous systems
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In this article we look into stability properties of strongly autonomous n-D systems, i.e. systems having
finite-dimensional behaviour. These systems are known to have a first-order representation akin to 1-D
state-space representation; we consider our systems to be already in this form throughout. We first define
restriction of an n-D system to a 1-D subspace. Using this we define stability with respect to a given half-line, and
then stability with respect to collections of such half-lines: proper cones. Then we show how stability with respect
to a half-line, for the strongly autonomous case, reduces to a linear combination of the state representation
matrices being Hurwitz. We first relate the eigenvalues of this linear combination with those of the individual
matrices. With this we give an equivalent geometric criterion in terms of the real part of the characteristic variety
of the system for half-line stability. Then we extend this geometric criterion to the case of stability with respect to
a proper cone. Finally, we look into a Lyapunov theory of stability with respect to a proper cone for strongly
autonomous systems. Each non-zero vector in the given proper cone gives rise to a linear combination of the
system matrices. Each of these linear combinations gives a corresponding Lyapunov inequality. We show that
the system is stable with respect to the proper cone if and only if there exists a common solution to all of these
Lyapunov inequalities.

Keywords: strongly autonomous n-D systems; algebraic analysis; stability with respect to proper cones;
Lyapunov theory

1. Introduction

Stability is one of the most important aspects in systems

and control theory. In almost every design problem,

stability remains one of the desirable criteria. While the

history of stability of 1-D systems is very old, the n-D

systems counterpart is quite recent. Stability is inex-

tricably related to the notion of causality and, therefore,

to a suitable partitioning of the domain space into two

disjoint sets: ‘past’ and ‘future’. Unlike the 1-D case,

where there is a natural choice for this partitioning,

there is still no unanimous such partitioning for the n-D

case. In Curtain and Zwart (1995), Sasane, Thomas,

andWillems (2002) andWood, Sule, and Rogers (2005)

one of the independent variables was treated as ‘time’,

and thus, considering positive time as future, a

corresponding stability theory has been built. On the

other hand, in Valcher (Valcher 2001), the notion of

future ‘cone’ for 2-D discrete systems was defined

by introducing the idea of characteristic cones. Stability

with respect to this idea was also presented there.
Lyapunov theory of stability has been a corner stone

in 1-D systems theory for over a 100 years. It has

provided a radically new point of view of looking at the

notion of stability. Not only that, with the advent of

strong LMI solving tools, it has also provided much

more efficiently computable tests for stability.

Lyapunov theory of stability for 2-D discrete systems

has been done in Kojima, Rapisarda, and Takaba

(2010), which was built around Valcher’s theory of

characteristic cones. In this article we shall look into

a special kind of n-D systems and analyse its stability

properties in a Lyapunov theory flavour. The kind of

systems we shall look into are autonomous n-D systems,

with n5 2, with the property that they have a finite

‘characteristic variety’; such systems are called strongly

autonomous (Pillai and Shankar 1998). See Avelli,

Rapisarda, and Rocha (2011) for a recent paper that

deals with a similar problem for the special case of 2-D

discrete systems, althoughwith an approach built on the

theory of quadratic differential forms. Strongly auton-

omous systems are closer to 1-D systems for they are

also finite-dimensional vector spaces like 1-D autono-

mous systems. Moreover, such systems allow a

first-order representation, albeit with n-tuple of system

matrices, like the state representation in 1-D case;

following the 1-D terminology we shall call such a

representation as a state representation. In this article we

exploit this finite-dimensionality and state representa-

tion to bring out results about conic stability properties

of strongly autonomous n-D systems.
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We start off by defining restriction of an n-D
system to a 1-D subspace in Section 2. Then, with the
idea of restriction we define stability with respect to a
half-line given by the non-negative span of a non-zero
vector in the domain. We show that the restriction of
a strongly autonomous system to a 1-D subspace is
governed by a certain linear combination of the n-tuple
of state representation matrices; the coefficients in
this linear combination are precisely the entries in the
vector that spans the given 1-D subspace. Next we
show (Theorem 2.4) how the eigenvalues of this
linear combination are related with the eigenvalues
of the individual matrices. This result, together
with a consequence (Lemma 2.5) of observability
assumption on the state representation, enables us to
give a geometric criterion equivalent to stability with
respect to a half-line (Theorem 2.6). In Section 3 we
extend this result further to the case when stability is
sought for a collection of half-lines, namely a proper
cone. Finally, in Section 4, we state and prove
a Lyapunov type equivalent criterion of stability with
respect to a proper cone. It is a consequence of our
results in the previous sections that corresponding to
each half-line in the proper cone there is a different
Lyapunov inequality, solvability of which is equivalent
to stability with respect to that half-line. In this section,
we show that stability with respect to the given proper
cone is equivalent to existence of a common solution
to all the Lyapunov inequalities given by the half-lines
in the cone.

The notation we use is standard. We use R and C to
denote the fields of real and complex numbers,
respectively. The symbol C

1ðR
n,Rw
Þ stands for the

space of smooth functions from R
n to R

w. As a general
strategy, if we use some letter to denote a tuple, then
the same letter, but now indexed by natural numbers,
is used to denote the individual entries in it,
e.g. �¼ (�1, �2, . . . , �n). We also use col(�1, �2, . . . , �n)
when we want to stack up the entries one above the
other to make a column vector. The partial derivatives
@
@xi

are denoted simply by @i, and the n-tuple
{@1, @2, . . . , @n} is denoted by @. Thus R[@] denotes the
polynomial ring R[@1, @2, . . . , @n]. Finally, the number
of entries in a vector is denoted by the same letter as
the variable itself but in typewriter font, e.g. the
variable z takes values in R

z.

2. Strongly autonomous n-D systems and their

restrictions to 1-D subspaces

As mentioned earlier, we consider a special kind of
autonomous n-D systems, called strongly autonomous:
behaviours for which the characteristic variety is a
discrete set of finitely many points. It has been shown

in Pillai and Shankar (1998) and Rocha and Willems
(2006) that strongly autonomous systems are
finite-dimensional vector spaces over R. It can also
be shown that they admit a first-order representation
as follows:

@1z ¼ A1z,

@2z ¼ A2z,

..

.

@nz ¼ Anz,

w ¼ Cz,

ð1Þ

where {A1,A2, . . . ,An}�R
z�z commute pairwise, and

C2R
w�z. The set of all trajectories w 2 C1 R

n,Rw
ð Þ

that satisfy the above equation is called the behaviour
of the system, and we denote this set by B.
In mathematical terms

B :¼ fw 2 C
1

R
n,Rw
ð Þ j 9z 2 C

1
R

n,Rw
ð Þ

such that ðz,wÞ satisfy Equation (1)g:

We often identify a system with its behaviour and
call B a strongly autonomous system. Further, when
we write B 2 Lw we mean B is a behaviour with w

number of manifest variables. In the sequel, we are
going to consider systems that are already given in the
first-order form as in Equation (1). Moreover, we may
also assume that the ‘state’ variables z are observable
from the manifest variable w. In terms of the above
{A1,A2, . . . ,An} and C matrices this is equivalent to

rank

�1I�A1

�2I�A2

..

.

�nI�An

C

266666664

377777775
¼ z for all ð�1,�2, . . . ,�nÞ 2C

n: ð2Þ

The above state space description of strongly auton-
omous n-D systems reveals that all the trajectories
in such systems are exponential and they look like

wðxÞ ¼ C expðA1x1 þ A2x2 þ � � � þ AnxnÞzð0Þ, ð3Þ

where z(0)2R
z is an initial condition.

At the heart of the question of stability of n-D
autonomous systems lies the idea of restricting a
trajectory in the system to a given half-line in the
domain space R

n. Presently, we look into this idea of
stability along a given half-line, then in Sections 3 and
4 we shall consider stability with respect to a special
collection of such half-lines, namely closed convex
cones. Suppose v2R

n is non-zero, then by restriction
of a trajectory wðxÞ 2 C

1
R

n,Rw
ð Þ to the 1-D space

spanned by v we mean

wjv ¼ wðvtÞ 2 C
1

R,Rw
ð Þ,
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where t2R is a real parameter. We now define stability

with respect to the half-line spanned by a given

non-zero vector v.

Definition 2.1: Given 0 6¼ v2R
n, an autonomous

system B is said to be v-stable if for all w 2 B, wjv
approaches zero as t becomes large; in other words,

lim
t!1

wðvtÞ ¼ 0:

Now, Equation (3) can be used to deal with

restrictions of a strongly autonomous system. Putting

x¼ vt in Equation (3), we get

wjv ¼ C expððv1A1 þ v2A2 þ � � � þ vnAnÞtÞzð0Þ: ð4Þ

This is clearly a 1-D exponential trajectory determined

by the action of the matrix exponential exp((v1A1þ

v2A2þ � � � þ vnAn)t) on the initial condition z(0). So, in

order to infer about v-stability of a strongly autono-

mous system, it becomes crucial to know where the

eigenvalues of the linear combination of the

Ai matrices, that is (v1A1þ v2A2þ � � �þ vnAn), are

located. Our main result of this section, Theorem 2.4,

answers this question. But, before we state and prove

Theorem 2.4 we need to review some background

theory from commutative algebra and algebraic

geometry.
Recall the defining first-order equations of a

strongly autonomous system (Equation (1)), and con-

sider the equations involving only the state variable z:

Rzð@Þ :¼

@1I� A1

@2I� A2

..

.

@nI� An

266664
377775: ð5Þ

We define the following complex affine variety:

Vz :¼ f� 2 C
n
j rankðRzð�ÞÞ5 zg: ð6Þ

We also define I z�R[@] to be the ideal generated by all

the z� zminors of Rz(@). For the rest of this section we

are going to change our base field to complex numbers.

Although it is possible to carry on without this change,

the proofs become simpler and shorter with the base

field being C. In the subsequent sections we switch

back to the real field. The main result of this section,

Theorem 2.4, however, remains applicable in the sequel

irrespective of this change of the base field. Note that,

if I C

z denotes the extension of I z to C[@], that is,

I C

z :¼ C½@�I z,

then it follows from the definitions of I z and Vz that

Vz ¼ VðI C

z Þ :¼ f� 2 C
n
j f ð�Þ ¼ 0 for all f ð@Þ 2 I C

z g:

We now define another ideal of C[@], which will play an
important role in the proof of Theorem 2.4. Note that
the matrices {A1,A2, . . . ,An} commute pairwise.
Therefore, it makes sense to talk about polynomials
in these matrices. It is straightforward to check that the
following subset of C[@] is in fact an ideal:

a :¼ f f ð@1, @2, . . . , @nÞ 2 C½@� j f ðA1,A2, . . . ,AnÞ

¼ 0 2 C
z�z
g: ð7Þ

We show in the following result how the two ideals I C

z

and a, and the variety Vz are related. The result is a
special case of a result regarding characteristic ideals
and annihilator ideals (Pommaret and Quadrat 1999;
Shankar 1999). However, we state the result in a form
more suited for our purpose, and we prove it here
to make our exposition self-contained.

Theorem 2.2: Let I z, a and Vz be defined as above,
then the following hold:

(1) I C

z � a,

(2)
ffiffiffiffiffiffiffi
I C

z

q
¼

ffiffiffi
a
p

,
(3) Vz ¼ VðaÞ :¼ f� 2 C

n
j f ð�Þ ¼ 0 for all f ð@Þ 2 ag.

Our proof is via another claim: equality of the ideal
a to the annihilator ideal of a certain C[@]-module.
First, consider the free module C[@]z by taking z copies
of the polynomial ring C[@]; the elements in C[@]z

are written as rows of z-tuples of elements in C[@]. Let
Rz denote the submodule of C[@]z generated by
the rows of the polynomial matrix Rz(@) defined in
Equation (8), i.e.

Rz :¼ rowspan

@1I� A1

@2I� A2

..

.

@nI� An

266664
377775: ð8Þ

We define the following quotient module:

Mz :¼ C½@�z=Rz, ð9Þ

and its annihilator ideal

annðMzÞ : ¼ f f ð@Þ 2 C½@� j f ð@Þmð@Þ ¼ 0

for all mð@Þ 2 C½@�zg,
ð10Þ

where f ð@Þmð@Þ denotes the class of f(@)m(@) inMz.

Lemma 2.3: Let Mz and ann(Mz) be as defined
above, and let a be as defined in equation (7). Then

a ¼ annðMzÞ: ð11Þ

Proof: First, note that the C-vector space C
z
row, with

elements written as rows of z-tuples, injects into Mz.

International Journal of Control 1761
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Suppose now that the matrix Ai for i2 {1, 2, . . . , n}

is given by

Ai ¼

a11,i a12,i � � � a1z, i

a21,i a22,i � � � a2z, i

..

. ..
. . .

. ..
.

az1, i az2, i � � � azz, i

266664
377775,

and let ej2C
z be a column with all entries zero except

the jth position where it is 1. Now, since the equation

@iI�Ai¼ 0 is satisfied inMz, it follows that,

@ie
T
j ¼ aj1,ie

T
1 þ aj2,ie

T
2 þ � � � þ ajz, ie

T
z :

This clearly implies that for vT 2 C
z
row

@iv
T ¼ vTAi: ð12Þ

There is, however, another more striking consequence

of the above observation: given any m(@)2C[@]z, it

can be written as

mð@Þ ¼ f1ð@Þe
T
1 þ f2ð@Þe

T
2 þ � � � þ fzð@Þe

T
z ,

where {f1(@), f2(@), . . . , fz(@)}�C[@]. By Equation (12)

above, it follows that inMz, mð@Þ must be equal to

eT1 f1ðA1,A2, . . . ,AnÞ þ eT2 f2ðA1,A2, . . . ,AnÞ þ � � �

þ eTz fzðA1,A2, . . . ,AnÞ 2 C
z
row:

This identification gives an onto map fromMz to C
z
row.

Thus the injection map C
z
row ,!Mz is not only

one-to-one, but also onto and C-linear. This makes

Mz isomorphic to C
z
row as C-vector spaces,

where multiplication by @i in Mz is represented by

right multiplication by Ai in C
z
row.

With the above observation, it is now straightfor-

ward to prove our claim. We first show a � annðMzÞ.

Let f ð@Þ 2 a. This means f(A1,A2, . . . ,An) is the zero

matrix. Therefore, for j2 {1, 2, . . . , z},

f ð@ÞeTj ¼ eTj f ðA1,A2, . . . ,AnÞ

¼ 0 since f ðA1,A2, . . . ,AnÞ is the zero matrix:

Hence, f(@)2 ann(Mz).
Conversely, if f(@)2 ann(Mz), then for all

j2 {1, 2, . . . , z},

eTj f ðA1,A2, . . . ,AnÞ ¼ f ð@ÞeTj

¼ 0 because f ð@Þ 2 annðMzÞ

) eTj f ðA1,A2, . . . ,AnÞ ¼ 0:

Therefore, f(A1,A2, . . . ,An) is the zero matrix, and

hence f ð@Þ 2 a. Thus the claim a ¼ annðMzÞ

is proved. œ

Equipped with Lemma 2.3, we now prove Theorem

2.2. Recall the definitions of Rz, Mz and ann(Mz)

defined in Equations (8), (9) and (10), respectively.

Proof of Theorem 2.2: (1) Note that by Equation (11)

in Lemma 2.3, it is enough to prove that

I C

z � annðMzÞ. Suppose f ð@Þ 2 I C

z . Since I C

z is

generated by all the z� z determinants of Rz(@), it

easily follows that there exists a matrix E(@)2C[@]z�nz

such that

Eð@ÞRzð@Þ ¼ f ð@ÞI:

Going modulo Rz we get, for all j2 {1, 2, . . . , z},

f ð@ÞeTj ¼ 0,

which means f(@)2 ann(Mz).
(2) From statement 1 it follows by taking radicals

that
ffiffiffiffiffiffiffi
I C

z

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
annðMzÞ

p
. We want to show thatffiffiffiffiffiffiffi

I C

z

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
annðMzÞ

p
, and this will prove statement 2 by

Equation (11). It is enough to show that
ffiffiffiffiffiffiffi
I C

z

q
�

annðMzÞ (because

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I C

z

qr
¼

ffiffiffiffiffiffiffi
I C

z

q
). Suppose f(@)2

ann(Mz). This means, for all j2 {1, 2, . . . , z},

f ð@ÞeTj ¼ 0:

Lifting this to C[@]z, we get that there exists

E(@)2C[@]z�nz such that

Eð@ÞRzð@Þ ¼ f ð@ÞI:

By taking determinants on both sides and using

Cauchy–Binnet formula, we get

f ð@Þz 2 I C

z ) f ð@Þ 2

ffiffiffiffiffiffiffi
I C

z

q
:

(3) This is equivalent to statement 2 by

Hilbert’s Nullstellensatz (Cox, Little, and O’Shea

2007). œ

Remark 1: The upshot of Theorem 2.2 is statement 3.

It relates the affine variety Vz, which is defined to be

the collection of n-tuple of complex numbers where the

matrix Rz(�) loses rank, with the affine variety

of the ideal a of C[@], which is the collection of all

complex polynomials wherein if @is are replaced by the

real square matrices Ais then the zero matrix results.

This result to n-D strongly autonomous system is

what the famous Cayley–Hamilton theorem is to 1-D

autonomous systems.

We are now in a position to state and prove ourmain

result of this section: it tells us that the eigenvalues

of the linear combination of Ais, that is (v1A1þ

v2A2þ � � � þ vnAn), where v¼ col(v1, v2, . . . , vn)2R
n is

non-zero, are given by projecting the affine variety Vz

onto the complex 1-D subspace spanned by v.

1762 D. Pal and H. K. Pillai
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Theorem 2.4: Let {A1,A2, . . . ,An}�R
z�z be a collec-

tion of pairwise commuting matrices and let Vz and a

be as defined by Equations (6) and (7), respectively.

Suppose 0 6¼ v¼ col(v1, v2, . . . , vn)2R
n is given. Define

the following two sets of complex numbers:

�vðVzÞ :¼ f�2C j �¼ vT�, � 2Vzg,

eigðv1A1þv2A2þ�� �þ vnAnÞ :¼ f�2C j rankð�I�ðv1A1

þ v2A2þ�� �þ vnAnÞÞ5zg:

Then

�vðVzÞ ¼ eigðv1A1 þ v2A2 þ � � � þ vnAnÞ:

Proof: We first show the inclusion �v(Vz)�

eig(v1A1þ v2A2þ � � � þ vnAn). Suppose �2�v(Vz).

This means there exists �2Vz such that �¼ vT�.
It follows from the definition of Vz that

rank

�1I� A1

�2I� A2

..

.

�nI� An

266664
3777755 z:

This implies that there exists 0 6¼ �2C
z such that

�1I� A1

�2I� A2

..

.

�nI� An

266664
377775� ¼ 0

) ð�iI� AiÞ� ¼ 0 for all i 2 f1, 2, . . . , ng:

ð13Þ

It now easily follows from Equation (13) that

v1ð�1I�A1Þ�þ v2ð�2I�A2Þ�þ�� �þ vnð�nI�AnÞ�¼ 0

)½ðv1�1þ v2�2þ�� �þ vn�nÞI

�ðv1A1þ v2A2þ�� �þvnAnÞ��¼ 0

)½�I�ðv1A1þ v2A2þ�� �þ vnAnÞ��¼ 0, ð14Þ

which means �2 eig(v1A1þ v2A2þ � � � þ vnAn).
We prove the converse, that is �v(Vz)� eig(v1A1þ

v2A2þ � � � þ vnAn), by contradiction. Suppose,

�2 eig(v1A1þ v2A2þ � � � þ vnAn), but �=2�v(Vz). Since

�=2�v(Vz), the linear polynomial f(@)¼ �� (v1@1þ
v2@2þ � � � þ vn@n) is non-zero on Vz, that is

f ð�Þ 6¼ 0 for all � 2 Vz:

This implies that V( f(@))\Vz¼;. Since Vz ¼ VðaÞ,

as shown in Theorem 2.2, by the weak form of

Hilbert’s Nullstellensatz (Cox et al. 2007), we get that

there exist g(@)2C[@] and hð@Þ 2 a such that

1 ¼ gð@Þ f ð@Þ þ hð@Þ ) gð@Þ f ð@Þ � 1 2 a:

But, from the definition of the ideal a the
above equation says that

gðA1,A2, . . . ,AnÞð�I� ðv1A1 þ v2A2 þ � � � þ vnAnÞÞ

� I ¼ 0 2 C
z�z,

which means (� I� (v1A1þ v2A2þ � � � þ vnAn)) is inver-
tible – this is a contradiction to our assumption that
�2 eig(v1A1þ v2A2þ � � � þ vnAn). Thus �v(Vz)�
eig(v1A1þ v2A2þ � � � þ vnAn). œ

From Equation (4) it follows that for a strongly
autonomous system B to be v-stable, it is sufficient
that the eigenvalues of (v1A1þ v2A2þ � � � þ vnAn) have
negative real parts. Our next main result, Theorem 2.6,
shows that this is even necessary. In order to prove
this result we require the following lemma.

Lemma 2.5: Let B 2 L
w be a strongly autonomous

system, described by Equation (1). Suppose
(C, {A1,A2, . . . ,An}) is observable in the sense of
Equation (2), that is

rank

�1I� A1

�2I� A2

..

.

�nI� An

C

266666664

377777775
¼ z for all ð�1, �2, . . . , �nÞ 2 C

n:

Further, let v¼ col(v1, v2, . . . , vn)2R
n be non-zero. Then

for every �2 eig (v1A1þ v2A2þ � � � þ vnAn) there exists a
non-zero �2C

z, which is an eigenvector of
(v1A1þ v2A2þ � � � þ vnAn) corresponding to eigenvalue
�, such that C� 6¼0.

Proof: It follows from Theorem 2.4 that every
eigenvalue of (v1A1þ v2A2þ � � � þ vnAn) is obtained
by projecting the points in Vz onto the complex
1-D subspace spanned by v. Therefore, if �2 eig
(v1A1þ v2A2þ � � � þ vnAn), then there exists � :¼
col(�1, �2, . . . , �n)2Vz such that �¼ v1�1þ
v2�2þ � � � þ vn�n. Now, observe that since �2Vz,

rank

�1I� A1

�2I� A2

..

.

�nI� An

266664
3777755 z:

This means there exists a non-zero �2C
z such that

�1I� A1

�2I� A2

..

.

�nI� An

266664
377775� ¼ 0

) ð�iI� AiÞ� ¼ 0 for all i 2 f1, 2, . . . , ng:
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As we have already seen in Equation (14), if we now

take a linear combination of the equations

(�iI�Ai)�¼ 0, we get

½�I� ðv1A1 þ v2A2 þ � � � þ vnAnÞ�� ¼ 0:

Therefore, � is an eigenvector of (v1A1þ

v2A2þ � � � þ vnAn) corresponding to eigenvalue �.
However, because of observability assumption,

C� 6¼ 0. This proves the existence of the desired �. œ

We are now in a position to state and prove

Theorem 2.6. The theorem gives a geometric criterion

equivalent to stability with respect to a given half-line.

In what follows, by �R(Vz) we mean the real part

of the complex affine variety Vz.

Theorem 2.6: Let B 2 Lw be a strongly autonomous

system described by an observable state equation (1).

Further, let v¼ col(v1, v2, . . . , vn)2R
n be non-zero.

Define the following open half-space:

Hv :¼ fy 2 R
n
j vTy5 0g:

Then B is v-stable if and only if �R(Vz)�Hv.

Proof: (If ): First, note that we have the following

equivalence as a consequence of Theorem 2.4:

�RðVzÞ �Hv , ðv1A1þ v2A2þ�� �þ vnAnÞ is Hurwitz:

ð15Þ

Indeed, suppose �¼ �reþ i�imag2Vz, where

�re,�imag2R
n are real and imaginary parts of �,

respectively. Then �R(Vz)�Hv means vT�re5 0. This

in turn means vT�2C has negative real part. It now

easily follows by Theorem 2.4 that if �R(Vz)�Hv then

every eigenvalue of (v1A1þ v2A2þ � � � þ vnAn) has

negative real part, and conversely. Now from

Equation (4), if (v1A1þ v2A2þ � � �þ vnAn) is Hurwitz,

then limt!1 w(vt)¼ 0 for all w 2 B. Therefore,

by Equation (15), �R(Vz)�Hv implies B is v-stable.

(Only if ): We prove this part by contradiction.

Suppose �R(Vz)¯Hv, we will show that this implies

the existence of a w 2 B such that limt!1w(vt) 6¼ 0.

Since �R(Vz)¯Hv, we must have �2Vz such that

vT� =2C
�. By Theorem 2.4 this vT� is an eigenvalue of

(v1A1þ v2A2þ � � � þ vnAn), and by Lemma 2.5 there

exists 0 6¼ �2C
z which is an eigenvector

of (v1A1þ v2A2þ � � � þ vnAn) corresponding to

this eigenvalue, such that C� 6¼ 0. Let �¼ �reþ i�imag,

where �re,�imag2R
z are the real and imaginary parts

of �, respectively. Then substituting z(0)¼ �re
in Equation (3), we get w¼CexpðA1x1þA2x2þ� � �þ

AnxnÞ�re 2B. Because �reþ i�imag is an eigenvector of

(v1A1þ v2A2þ �� � þ vnAn), the restriction of this w

is such that

wðvtÞ ¼ C expððv1A1 þ v2A2 þ � � � þ vnAnÞtÞ�re

¼ Ce�retððcosð�imagtÞÞ�re � ðsinð�imagtÞÞ�imagÞ,

where vT�¼ �reþ i�imag. Now since C� 6¼ 0, the right-

hand side of the above equation is non-

zero. Moreover, since vT�=2C�, which means �re5 0,

we have limt!1w(vt) 6¼ 0. Thus, B is not v-stable. œ

3. Conic stability of strongly autonomous systems

One prime difficulty in defining the stability of an n-D

autonomous system, with n5 2, stems from the fact

that there is no well-defined direction of evolution. As

discussed in the last section, one can look for stability

in a given direction. An obvious next step would be to

look for stability with respect to a collection of

half-lines. In this section, we look for a special class

of such collections, namely closed convex cones.

Definition 3.1: A subset S of R
n is said to be a cone if

for all v2S, we have � v2S for all �	 0.

All the cones that we shall consider here are closed

in the Euclidean topology of R
n, and convex, meaning

for all v1, v22S,

�v1 þ ð1� �Þv2 2 S for all � 2 ½0, 1�:

For our purpose in this article, we need the cone S to

satisfy one more condition: the lineality space S\ (�S )

consists of only the origin. Such a cone, which

is closed, convex and with only the origin as its

lineality space, is said to be a proper cone. We

shall consider only proper cones. With this, now we

define the conic stability of an n-D autonomous system

as follows.

Definition 3.2: Given a proper cone S�R
n, an

autonomous system B 2 Lw is said to be stable with

respect to S (or simply S-stable) if for all non-zero v2S

and w 2 B, we have

lim
t!1

wðvtÞ ¼ 0:

In other words, B is S-stable if for all 0 6¼ v2S, B is

v-stable.

Theorem 3.3 is a straightforward extension of

Theorem 2.6 to the case of conic stability. The crucial

part here is the fact that if S2R
n is a proper cone,

then the following set is non-empty:

ðSÞ5 :¼ fy 2 R
n
j vTy40 for all v 2 Sg 6¼ ;:
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The set (S )5 is called the polar cone of S. We now state
and prove the main result of this section. We denote by
int (S )5 the interior of the set (S )5 in Euclidean
topology.

Theorem 3.3: Let B 2 L
w be a strongly autonomous

system given by an observable state equation (1) with Vz

the corresponding complex affine variety as defined by
equation (6). Further, let S�R be a proper cone and let
�R(Vz) denote the real part of Vz. Then B is S-stable
if and only if

�RðVzÞ � int ðSÞ5 :

Proof: Following exactly the same chain of
arguments as in the proof of Theorem 2.6, it can be
shown that

�RðVzÞ � int ðSÞ5, ðv1A1þ v2A2þ�� �þ vnAnÞ

is Hurwitz for all non-zero v¼ colðv1,v2, . . . ,vnÞ 2S:

ð16Þ

Once again, by making use of Lemma 2.5, it follows
that B is v-stable for all non-zero v2S, if and only
if (v1A1þ v2A2þ � � � þ vnAn) is Hurwitz for all non-
zero v2S, which in turn is equivalent to �R(Vz)� int
(S )5 by Equation (16). œ

4. Lyapunov theory of stability of strongly

autonomous systems

In Lyapunov theory of stability of 1-D linear systems,
we look for a positive definite storage function, then its
rate of change being negative along all trajectories is
equivalent to the system being asymptotically stable.
We mimic this idea in the n-D case. We look for a
positive definite storage function, and then (in)stability
with respect to a half-line can be inferred by looking
into the sign of the directional derivative of this storage
function along that half-line. Our main result shows
that stability with respect to a proper cone is equivalent
to the existence of a common storage function whose
directional derivative along every half-line in the cone
is negative. Sufficiency of this storage function
condition is not difficult (as we shall see in the
proof), what is more striking is that it is necessary
too. We now state this result below. We postpone the
proof till we state and prove an auxiliary lemma.

Theorem 4.1: Let B 2 Lw be a strongly autonomous
system given by an observable state equation (1). Further,
let S�R

n be a proper cone. Then B is S-stable if and
only if there exists P¼PT

2R
z�z, and P4 0, such that

for all non-zero col(v1, v2, . . . , vn)2S we haveXn
i¼1

viA
T
i

 !
Pþ P

Xn
i¼1

viAi

 !
5 0: ð17Þ

As mentioned earlier, the if part of the above

theorem is easier than the only if part. One of the

difficulties for the only if part arises out of the

requirement to obtain a common solution to a possibly

(uncountably) infinite number of simultaneous

Lyapunov inequalities. However, it so happens that

the finiteness of the variety Vz renders the situation

down to a question of solving only a finite number of

Lyapunov inequalities. A crucial observation that

plays a key role in this reduction is the fact that for a

strongly autonomous system the proper cone S can be

assumed to be polyhedral without loss of generality.

A proper cone is said to be polyhedral if it can be

written as a finite intersection of half-spaces of the

form H¼ {y2R
n
j�Ty5 0} for some given �2R

n.

Equivalently, a polyhedral cone is one which is

generated as a non-negative hull of finitely many

vectors in R
n.

Lemma 4.2: Suppose B 2 Lw, a strongly autonomous

behaviour given by an observable state equation (1), is

S-stable for some proper cone S�R
n. Then there exists

a polyhedral cone S1�S such that B is stable with

respect to S1.

Proof: In order to show the existence of the desired

S1, it is enough to show that there exists a proper

polyhedral cone, say bS, contained in the polar cone

(S )5, such that the real part of Vz is contained in the

interior of bS. In that case the polar cone ðbSÞ5 is

going to be nonempty because bS is proper. Moreover,

ðbSÞ5 will be polyhedral because bS is. We can take this

polar cone ðbSÞ5 as a candidate for S1. Here, since

ðS1Þ5 ¼ ðð
bSÞ5 Þ5 ¼ bS,

we have �R(Vz)� int (S1)5 by construction.

Thus stability with respect to S1 will follow from

Theorem 3.3.
We now show existence of the above-mentioned bS.

By assumption B is S-stable. Therefore, by Theorem

3.3, the real part of Vz is contained in the interior

of (S )5:

�RðVzÞ � int ðSÞ5 :

This implies that for each point in �R(Vz) there exists

a closed hypercube, containing the point in its interior,

small enough to be fully contained in (S )5. We take

the convex hull of the vertices of these hypercubes.

Since Vz (and therefore, �R(Vz)) contains only finitely

many points, this convex hull, say P, is a convex

polytope. Note that it follows from the construction

of P that

�RðVzÞ � intðPÞ:
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We consider the cone obtained by taking the
non-negative hull of the vertices of this convex
polytope, and call it bS. This cone is clearly closed
and convex, and polyhedral by construction.
Moreover, since P is contained in (S )5, the cone bS
too is contained in (S )5. This is because all the vertices
of P are contained in (S )5, which is a convex cone.
Therefore, the non-negative hull of these points is also
contained in (S )5. But this means bS must also havebS \ ð�bSÞ ¼ f0g. Thus bS is proper. Further, note that
the way bS is constructed, it contains the convex
polytope P. But this polytope in turn contains
�R(Vz) in its interior. Thus

�RðVzÞ � intðPÞ � intðbSÞ:
Now, by the discussion at the beginning of this proof
it follows that S1 :¼ ðbSÞ5 meets the requirement of
the lemma. œ

Wehavementioned that the above lemma enables us
to look for a common solution to a finitely many
Lyapunov inequalities. In the following proof we utilise
Lemma 4.2 to first bring down the situation to a finitely
many Lyapunov inequalities and then we give a con-
structive solution to this simultaneous inequalities.

Proof of Theorem 4.1: (If ): Suppose there is a P4 0
such that

Pn
i¼1 viA

T
i

� �
Pþ P

Pn
i¼1 viAi

� �
5 0 for

all 0 6¼ v :¼ col(v1, v2, . . . , vn)2S. We want to show
that B is S-stable, that is, for all 0 6¼ v2S,
limt!1w(vt)¼ 0 for all w 2 B. Recall that B

admits an observable state representation given by
Equation (1).

We first define a quadratic form on the state
variable z by V(z) :¼ zTPz. Note that when evaluated
along a trajectory z 2 C

1
R

n,Rw
ð Þ, the quadratic form

V(z) becomes a smooth function from R
n to R. In other

words, a smooth 0-form. Then it makes sense to talk
about the directional derivative of this 0-form along a
non-zero v2R

n. Moreover, derivative of V(z(vt)) (i.e.
the restriction of V(z(x)) to the 1-D subspace spanned
by v) with respect to t is equal to the directional
derivative of V(z) along v:

d

dt
VðzðvtÞÞ¼ v1 v2 � � � vn

� � ð@1VðzÞÞðvtÞð@2VðzÞÞðvtÞ

..

.

ð@nVðzÞÞðvtÞ

266664
377775

¼ v1 v2 � � � vn
� �

ð@1zÞ
TPzþ zTP@1z

� �
ðvtÞ

ð@2zÞ
TPzþ zTP@2z

� �
ðvtÞ

..

.

ð@nzÞ
TPzþ zTP@nz

� �
ðvtÞ

2666664

3777775

¼ v1 v2 � � � vn
� � zTAT

1Pzþ zTPA1z
� �

ðvtÞ

zTAT
2Pzþ zTPA2z

� �
ðvtÞ

..

.

zTAT
n Pzþ zTPAnz

� �
ðvtÞ

2666664

3777775
¼ zðvtÞT

Xn
i¼1

viA
T
i

 !
Pþ P

Xn
i¼1

viAi

 !" #
zðvtÞ:

Now, for all non-zero v2S, by assumption we havePn
i¼1 viA

T
i

� �
Pþ P

Pn
i¼1 viAi

� �� �
5 0. So, for all t2R,

we get

d

dt
VðzðvtÞÞ ¼ zðvtÞT

Xn
i¼1

viA
T
i

 !
Pþ P

Xn
i¼1

viAi

 !" #
zðvtÞ

5 0:

A straightforward application of the fundamental

theorem of integral calculus to the above inequality

shows that V(z(vt)) is a monotonically decreasing

positive function of t. Therefore, V(z(vt)) goes to zero

as t tends to infinity. Since V(z) is positive definite, the

last assertion implies z(vt) itself tends to zero as t goes

to infinity. Thus limt!1w(vt)¼ 0, in other words, B is

v-stable for all non-zero v2S. Therefore B is S-stable.
(Only if ): We assume that B is S-stable and show

that there exists P¼PT
2R

z�z, P4 0, satisfying

inequality (17) for all 0 6¼ v¼ col(v1, v2, . . . , vn)2S.

First, note that by Lemma 4.2, there exists a polyhedral

cone S1�S such that B is S1-stable. We shall

show that there exits a P that satisfies inequality (17)

for all 0 6¼ v2S1. Since S�S1, this P will satisfy

our requirement.
Now, the advantage of working with S1, rather

than S itself, is that S1 is polyhedral, and therefore,

there exist vectors {v1, v2, . . . , vr}�R
n whose non-

negative hull is S1. For each j2 {1, 2, . . . , r}, we define

eAj :¼
Xn
i¼1

vjiAi 2 R
z�z,

where vj ¼ colðvj1, v
j
2, . . . , vjnÞ. Thus we get a collection

of r pairwise commutative square z� z real matrices

feA1, eA2, . . . , , eArg. If we look for a simultaneous

solution P for the inequalities

eAT
j Pþ PeAj 5 0 for all j 2 f1, 2, . . . , , rg, ð18Þ

then it follows that a solution P, if it exists, works

for all non-zero v2S1. To see this let 0 6¼

v¼ col(v1, v2, . . . , vn)2S1. Then, because S1 is the

non-negative hull of the vectors {v1, v2, . . . , vr}, there

exist non-negative real numbers {�1,�2, . . . ,�r}, not all
zeros, such that v¼ �1v

1
þ�2v

2
þ � � � þ�rv

r. Let P be a
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solution to the simultaneous Lyapunov inequalities
(18). It then follows thatXr

i¼1

viA
T
i

 !
Pþ P

Xr
i¼1

viAi

 !
¼ �1 eAT

1Pþ PeA1

� �
þ �2 eAT

2Pþ PeA2

� �
þ � � � þ �r eAT

r Pþ PeAr

� �
:

Since P is a common solution to the simultaneous
inequalities (18), the right-hand side of the above
equation is a non-negative combination of negative
definite matrices with at least one of the �is non-zero.
This forces the right-hand side to be negative definite
because the set of negative definite matrices is a convex
cone.

Thus, for the purpose of this proof it suffices to show
that we have a common solution to simultaneous
inequalities (18). Since B is S1-stable, in particular, it
is stable with respect to v j for all j2 {1, 2, . . . , r}.
We have already seen in the proof of Theorem 2.6
that this is true if and only if the matrices
feA1, eA2, . . . , eAr, g are Hurwitz. We now define the
following real symmetric z� z matrix P that satisfies
the simultaneous inequalities (18):

Pj :¼

Z 1
0

expðeAT
j �j Þ expð

eAj�j Þd�j,

P :¼
Yr
j¼1

Pj,

where {�1, �2, . . . , �r} are auxiliary variables of integra-
tion. Note that since each eAj is Hurwitz, for all
j2 {1, 2, . . . , r}, Pj is real symmetric positive-definite
matrix. Moreover, since eAjs commute with each other,
so do the Pjs. Therefore, the product P is also real
symmetric and positive-definite. We now show that
P satisfies the simultaneous inequalities (18).
The following is a consequence of the fact that Pjs
commute with each other and with eAjs.

eAT
j PþPeAj ¼ ðeAT

j Pj þPj
eAj Þ

Yr
i 6¼j

Pi

¼

Z 1
0

d

d�j
expðeAT

j �j Þ expð
eAj�j Þ

� �
d�j

	 
Yr
i 6¼j

Pi

¼

�
expðeAT

j �j Þ expð
eAj�j Þj�j¼1

� expðeAT
j �j Þ expð

eAj�j Þj�j¼0

�Yr
i 6¼j

Pi

¼ �
Yr
i6¼j

Pi50:

œ

5. Concluding remarks

In this article we looked into stability properties of
a special kind of autonomous n-D systems, called
strongly autonomous systems. We started with the fact
that our systems are given by an observable first-order
representation with n-tuple of real constant square
matrices which commute pairwise. It is already known
that strongly autonomous systems admit such a
representation. A straightforward consequence of this
representation is that now restrictions of trajectories to
1-D subspaces are given by matrix exponentials of
certain linear combinations of these n-tuple of system
matrices. In order to relate stability with respect to a
half-line with the eigenvalues of these matrices, we
showed in our main result, Theorem 2.4, how the
eigenvalues of the linear combination are related with
the eigenvalues of the individual matrices. As a natural
consequence of this, we showed in Theorem 2.6, that,
stability with respect to a half-line is equivalent to the
real part of the characteristic variety being contained in
the half-space polar to the half-line of stability. We
then extended this result to the case for stability with
respect to a closed convex pointed cone (which we have
called a proper cone). Our next result provides a
Lyapunov theory for strongly autonomous systems.
We showed that stability of such a system with respect
to a proper cone is equivalent to existence of a real
symmetric positive definite matrix which satisfies
simultaneous Lyapunov inequalities obtained from
non-zero vectors in the given proper cone.
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