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a b s t r a c t

The relation between the small gain theorem and ‘infinite phase margin’ is classical; in this paper we
formulate a novel supply rate, called the ‘not-out-of-phase’ supply rate, to first prove that ‘infinite gain
margin’ (i.e. non-intersection of the Nyquist plot of a transfer function and the negative half of the real
axis) is equivalent to dissipativity with respect to this supply rate. Capturing non-intersection of half-line
makes the supply rate system-dependent: a novel feature unobserved in the supply rates considered in
the literature so far.

We then show that the traditional finite and positive gain/phase margin conditions for stability are
equivalent to dissipativity with respect to a frequency weighted convex combination of the not-out-
of-phase supply rate and the small-gain supply rate; both frequency weightings and combining two
supply-rates/performance-indices have been investigated in the literature in different contexts, but only
as sufficient conditions.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction and notation

In [1] the classical Luré problem of the stability of the intercon-
nection of an LTI system with a nonlinearity was addressed using
energy-like quantities called integral quadratic constraints (IQCs).
Classic results about stability in nonlinear systems – like circle cri-
teria, Popov criteria, and passivity theorem – were shown to be
special cases of dissipation property of the interconnected sub-
systems with respect to various IQCs. Later in [2] more general
energy-like functionals involving higher order derivatives of the
system-variables were considered using the notion of quadratic
differential forms (QDFs) of [3] to give a further unification of the
results addressing the Luré stability problem. One interesting fact
about the dissipativity approach is that the classic results (cir-
cle/Popov criteria, passivity), when applied to LTI systems, turn out
to be only sufficient conditions for stability—special cases of the
classical Nyquist stability criteria. One of these criteria is the classi-
cal positive gain/phase margin conditions. In this paper we ask the
question whether closed loop stability due to finite and positive
gain and phase margins is equivalent to a combination of ‘small-
gain-like’ and ‘passivity-like’ dissipativities? This paper makes this
question precise and resolves it (Theorem 3.5). We first propose
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a novel ‘supply rate’ that captures non-intersection of the nega-
tive real axis as a dissipativity property. We call this supply rate
the ‘Not-Out-of-Phase’ (NOP) supply rate because a system with
transfer function G(s) which is dissipative with respect to the NOP
supply rate is such that the input and output of this system are
never 180° out of phase for sinusoidal input of any frequency. For
a reasonably large class of systems, the gain/phasemargin criterion
is necessary for closed loop stability (see Proposition 3.1). For this
class of systems, our main result Theorem 3.5 provides a necessary
and sufficient condition for stability in terms of dissipativity with
respect to a polynomially convex combination of small-gain and
NOP supply rates.

The significance of relating Nyquist plot properties to dissipa-
tivity is manifold. For example, a systematic method to prove the
stability of the interconnection of an LTI system and a nonlinearity
is by using dissipativity properties of the two systems. As demon-
strated in [1,2] and elsewhere, the formulation of the Nyquist plot
property of an LTI system as a dissipativity property makes this
property extremely useful1 when dealing with the stability of in-
terconnection with a class of nonlinearities also constructed from

1 This point cannot be overemphasized: for example, restating the containment
inside the unit circle of the Nyquist plot of a stable LTI SISO system G(s) as
dissipativity (w.r.t. the small-gain supply rate) results in the stability conclusion
of the closed loop w.r.t., not just the unity feedback, but also any contractive
nonlinearity. Same holds true for the circle/Popov criteria and the passivity results.
Mere restating as dissipativity makes such an LTI system property applicable to
nonlinear stability analysis too.
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the dissipativity supply rate. Another benefit of dissipativity prop-
erty is that one canutilize the computational advantages of the the-
ory of Linear Matrix Inequalities (LMIs) for checking dissipativity
(see [4]). Furthermore, our main result can, in fact, be used to de-
fine phase-crossover frequencies for MIMO systems by finding the
frequency ωp at which ΣNOP

ϵ (ζ , η)-dissipativity is lost: we do not
pursue this in this paper.

The idea of combining two supply rates has been investigated
before: see [1, Remark 4], and, for recent examples, [5–8]. In [5],
the small gain and passivity-type supply rates have been combined
with frequency dependent weights to obtain a sufficient condition
for loop stability. The central result in our paper is the equivalence2
of

• the Nyquist plot not intersecting the real axis to the left of the
critical point ‘−1’, and

• dissipativity with respect to the frequency weighted combina-
tion of two key supply rates.

The paper is organized as follows. The next section contains
some preliminaries about Quadratic Differential Forms (QDFs) and
dissipativity. Section 3 contains the main results of this paper:
Theorems 3.2 and 3.5. These results are proved in Section 4, where
additional auxiliary results are formulated and proved for this
purpose. Example 4.2 contains an example to illustrate the main
results in this paper. We end the paper with concluding remarks in
Section 5. The rest of this section is about notation that we follow
in this paper.

Notation: The set R stands for the real numbers, while C stands for
the complex numbers. The point ‘−1’ on the complex plane is im-
portant for stability (w.r.t. negative unity feedback configuration):
we call it the critical point.R[s] andR2×2

[ζ , η] denote respectively
the sets of polynomials in s and 2× 2 polynomial matrices in vari-
ables ζ and η, with real coefficients. The space of infinitely often
differentiable functions is denoted by C∞, and its subspace con-
taining compactly supported functions is denoted byD. For a com-
plex function f , we use f ∗ to denote its complex conjugate.

2. Preliminaries

In this paper,we dealwith only SISO systems, and hence various
notions and results from [3] about dissipativity and Quadratic
Differential Forms (QDFs) are specialized to the SISO case below.
A two-variable polynomial matrix Φ(ζ , η) ∈ R2×2

[ζ , η] with
Φ(ζ , η) :=


i,k Φikζ

iηk, and Φik = ΦT
ik ∈ R2×2, defines a supply

rate3 QΦ : (C∞)2 → C∞ as follows:

QΦ(u, y) :=


i,k

diu
dit
diy
dit


T

Φik

dku
dkt
dky
dkt

 .

We require the one-variable polynomial matrix Φ(−s, s) obtained
from Φ(ζ , η): define ∂Φ(s) := Φ(−s, s).

Consider a system G with input u and output y: we write y =

Gu. Suppose n(s) and d(s) are the numerator and denominator
polynomials of the transfer function G, respectively. System G is
called dissipative on R with respect to a supply rate defined by

2 See the results in [9,6] for other equivalent relations between polynomially
convex combination and Nyquist plot conditions.
3 The coefficients Φik are assumed symmetric matrices: this is without loss of

generality for quadratic supply rates.
Fig. 1. Standard unity feedback configuration.

the symmetric two-variable polynomialmatrixΦ(ζ , η) if for every
u, y ∈ D such that y = Gu we have4

R
QΦ(u, y)dt > 0. (1)

For brevity, we say the system G is Φ-dissipative. For the purpose
of this paper5 the system G is said to be strictly dissipative if the
integral in inequality (1) holds with equality only when u = 0.

We will make use of the following result from [3] that relates
the time-domain dissipativity of a system to the non-negativity of
a certain polynomial on the imaginary axis.

Proposition 2.1 ([3]). Consider the system G =
n(s)
d(s) and Φ ∈

R2×2
[ζ , η]. Then, system G is dissipative with respect to Φ(ζ , η) on

R if and only if
d∗(iω)
n∗(iω)

T

∂Φ(iω)


d(iω)
n(iω)


> 0 for all ω ∈ R. (2)

Furthermore, the system is strictly dissipative if and only if the above
inequality is strict for almost all ω ∈ R.

3. Main results

Consider the negative unity feedback configuration shown in
Fig. 1. The Nyquist plot of GH does not encircle the point ‘−1’ on
the complex plane if the transfer function GH satisfies any one of
the following two conditions:

1. the magnitude |GH(iω)| < 1 for all real ω: ‘infinite phase mar-
gin’ condition;

2. the angle6 |̸ GH(iω)| < 180° for all realω: ‘infinite gainmargin’
condition.

We state below as a proposition, a slight variant of the classi-
cal Nyquist stability criterion under the assumption of open loop
asymptotic stability: a transfer function G(s) is called asymptoti-
cally stable if all poles of G are in the open left half complex plane.

Proposition 3.1. Let G and H be two asymptotically stable proper
real rational transfer functions. Further, suppose that the loop gain at
the zero frequency is positive, and the Nyquist plot of GH has at most
one intersection with the negative real axis. Then the closed loop is
asymptotically stable if and only if

̸ GH(iω) = 180° ⇒ |GH(iω)| < 1. (3)

4 Note that y = Gu, and u, y ∈ D do not rule out unstable systems: see [3, The-
orem 6.4] for additional conditions under which dissipativity does imply stability.
5 This definition of strict dissipativity meets the purpose of this paper. There are

other more stringent definitions of strict dissipativity; see [3].
6 We assume throughout this paper that the transfer functions G and H have no

poles/zeros on the imaginary axis.
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Note that Eq. (3) is satisfied when the small-gain condition
holds: i.e. GH is dissipative with respect to Qsg(u, y) := u2

−

y2. Similarly, dissipativities of systems G and H with respect to
Qpa(u, y) := uy also cause Eq. (3) to hold; this is the passivity
theorem. However, both these dissipativity conditions are only
sufficient for Eq. (3) to hold. Note that while small-gain theorem
is applied to the loop gain, the passivity theorem is applied to
G and H separately. Passivity applied to the loop gain means
|̸ GH| < 180°. In Theorem 3.5 below we show that dissipativity
with respect to a combination of these two cases is equivalent
to Eq. (3). We first formulate a supply rate called ΣNOP

ϵ (ζ , η)
(the ‘Not-Out-of-Phase’ supply rate) and show that dissipativity
w.r.t. ΣNOP

ϵ (ζ , η) is equivalent to non-intersection of the negative-
real axis by the Nyquist plot of GH; this is our first main result,
Theorem 3.2. Then, as mentioned above, in Theorem 3.5 we
show that Eq. (3) is equivalent to the existence of polynomial
weighting functions such that GH is dissipative w.r.t. the weighted
combination of ΣNOP

ϵ (ζ , η) and Σsg =


1 0
0 −1


. By Proposition 3.1

it follows that dissipativity w.r.t. this combination of two supply
rates is equivalent to closed loop stability for the class of systems
considered in Proposition 3.1.

Theorem 3.2. Consider the feedback interconnection shown in Fig. 1.
Suppose7 H(s) = 1 and G(s) =

n(s)
d(s) proper, with no poles/zeros on

the imaginary axis. Define ΣNOP
ϵ (ζ , η) ∈ R2×2

[ζ , η] as

ΣNOP
ϵ (ζ , η) :=


n(ζ )n(η) −d(ζ )n(η) + ϵ

−n(ζ )d(η) + ϵ d(ζ )d(η)


. (4)

Then, the following are equivalent.

1. The Nyquist plot of G does not intersect the negative real axis.
2. |̸ G(iω)| < 180° for all ω ∈ R.
3. There exists an ϵ > 0 such that system G is strictly ΣNOP

ϵ (ζ , η)
dissipative.

In particular, if G has no poles in the closed RHP and G satisfies any
one of the conditions 1–3, then the closed loop is also stable.

Remark 3.3. The role that ϵ plays in ΣNOP
ϵ (ζ , η) dissipativity

definition can be understood as follows. Loosely speaking, the
intersection of R− by the Nyquist plot occurs at only finitely many
points. Since dissipativity is an integral inequality condition, it fails
to capture this. Instead of ruling out just R− intersection, we now
also rule out the intersection of a thin band about R− of thickness
that is controlled by ϵ, with the thickness decreasing rapidly as
we go closer to the origin. We show later that ruling out this
intersection is achieved by requiring existence of ϵ > 0 such that
Πϵ(ω) > 0 for all ω ∈ R with Πϵ(ω) defined as

2ϵReal (n∗(iω)d(iω)) + 4(Imag (n∗(iω)d(iω)))2. (5)

For the case when the Nyquist plot of G intersects R−, it is easy to
see that there does not exist a positive ϵ that ensures Πϵ(ω) > 0
for all ω ∈ R. See Example 4.2 for a system G where ΣNOP

ϵ (ζ , η)-
dissipativity is true for very small ϵ only.

Remark 3.4. Anoteworthy point about the supply rateΣNOP
ϵ (ζ , η)

corresponding to non-intersection of the negative real axis by the
Nyquist plot of a transfer function G is that ΣNOP

ϵ (ζ , η) depends on

G, unlike other supply rates such as Σsg and Σpa :=
1
2


0 1
1 0


that

7 Since it is only the loop gain GH that affects closed loop stability conditions, we
assume without loss of generality that H = 1. Further, G(s) is assumed to have no
poles/zeros on the imaginary axis just to ensure that ̸ G(iω) is defined for all ω.
induces Qpa(u, y) = uy. The latter two supply rates respectively
correspond to non-intersection of the unit circle and the imaginary
axis. Note that in the complexplane, lines and circles are essentially
the same; indeed, in the extended complex plane, linear fractional
transformations take lines and circles to lines and circles. Half-
lines, on the other hand, are intrinsically different. Ruling out
intersection of a half-line is inevitable since gain margin applies to
only positive gain k: perhaps this forces the supply rate to become
system dependent. In spite of this ‘disadvantage’, expressing a
system property in terms of dissipativity has its advantages, some
of which have been summarized in Section 1.

We now state the secondmain result of this paper: dissipativity
of G w.r.t. a polynomial combination of the small gain and the
ΣNOP

ϵ (ζ , η) supply rates is equivalent to G having gain and phase
margins finite and positive.

Theorem 3.5. Consider a SISO LTI system given by the real rational
proper transfer function G(s) =

n(s)
d(s) , with no poles/zeros on the imag-

inary axis. DefineΣNOP
ϵ (ζ , η) ∈ R2×2

[ζ , η] as in Eq. (4) above and let

Σsg =


1 0
0 −1


. Then the following two statements are equivalent:

1. there exist p, q ∈ R[s] and ϵ > 0 such that system G is strictly
dissipative with respect to

Φϵ(ζ , η) := p(ζ )Σsgp(η) + q(ζ )ΣNOP
ϵ q(η),

2. for eachω ∈ R, either |G(iω)| < 1, or |̸ (G(iω))| < 180°, or both.

In particular, if G has no poles in the closed RHP, and G satisfies con-
dition 1, then the closed loop is also stable.

Notice that the second condition in the above theorem rules out
encirclements of the critical point −1 by the Nyquist plot of G.

Remark 3.6. The polynomials p and q of Theorem 3.5 play the role
of multipliers in the context of Popov/circle criteria. This role is
more familiar and easily seen in the context polynomial convex
combination of Σsg and Σpa: hence we describe only for this
situation. Suppose a system G is dissipative w.r.t. p(ζ )Σsgp(η) +

q(ζ )Σpaq(η). Define F1(s) :=
p(s)

q(s)+p(s) and F2(s) :=
q(s)−p(s)
q(s)+p(s) . Then it

can be shown that the system with transfer function F1(s)+F2(s)G(s)
1+F1(s)G(s)

is Σpa-dissipative.

4. Proof of main results

In this section we prove the two main results. Recall the defini-
tion of the supply rate ΣNOP

ϵ (ζ , η) given by Eq. (4), and that Theo-
rem3.2 states equivalence ofΣNOP

ϵ (ζ , η) dissipativity of a systemG
with non-intersection of the negative real axis by the Nyquist plot
of G. For the proof of Theorem 3.2 the relative rate of approaching
zero of two rational functions inω asω approaches∞ plays an im-
portant role. The notion of valuation at the point∞makes proving
this easier. Valuation of a rational function f at the point ω = ∞

(denoted by v∞) is defined as the multiplicity of zero at ω = ∞

and v∞(f ) := ∞ for f ≡ 0. See [10, page 454] for an elaborate
treatment on valuations at infinity. Using the notion of valuations,
the proposition below follows from a routine count of degrees of
numerator and denominator of the rational functions involved.

Proposition 4.1. Consider functions fi and fr that are real rational in
ω and assume

• fi(ω) → 0 as ω → ∞.
• fi(ω) > 0 for all ω sufficiently large.

Consider v∞(fi) and v∞(fr), the valuations at ω = ∞ of fi and fr
respectively. Then the following are equivalent.
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• There exist ϵ > 0 and ω0 > 0 such that fi(ω) + ϵfr(ω) > 0 for
all ω > ω0.

• v∞(fr) > v∞(fi).

We now prove Theorem 3.2.

Proof of Theorem 3.2. (1⇔ 2): The equivalence of statements (1)
and (2) in Theorem3.2 is clear: non-intersection of theNyquist plot
of G(iω) with the negative real axis is equivalent to |̸ G(iω)| <
180°.

(3 ⇒ 2): Assuming ΣNOP
ϵ (ζ , η)-dissipativity of G, we want to

show that |G(iω)| < 180° for all ω ∈ R. Recall the definition
of Πϵ(ω) in Eq. (5) in Remark 3.3. With some simple algebraic
manipulations it follows that G is ΣNOP

ϵ (ζ , η)-dissipative if and
only if Πϵ(ω) > 0 for all ω ∈ R. Assume there exists ϵ > 0 such
that Πϵ(ω) > 0 for all ω ∈ R. We show that this implies that for
any ω such that Imag G(iω) = 0, we have Real G(iω) > 0, thus
proving that there are no negative real axis intersections. Observe
that Imag (G(iω)) = 0 implies Imag (n∗(iω)d(iω)) = 0. Now
use Πϵ(ω) > 0, ϵ > 0 and Imag (n∗(iω)d(iω)) = 0 to infer
Real (n∗(iω)d(iω)) > 0, i.e. Real (G(iω)) > 0. This proves that
there are no negative real axis intersections, and hence proves (3
⇒ 2).

(2 ⇒ 3): We now prove the converse: assuming the Nyquist
plot of G does not intersect the negative real axis, we prove the
existence of an ϵ > 0 such that Πϵ(ω) > 0 for all ω ∈ R. This
proof has two parts: we fix a suitable ω0 and prove the existence
of ϵ > 0 for each of the following cases.

Case 1: For all ω ∈ [−ω0, ω0] (the finite ω case).
Case 2: For all |ω| > ω0 (the asymptotic case).

Consider the set Ω ⊆ [−ω0, ω0] defined as

Ω := {ω ∈ [−ω0, ω0] | Real (n∗(iω)d(iω)) 6 0},

which turns out to be a compact8 (possibly empty) set. Define

ϵ1 :=

min
ω∈Ω

(Imag (n∗(iω)d(iω)))2

max
ω∈Ω

|Real (n∗(iω)d(iω))|
.

(If the setΩ is empty or only a finite9 number of points, then define
ϵ1 := ∞.) Notice that ϵ1 > 0 since the absence of negative real axis
intersections ensures that the numerator above is positive. For any
positive ϵ 6 ϵ1 inequality (5) holds for all ω ∈ [−ω0, ω0]: this
follows from the definition of ϵ1, thus proving Case 1.

For the asymptotic case, the existence of an ϵ2 andω0 is inferred
using Proposition 4.1. Notice that Πϵ(ω) = (d∗d)2(2 ϵ

d∗dReal
(G(iω)) + 4(Imag (G(iω)))2). Using positivity d∗(iω)d(iω) for each
ω, we use properness of G to show that there exist ϵ2 > 0 and
ω0 > 0 such that

2ϵ
d∗(iω)d(iω)

Real (G(iω)) + 4(Imag (G(iω)))2 > 0

for all ω > ω0. Define fi(ω) := 4(Imag (G(iω)))2 and fr(ω) :=

2 Real (G(iω))

d∗(iω)d(iω)
. Clearly, fi(ω) > 0 and since Imag (G(iω)) → 0 as ω →

∞ so does fi(ω) as ω → ∞. So the assumptions in Proposition 4.1
are satisfied. In order to use Proposition 4.1 to conclude the
existence of ϵ2 and ω0 as required, it remains to show that the
valuations at ∞ of fi and fr are related by v∞(fr) > v∞(fi). Notice
that v∞(fr) = v∞(2Real (G(iω))) + v∞( 1

d∗d ). Since G(s) is proper,

8 Compactness is used for the existence of the maximum and minimum in the
definition of ϵ̄.
9 The case when both real and imaginary parts of n∗(iω)d(iω) are zero, i.e. when

the imaginary axis contains a finite zero of G(s), has been ruled out: see footnote 6
above.
v∞(Real (G(iω))) > 0. Thus v∞(fr) > v∞( 1
d∗d ). On the other hand,

again using properness of G(s), v∞((Imag (G(iω)))2) 6 v∞( 1
d∗d ).

Combining these two inequalities we have the required relation
v∞(fr) > v∞(fi). Thus there exists ϵ2 > 0 and ω0 such that
Πϵ(ω) > 0 for all ω > ω0. Since Πϵ(ω) is an even function of
ω, clearly, Πϵ(ω) with ϵ = ϵ2 is positive for all ω ∉ [−ω0, ω0].
Like in the finite ω case, once positivity of Πϵ(ω) is established for
an ϵ2 > 0, it is satisfied for all lower and positive values of ϵ also. It
then follows that if we take ϵ := min{ϵ1, ϵ2} thenΠϵ(ω) is positive
for all ω ∈ R. This completes the proof of (2) ⇒ (3). �

We now prove Theorem 3.5.

Proof of Theorem 3.5. (2) ⇒ (1): Using Proposition 2.1, State-
ment 1 is equivalent to the inequality
d∗(iω)
n∗(iω)

T

∂Φϵ(iω)


d(iω)
n(iω)


> 0 for all ω ∈ R.

The LHS simplifies to

|p(iω)|2

|d(iω)|2 − |n(iω)|2


+ |q(iω)|2


2ϵReal (n∗(iω)d(iω))

+ 4(Imag (n∗(iω)d(iω)))2

.

Thus Statement 1 is equivalent to
p∗(iω)
q∗(iω)

T 
Γ (ω) 0
0 Πϵ(ω)

 
p(iω)
q(iω)


> 0, for all ω ∈ R (6)

where Γ (ω) := |d(iω)|2 − |n(iω)|2 and Πϵ(ω) is as defined in
Eq. (5). We now assume Statement 2 and prove the existence of
polynomials p and q such that inequality (6) is satisfied. Statement
2 implies that


Γ (ω) 0
0 Πϵ (ω)


has inertia10 (1, 1) or (0, 2). The

latter case requires no proof since any pair of polynomials
(p, q) satisfying coprimeness on the imaginary axis also satisfies
inequality (6), thus proving Statement (1). For the former case, we
use11 the results from [11] to show that there exist matrices L(s)
and K(s) ∈ R•×2

[s], with K square and nonsingular such that
Γ (ω) 0
0 Πϵ(ω)


= K T (−iω)ΣsgK(iω) + LT (−iω)L(iω). (7)

As done in [11], Eq. (7) is used to construct p, q that meet the
requirements of Statement 1 as follows.

Choose any pair12 of polynomials (p′, q′) such that p′(−iω)

p′(iω) − q′(−iω)q′(iω) > 0 for all ω. Construct the adjugate
adj K(s) of K(s). The required p, q are given by
p(s)
q(s)


:= (adj K(s))


p′(s)
q′(s)


.

Using this p and q (after cancelling common factors, if any), one
can reverse the chain of arguments before inequality (6) in order
to conclude strict dissipativity. This concludes the proof of (2 ⇒ 1)
of Theorem 3.5.

10 The inertia of a nonsingular Hermitian matrix S ∈ Rw×w is the pair (σ−(S),
σ+(S)), the number of negative and positive eigenvalues of S respectively.
11 The details of this existence is straightforwardwhenwe use the notion of ‘worst
inertia’ as introduced before [11, Theorem 3.6]: see [9] for these details.
12 Any transfer function q′(s)

p′(s) ∈ R(s)with L∞ norm strictly less than one will give
such p′ and q′ . (The L∞-norm ∥G∥L∞

of a proper transfer function Gwith no poles
on iR is defined as ∥G∥L∞

:= supω∈R |G(iω)|.)
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Fig. 2. G(s) =
s2+3s+11.25

(s2+2ps+9+p2)(s2+3s+2)
with p = 0.243 (plotted in Scilab).
(1) ⇒ (2): Here, we first assume polynomials p and q exist such
that system G is strictly dissipative with respect to supply rate
Φϵ := p(ζ )Σsgp(η) + q(ζ )ΣNOP

ϵ q(η).
Assume that there exist polynomials p, q ∈ R[s] and ϵ > 0 such

that system G is strictly Φϵ-dissipative. Like in the first part of this
proof, this implies
p(iω)
q(iω)

∗ 
Γ (ω) 0
0 Πϵ(ω)

 
p(iω)
q(iω)


> 0 (8)

where Γ (ω) and Πϵ(ω) are as defined above. Since both
p(−iω)p(iω) and q(−iω)q(iω) are non-negative for every ω ∈ R,
the above inequality rules out the existence of any ω0 such that
Γ (ω0) < 0 and Πϵ(ω0) < 0. Therefore, for almost all ω ∈

R, either |d(iω)|2 − |n(iω)|2 > 0 or 2ϵReal (n(−iω)d(iω)) +

4(Imag n(−iω)d(iω))2 > 0 or both. In order to infer statement
2, it remains to show

(A) |d(iω)|2 − |n(iω)|2 > 0 ⇔ |G(iω)| < 1
(B) 2ϵReal (n(−iω)d(iω)) + 4(Imag n(−iω)d(iω))2 > 0 ⇔

|̸ G(iω)| < 180°.

Statement (A) is straightforward/well-known: special case of the
small gain theorem; and Statement (B) is precisely Theorem 3.2
and was proved above. This completes the proof of the (1 ⇒ 2)
part of Theorem 3.5. �

Example 4.2. We bring out the significance of the parameter ϵ
in the supply rate ΣNOP

ϵ (ζ , η) by choosing an example where
for a particular ω value, the imaginary part of G(iω) is small in
magnitude but nonzero, and the real part is negative; the Nyquist
plot does not intersect the negative real axis thus suggesting the
existence of an ϵ > 0 due to Theorem 3.2. Consider the transfer
function G(s) =

s2+3s+11.25
(s2+2ps+9+p2)(s+1)(s+2)

with p a parameter. The
poles and zeros of this system are at −1, −2, −p ± 3i and at
−1.5 ± 3i respectively. Fig. 2 shows the Nyquist plot and the root
locus for the case of p = 0.243. The figure indicates that the closed
loop is stable for all k > 0 in the feedback configuration of Fig. 1
above. The value of phas been chosen such that there is no negative
real axis intersection though the magnitude of the imaginary part
is very small (= 2.48

1000 ) at ω0 = 3.65 rad/s, and the real part there
is 0.111. Using these values, we infer that the system is ΣNOP

ϵ -
dissipative if and only if ϵ ∈ (0, 2(2.48)2

111000 ); see Eq. (5).
5. Concluding remarks

We proposed a new supply rate (called the Not-Out-of-Phase
(NOP) supply rate) such that dissipativity with respect to this is
equivalent to Nyquist plot’s non-intersection of the negative real
axis, and hence infinite gain margin: Theorem 3.2. A polynomially
convex combination of the two supply rates yields the traditional
result that, assuming open loop stability, finite and positive gain
and phase margin conditions on the open loop results in closed
loop stability (Theorem 3.5).

An interesting direction of future investigation is whether the
supply rate’s dependence on the system is inevitable due to the
requirement of non-intersection demanded on a half-line. Another
question that arises in the context of derivatives of system vari-
ables playing a role in the ΣNOP

ϵ (ζ , η) supply rate is whether ex-
pressing the supply rate in terms of the states of the system helps
by not having to differentiate any variable.
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