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Abstract In this paper, we look into restrictions of the solution set of a system of PDEs
to 1-d subspaces. We bring out its relation with certain intersection modules. We show that
the restriction, which may not always be a solution set of differential equations, is always
contained in a solution set of ODEs coming from the intersection module. Next, we focus our
attention to restrictions of strongly autonomous systems. We first show that such a system
always admits an equivalent first order representation given by an n-tuple of real square
matrices called companion matrices. We then exploit this first order representation to show
that the system corresponding to the intersection module has a state representation given
by the restriction of a linear combination of the companion matrices to a certain invariant
subspace. Using this result we bring out that the restriction of a strongly autonomous system
is equal to the system corresponding to the intersection module. Then we look into restrictions
of a general autonomous system, not necessarily strongly autonomous. We first define the
notion of a free subspace of the domain—a 1-d subspace where every possible 1-d trajectory
can be obtained by restricting the trajectories of the autonomous system. Then we give an
algebraic characterization of free-ness of a 1-d subspace for a scalar autonomous system.
Using this algebraic criterion we then give a full geometric characterization of free (and
non-free) subspaces. As a consequence of this we show that the set of non-free 1-d subspaces
is a closed linear set in the projective (n − 1)-space. Finally, we show that restriction to a
non-free subspace always equals the solution set of the ODEs coming from the intersection
ideal. As a corollary to this we give a necessary and sufficient condition for a system to be
stable in a given direction.

Keywords n-D systems · Autonomous systems · Intersection modules

D. Pal · H. K. Pillai (B)
Department of Electrical Engineering, Indian Institute of Technology Bombay, Bombay, India
e-mail: hp@ee.iitb.ac.in

D. Pal
e-mail: debpal@ee.iitb.ac.in

123



Multidim Syst Sign Process

1 Introduction and preliminaries

In n-d systems, restriction of trajectories to smaller subsets of the domain R
n is of fundamental

importance in various issues. For example, the theory of characteristic subsets (Valcher 2001),
dissipativity/path-independence of quadratic functionals (Pillai and Willems 2002), stability
theory (Valcher 2001; Kojima et al. 2010)—all of these issues are inextricably connected
with the idea of restriction of n-d systems to certain smaller subsets of R

n . Interestingly, it
was shown in Zerz and Oberst (1993) that for discrete systems, i.e., systems defined over Z

n

instead of R
n , restriction of trajectories to subsets of Z

n plays a crucial role in the Cauchy
problem. In this paper, we look into restriction of n-d systems to 1-d subspaces. One of the
most important results of this paper is that such restrictions can be analyzed by looking into
an algebraic entity called intersection submodule. See Pal and Pillai (2011) where the idea
of intersection submodules was introduced in this context. See also Avelli and Rocha (2010),
where restriction of discrete n-d systems to sublattices of Z

n has been investigated in the
context of autonomy degree of n-d autonomous systems. A preliminary version of some of
the results in this paper, namely those contained in Sects. 2 and 3, was presented in Pal and
Pillai (2011). In this paper, a substantial improvement on these sections has been carried
out; the proofs have been rewritten to make the exposition clearer. Further, completely new
results have been presented in Sect. 4. The remaining part of this section is devoted to some
preliminary definitions and results which are essential for the rest of the paper.

The kind of systems we are concerned with in this paper are the ones described by linear
partial differential equations (PDEs) with constant real coefficients. We use ∂ to denote
the n-tuple partial differential operators {∂1, ∂2, . . ., ∂n}. Following Polderman and Willems
(1998), we call the solution set of such systems of PDEs behaviors and denote them by B.
Thus

B := {
w ∈ Ww | R (∂)w = 0

}
, (1)

where R(∂) is a matrix having w number of columns with entries from the n-variable
polynomial ring R[∂]. Here, the matrix R (∂) ‘acts’ on w by differentiation. That is, let
r(∂) = [

r1(∂) r2(∂) · · · rw(∂)
]

with r1(∂), r2(∂), . . . , rw(∂) ∈ R[∂], be a row of R (∂).
Then this row acts on w = col [w1, w2, . . . , ww] as

r(∂)w = r1(∂)w1 + r2(∂)w2 + · · · + rw(∂)ww. (2)

Further, W (the solution space) is an R-vector space of trajectories which contains the solu-
tions of the differential equations. We denote by Lw the set of all behaviors, as described above,
where the codomain of the trajectories is R

w. In this paper, we think of elements from R[∂]w
as row-vectors and elements from Ww as column-vectors, so that the action of r(∂) ∈ R[∂]w
on w ∈ Ww follows Eq. (2). We often require to write down elements from R[∂]w in an
expanded form. For this purpose, given a positive integer vector ν = (ν1, ν2, . . . , νn) ∈ N

n ,
we denote by ∂ν the monomial ∂ν1

1 ∂
ν2
2 · · · ∂νn

n . So for a typical r(∂) ∈ R[∂]w we can write it
as

r(∂) =
∑

ν∈Nn

∂ναν, (3)

where {αν ∈ R
w
row}ν∈Nn are row-vectors of w-tuple of real numbers. Moreover, only a finite

number of these ανs are non-zero.
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A crucial observation is that there is an alternative description of B: if we denote by R
the row-span of the matrix R over R[∂], then B can also be written as

B(R) := {
w ∈ Ww | r(∂)w = 0, for all r(∂) ∈ R

}
. (4)

Thus, given a submodule R of the free module R[∂]w, we can associate with R the behavior
B(R) given by Eq. (4). Similarly, given a set of trajectories in Ww, one can define all
r(∂) ∈ R[∂]w, such that the action of r(∂) on the set of trajectories is zero. In particular, given
a behavior B, we define

R(B) := {r ∈ R[∂]w | r(∂)w = 0 for all w ∈ B}.
In Oberst (1990), Oberst shows that B(•) and R(•) are inverses of each other whenever the
signal space is a large injective cogenerator. This shows that the correspondence between sub-
modules of R[∂]w and behaviors B is one-to-one. By this one-to-one correspondence, we call
the submodule R(B) the equation module of B. In this paper, we shall restrict ourselves to the
following signal spaces : space of infinitely differentiable functions, denoted by C∞ (Rn,R),
and space of real entire analytic functions of exponential type, denoted by Exp(Rn,R). It is
shown in Oberst (1990) that both these signal spaces are large injective cogenerators. The
exponential type functions Exp(Rn,R) happen to be a subspace of C∞ (Rn,R). We restrict
ourselves to this subspace only in Sect. 4.

We often talk about elements in the quotient module M(B) :=R[∂]w/R(B) acting on the
trajectories in the behavior B. By this we mean the action of a lift of that element in R[∂]w on
the trajectories in B. Although these lifts are not unique, their actions on B are: two distinct
lifts always differ by an element in R(B), and the action of R(B) on the trajectories in B

produces the zero trajectory.
It was proved in Pillai and Shankar (1998), Pommaret and Quadrat (1999), Pommaret

(2005) that a behavior is controllable if and only if the quotient module M(B) is torsion-
free1. With this idea of controllability, one defines an autonomous behavior to be one which
does not contain any non-trivial controllable behavior within itself. It then follows, as was
shown in Pommaret and Quadrat (1999), Pillai and Shankar (1998), that an autonomous
behavior is characterized by a quotient module that is a torsion module. This algebraic
property of the quotient module gives rise to two fundamental invariants of an autonomous
behavior B, namely the annihilator ideal of M(B), which we denote by ann(M(B)), and
the characteristic ideal of B, which we denote by I(B). The characteristic ideal is defined as
follows: given a behavior B and its corresponding equation module R(B), let R ∈ R[∂]g×w
be a matrix whose rows generate R(B). Then define the ideal generated by the (w × w)
minors of R to be I(B)2.

For an autonomous behavior, there is another invariant, a geometric one, called the charac-
teristic variety and denoted by V(B). By the characteristic variety of an autonomous behavior
we mean the following set of complex n-tuples.

V(B) := {ξ ∈ C
n | f (ξ) = 0 for all f ∈ I(B)} = V(I(B))

= {ξ ∈ C
n | f (ξ) = 0 for all f ∈ ann(M(B))} = V(ann(M(B))).

The second equality follows by applying Hilbert’s Nullstellensatz to the fact that the
radicals of I(B) and ann(M(B)) are the same. We sum up all these important results in

1 Controllability roughly means the ability to ‘patch-up’ two trajectories; see Polderman and Willems (1998),
Pillai and Shankar (1998) for details.
2 Note that although the definition relies on a matrix representation of R(B), the ideal I(B) is independent
of this representation and depends only on the submodule R(B), and hence, because of the one-to-one
correspondence between B and R(B), on the behavior B.

123



Multidim Syst Sign Process

the form of a proposition below (the result can be found in the literature, see for example
Shankar 1999).

Proposition 1 Let B ∈ Lw. Then

1. B is autonomous if and only if M(B) is a torsion module.
2. If B is autonomous then

√
I(B) = √

ann(M(B)).
3. If B is autonomous then V(B) is a proper subset of C

n.

Remark 2 For the special case when n = 1, R[∂] turns out to be a principal ideal domain
(PID). So both the characteristic ideal and the annihilator ideal are principal, and hence each
is generated by a polynomial. The unique monic generators are, in fact, the characteristic and
minimal polynomials of the system, respectively. The above result reasserts the well-known
fact for a system of ODEs: the characteristic and minimal polynomials have the same roots
with possibly different multiplicities.

From the next section onwards we shall drop the argument B from R(B), M(B), I(B),
and use just R, M and I, respectively, whenever the behavior B is clear from the context.

2 Restriction of a behavior to a 1-dimensional subspace

Our prime concern in this paper is to analyze an autonomous behavior when restricted to
a given 1-dimensional subspace in its domain space. In this section we make this idea of
restriction precise. Then we show how restriction is related to the algebraic idea of intersection
submodules. In the sequel, we shall make frequent use of the following notation: given a
nonzero real vector v ∈ R

n , Lv denotes the line spanned by v, i.e.,

Lv := {x ∈ R
n | x = vt, t ∈ R}. (5)

Now, given B ∈ Lw and 0 �= v ∈ R
n , by restriction of B to the line Lv we mean the

following set of 1-d trajectories

B|v := {w(vt) | w ∈ B}.

Remark 3 Note that B|v ⊆ C∞ (R,Rw) when the parameter t is treated as the independent
variable. For some other 0 �= v′ ∈ R

n spanning the same 1-d subspace Lv we obtain a
different parametrization. Accordingly, a restricted trajectory, viewed as a 1-d trajectory in
the independent variable t , will also be different. Because any v′ that spans Lv must be a
scalar multiple of v, it can be shown that if v′ = av with 0 �= a ∈ R, then elements of Bv′
differ from elements in Bv by a dilation in the independent variable t by the factor of 1/a.
Further, certain frequency domain quantities, like eigenvalues, points in the characteristic
variety, etc., will differ by a factor of a. In this paper, we do not make an attempt to make the
notion of restriction independent of the parametrization. For us, once a v ∈ R

n is given, we
fix the parametrization for Lv given by Eq. (5).

When a trajectory w is restricted to a line Lv , its derivative with respect to the parameter
t follows the equation

d

dt
w(vt) = ((v1∂1 + v2∂2 + · · · + vn∂n)w)(vt), (6)
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where vi is the i th entry in the vector v defining the line Lv . We shall write 〈v, ∂〉 for the linear
polynomial

∑n
i=1 vi∂i . A straightforward extension of Eq. (6) shows that for f ( d

dt ) ∈ R[ d
dt ]

f

(
d

dt

)
w(vt) = ( f (〈v, ∂〉)w)(vt). (7)

This observation brings out the fact that the action of the R-algebra R[ d
dt ] on w(vt) is the

same as that of the sub-algebra R[〈v, ∂〉] of R[∂] on w followed by restriction to Lv . Our
main result of this section, Theorem 6, is a consequence of this observation. Like the sub-
algebra R[〈v, ∂〉] we consider the free module R[〈v, ∂〉]w over R[〈v, ∂〉] to be sitting inside
R[∂]w as a subset. Equation (7) can be extended to cater for the action of r( d

dt ) ∈ R[ d
dt ]w on

w(vt) ∈ B|v:

r

(
d

dt

)
w(vt) = (r(〈v, ∂〉)w)(vt). (8)

Given a behavior B and its corresponding equation module R, we look into the following
R[〈v, ∂〉]-submodule of R[〈v, ∂〉]w obtained by intersecting R with R[〈v, ∂〉]w, we call this
the v-intersection submodule of R and denote it by Rv:

Rv := R ∩ R[〈v, ∂〉]w. (9)

Related to the intersection submodule Rv is the following 1-d behavior, which plays a
central role in the paper:

Bv := {w̃ ∈ C∞ (
R,Rw)) | r

(
d

dt

)
w̃ = 0 for all r(〈v, ∂〉) ∈ Rv}.

We also define the following quotient module obtained by factoring R[〈v, ∂〉]w by its sub-
module Rv:

Mv := R[〈v, ∂〉]w/Rv.

This is naturally a finitely generated module over the ring R[〈v, ∂〉]. Thus it makes sense to
define the annihilator ideal of Mv as

ann(Mv) := { f ∈ R[〈v, ∂〉] | f m = 0 for all m ∈ Mv}.
There is another ideal of R[〈v, ∂〉] related with R, namely

(ann(M))v := ann(M) ∩ R[〈v, ∂〉],
the v-intersection ideal of ann(M).

We sum up the definitions of all these algebraic objects and behaviors in the following
definition. We list them in a tabular form for easy referencing.

Definition 4 Let B ∈ Lw and 0 �= v ∈ R
n be given.

Notation Name Definition
B|v B restricted to v {w(vt) | w ∈ B}
Rv v-intersection submodule R ∩ R[〈v, ∂〉]w
Bv 1-d behavior associated to Rv

{w̃ ∈ C∞ (R,Rw)) | r( d
dt )w̃ = 0

for all r(〈v, ∂〉) ∈ Rv}
Mv quotient module of Rv R[〈v, ∂〉]w/Rv

ann(Mv) annihilator of Mv
{ f ∈ R[〈v, ∂〉] | f m = 0

for all m ∈ Mv}
(ann(M))v v-intersection ideal of ann(M) ann(M) ∩ R[〈v, ∂〉]

123



Multidim Syst Sign Process

Example 5 below demonstrates the explicit computation of the intersection submodule.

Example 5 Consider the following kernel representation matrix

R(∂) =
⎡

⎣
∂2

1 − 2∂1∂2 − ∂2

∂2 1
1 ∂2

⎤

⎦ ,

and the corresponding equation submodule R = rowspan(R(∂)) ⊆ R[∂1, ∂2]2. Suppose
v = (1, 1) is given, so that 〈v, ∂〉 = ∂1 + ∂2. Then Rv = R ∩ R[∂1 + ∂2]2 can be shown to
be given by the row-span of the following matrix over R[∂1 + ∂2]:

Rv(〈v, ∂〉) =
[
(∂1 + ∂2)

2 + 4 4(∂1 + ∂2)

4(∂1 + ∂2) (∂1 + ∂2)
2 + 4

]
.

The above matrix can be obtained in the following manner:
Consider the larger ring R[∂1, ∂2, ∂3] by introducing an auxiliary variable ∂3, and impose the
relation induced by v on the variables ∂1, ∂2, ∂3 as ∂3 = 〈v, ∂〉 = ∂1 + ∂2. Now, adjoin to
the rows of the kernel representation matrix R(∂) the following new generators induced by
this relation:

[
∂3 − ∂1 − ∂2 0

]
and

[
0 ∂3 − ∂1 − ∂2

]
. Then, consider the row-span of this

matrix over the larger ring R[∂1, ∂2, ∂3] to obtain the submodule R̃ of R[∂1, ∂2, ∂3]2 as

R̃ = rowspan

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2
1 − 2∂1∂2 − ∂2

∂2 1
1 ∂2

∂3 − ∂1 − ∂2 0
0 ∂3 − ∂1 − ∂2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊆ R[∂1, ∂2, ∂3]2

Now elimination (see Cox et al. 1998) of the variables ∂1 and ∂2 yields

R̃ ∩ R[∂3]2 =
[
∂2

3 + 4 4∂3

4∂3 ∂2
3 + 4

]
.

Substituting back ∂3 = ∂1 + ∂2 gives the desired Rv(〈v, ∂〉).
Correspondingly, the 1-d behavior associated to Rv is given by the kernel representation

Bv = ker

[
d2

dt2 + 4 4 d
dt

4 d
dt

d2

dt2 + 4

]

.

Our first main result (Theorem 6 below) brings out two crucial relations amongst the
various objects in Definition 4.

Theorem 6 Let B ∈ Lw and its corresponding equation submodule be R. Let 0 �= v ∈ R
n

be given. Further, let B|v , Bv , Mv , ann(Mv) and (ann(M))v be as defined in Definition 4.
Then the following hold:

1. B|v ⊆ Bv.

2. If B is autonomous then ann(Mv) = (ann(M))v.

Proof 1. Suppose r(〈v, ∂〉) ∈ Rv and w(vt) ∈ B|v for some w ∈ B. By Eq. (8), we have

r

(
d

dt

)
w(vt) = (r(〈v, ∂〉)w)(vt).
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But, since r(〈v, ∂〉) ∈ Rv , r(〈v, ∂〉) is in R too. Therefore r(〈v, ∂〉)w is the zero trajectory. In
particular, (r(〈v, ∂〉)w)(vt) = 0 for all t . This means that r( d

dt )w(vt) = 0 for all r(〈v, ∂〉) ∈
Rv . Hence, it follows from the definition of Bv (Definition 4) that w(vt) ∈ Bv . Thus
B|v ⊆ Bv .

2. For the second part we have to show that the v-intersection of the annihilator ideal,
that is, (ann(M))v , is equal to the annihilator ideal of the quotient module Mv . We first
show that ann(Mv) ⊇ (ann(M))v . Let f ∈ (ann(M))v . So f ∈ ann(M), which means
that for any r ∈ R[∂]w, f r ∈ R. In other words, the row span over R[∂] of the (w × w)
matrix f Iw is contained in R. But, since f also belongs to R[〈v, ∂〉] (which is a subalgebra
of R[∂]) the row span of f Iw over R[〈v, ∂〉] is contained in R ∩ R[〈v, ∂〉]w = Rv , which
means f ∈ ann(Mv).

Conversely, suppose f ∈ ann(Mv). Then, once again following the same logic, the row
span of f Iw over R[〈v, ∂〉] is contained in Rv . We want to show that the row span of this
matrix f Iw over R[∂] is contained in R. Since the row span over R[〈v, ∂〉] of f Iw is contained
in Rv , it follows that, in particular, each of the rows of f Iw is in Rv , and hence, is also in R
because Rv ⊆ R. Therefore, if we let R ∈ R[∂]g×w be a matrix whose rows span R, then
there exists another matrix E ∈ R[∂]w×g such that

f Iw = E R.

It follows that the row span of f Iw over R[∂] is contained in R. In other words, f ∈ ann(M).
Also, by assumption, f ∈ R[〈v, ∂〉]. Thus f ∈ (ann(M))v . �

Remark 7 Unlike the situation in the discrete case as shown in Avelli and Rocha (2010),
here it is not a priori clear whether Bv , the 1-d behavior associated to Rv , is the smallest
1-d behavior containing the restriction B|v . Consider the equation module of B|v , that is,
R(B|v) ⊆ R[ d

dt ]w. Bv would indeed be the smallest behavior containing B|v if for all
r( d

dt ) ∈ R(B|v), r(〈v, ∂〉) ∈ Rv . However, this may not always be the case because of the
following subtlety. Suppose that r( d

dt ) ∈ R(B|v), then (r(〈v, ∂〉)w)(vt) = 0. This means
that the trajectory r(〈v, ∂〉)w is zero when restricted to Lv . But, this does not imply that
r(〈v, ∂〉)w is the zero trajectory, and thus we cannot infer that r(〈v, ∂〉) ∈ Rv . However, we
shall see in the next section (Sect. 3) that for certain types of autonomous systems, Bv is not
only the smallest behavior containing B|v , but is in fact equal to it.

3 Restrictions of strongly autonomous systems

One of the major distinctions between 1-d and n-d systems comes from the geometry of the
characteristic varieties. For 1-d autonomous systems the characteristic variety is always a
discrete set of finitely many complex numbers, whereas for an n-d autonomous system the
characteristic variety can be of nonzero dimension. In fact, it is this nonzero dimension of the
variety that is responsible for making the solution set of a general n-d autonomous system
infinite dimensional over R. However, there is one special case when the affine variety V(B)

is a finite set of discrete points in the affine space C
n ; in this case B is said to be strongly

autonomous (see Pillai and Shankar 1998). This is drastically different from the other possible
cases. Here, like in 1-d, the solution set turns out to be a finite dimensional vector space over
R. Mimicking the 1-d situation, in this case, one can obtain a first order (state) representation,
although there is one inevitable distinction: here there will be n state matrices accounting for
the n first order partial derivatives. This observation is not new, for the case when n = 2, this
has been shown in Fornasini et al. (1993), while in Rocha and Willems (2006) it has been
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shown for general n. In this section, we first provide a proof, similar in technique to the 2-d
discrete case of Fornasini et al. (1993), of this result for general n. And then we use this result
to bring out a relation between a state representation of the 1-d behavior Bv and the first order
representation of the original n-d behavior B. We make crucial use of the following result
from commutative algebra (see Cox et al. 1998) which asserts that B is strongly autonomous
if and only if the quotient module is a finite dimensional R-vector space.

Proposition 8 Let B ∈ Lw with the corresponding quotient module M. Then the following
are equivalent:

1. B is strongly autonomous.
2. V(B) is a finite set.
3. I and ann(M) are zero dimensional ideals.
4. M can be viewed as a finite dimensional vector space over R.

Now, for m(∂) ∈ R[∂]w let m(∂) denote its image under the map R[∂]w � M. Now, for
each of the partial derivatives ∂ j , the following map, multiplication by ∂ j in M: m(∂) �→
∂ j m(∂), is an R[∂]-module morphism of M onto itself. In particular, this map is R-linear.
Moreover, since M is a finite dimensional R-vector space (Proposition 8), this map is in fact
a linear map between finite dimensional R-vector spaces. So, by fixing a basis of M, this
linear map can be written as a real square matrix. The matrices, say {A1, A2, . . ., An}, which
are representations of multiplications by {∂1, ∂2, . . ., ∂n}, respectively, are called companion
matrices (see Cox et al. 1998). More precisely, let {e1(∂), e2(∂), . . . , eγ (∂)} be an R-basis
of M, where γ = dimRM. Then M can be identified with R

γ
row by the following mapping:

ei (∂) �→ [
0 0 · · ·1 · · · 0

]
.

↑
i th position

(10)

Now suppose multiplication by ∂ j in M satisfies the equation ∂ j ei (∂) = ∑γ

k=1 aik, j ek(∂).
The j th companion matrix A j then gets defined as

A j :=

⎡

⎢
⎢
⎢
⎣

a11, j a12, j · · · a1γ, j

a21, j a22, j · · · a2γ, j
...

...
. . .

...

aγ 1, j aγ 2, j · · · aγ γ, j

⎤

⎥
⎥
⎥
⎦
. (11)

Then it follows from Eq. (11) that for any m(∂) ∈ M represented in the chosen basis as
m(∂) = ∑γ

i=1 mi ei (∂) with m1,m2, . . . ,mγ ∈ R and for ν = (ν1, ν2, . . . , νn) ∈ N
n we

have

∂νm(∂) = ∂ν
[

m1 m2 · · · mγ

]

⎡

⎢
⎢
⎢
⎣

e1(∂)

e2(∂)
...

eγ (∂)

⎤

⎥
⎥
⎥
⎦

= [
m1 m2 · · · mγ

] n∏

i=1

Aνi
i

⎡

⎢
⎢
⎢
⎣

e1(∂)

e2(∂)
...

eγ (∂)

⎤

⎥
⎥
⎥
⎦
. (12)

Further, let {s1, s2, . . . , sw} ⊆ R
w
row denote the standard basis row-vectors that generate the

free module R[∂]w. Suppose for each 1 � j � w, s j = ∑γ

i=1 c ji ei (∂). Denote by C the
matrix
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C :=

⎡

⎢
⎢
⎢
⎣

c11 c12 · · · c1γ

c21 c22 · · · c2γ
...

...
. . .

...

cw1 cw2 · · · cwγ

⎤

⎥
⎥
⎥
⎦

∈ R
w×γ . (13)

Then with this definition of C , it follows that for any α = [
α1 α2 · · · αw

] ∈ R
w
row, its image

in M satisfies

α = [
α1 α2 · · · αw

]
C

⎡

⎢
⎢
⎢
⎣

e1(∂)

e2(∂)
...

eγ (∂)

⎤

⎥
⎥
⎥
⎦
, (14)

In particular, Iw = Ccol(e1(∂), e2(∂), . . . , eγ (∂)). Equation (14) above plays a crucial role in
obtaining Lemma 9 below. This lemma will be used in proving Theorem 10, which provides
a first order representation of a strongly autonomous behavior. The lemma tells us that a
given r(∂) ∈ R[∂]w is in the submodule R if and only if a certain linear equation involving
the companion matrices is satisfied. Recall from Eq. (3) that every element r(∂) ∈ R[∂]w
can be written as a finite linear combination of monomials ∂ν with coefficients from R

w
row as

r(∂) = ∑
ν∈Nn αν∂

ν . Now note that for a single term of the form αν∂
ν1
1 ∂

ν2
1 · · · ∂νn

n , it follows
from Eqs. (12) and (14) that the image of this term in M satisfies

αν∂ν = ανC
n∏

i=1

Aνi
i

⎡

⎢
⎢
⎢
⎣

e1(∂)

e2(∂)
...

eγ (∂)

⎤

⎥
⎥
⎥
⎦
. (15)

Applying Eq. (15) to each term in the finite sum r(∂) = ∑
ν∈Nn αν∂

ν we get the result of
Lemma 9 below.

Lemma 9 Let R ⊆ R[∂]w be a submodule and M = R[∂]w/R be the corresponding quotient
module, such that M is a finite dimensional vector space over R. Let {e1(∂), e2(∂), . . . , eγ (∂)}
be a basis for M with γ = dimRM. Further, let {s1,s2,. . . ,sw} ⊆ R

w
row denote the standard

basis row-vectors that generate the free module R[∂]w, and correspondingly, let C ∈ R
w×γ

be the matrix defined by Eq. (13). Let {A1, A2, . . . , An} be the companion matrices in the
chosen basis. Suppose r(∂) ∈ R[∂]w is given by

r(∂) =
∑

ν∈Nn

∂ναν, αν ∈ R
w
row

with all but finitely many αν = 0. Then r(∂) ∈ R if and only if

∑

ν∈Nn

ανC
n∏

i=1

Aνi
i = 0 ∈ R

γ
row, (16)

where ν = (ν1, ν2 . . . , νn).

We now state and prove Theorem 10 which shows how the companion matrices can be
used to give an equivalent first order representation of a given strongly autonomous behavior.
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Theorem 10 Suppose B ∈ Lw is a strongly autonomous behavior with the corresponding
equation module R and quotient module M = R[∂]w/R. Let {e1(∂), e2(∂), . . . , eγ (∂)} be
an R-basis for M with γ = dimRM. Let {A1, A2, . . ., An} ⊆ R

γ×γ be the companion
matrices as defined in Eq. (11), and let C ∈ R

w×γ be as defined in Eq. (13). Then B admits
the following first order representation:

B = {w ∈ C∞ (
R

n,Rw) | ∃z ∈ C∞ (
R

n,Rγ
)

such that

⎡

⎢
⎢
⎢
⎣

∂1 I − A1

∂2 I − A2
...

∂n I − An

⎤

⎥
⎥
⎥
⎦

z = 0, w = Cz}.

(17)

Proof We first show that for all w ∈ B one can find a suitable z ∈ C∞ (Rn,Rγ ) which
satisfies (∂ j I − A j )z = 0 for all 1 � j � n and w = Cz. For this purpose, let us define
z := col[e1(∂), e2(∂), . . . , eγ (∂)]w. As we have noted before, since w ∈ B, the action of
the images ei (∂) on w are well-defined. Now for 1 � i, j � n, we get from the defining
equations of companion matrices (Eq. (11))

∂ j zi = ∂ j ei (∂)w = ∂ j ei (∂)w =
γ∑

k=1

aik, j ek(∂)w = A j (i, :)

⎡

⎢
⎢
⎢
⎣

e1(∂)

e2(∂)
...

eγ (∂)

⎤

⎥
⎥
⎥
⎦
w = A j (i, :)z,

where A j (i, :) denotes the i th row of A j . In matrix form: ∂ j z = A j z. Moreover, it follows
from Eq. (14) that w = (Ccol[e1(∂), e2(∂), . . . , eγ (∂)])w = Cz.

For the converse we have to show that if there is z ∈ C∞ (Rn,Rγ ) satisfying (∂ j I − A j )

z = 0, then w := Cz ∈ B. Since C∞ (Rn,Rw) is a large injective cogenerator, in order to
show Cz ∈ B it suffices to show that for all r(∂) ∈ R we have r(∂)Cz = 0. As in Eq.
(3), let r(∂) ∈ R be given by the finite sum r(∂) = ∑

ν∈Nn ∂ναν , αν ∈ R
w
row. Then the

action of r(∂) on Cz can be written as r(∂)Cz = ∑
ν∈Nn ∂νανCz = ∑

ν∈Nn ανC(∂ν z). But
z satisfies ∂ j z = A j z for all 1 � j � n. Hence for any ν = (ν1, ν2, . . . , νn) ∈ N

n we have
∂νz = ∏n

i=1 Aνi
i z. Thus the expression for r(∂)Cz becomes

r(∂)Cz =
∑

ν∈Nn

ανC
n∏

i=1

Aνi
i z. (18)

It now follows from Lemma 9 that the right-hand side of Eq. (18) above is zero because
r(∂) ∈ R. Thus r(∂)Cz = 0 and the proof is complete. �


The auxiliary variables z defined by Eq. (17) in the last theorem are like state variables
used predominantly in 1-d systems theory. Our construction of z in the proof shows that z is
observable fromw (see Polderman and Willems 1998; Pommaret and Quadrat 1999; Pillai and
Shankar 1998 for details about observability). In fact, the matrix col[e1(∂), e2(∂), . . . , eγ (∂)]
∈ R[∂]γ×w is like a state map. We illustrate the result in the last theorem by the following
example.

Example 11 Consider the following system of PDEs in 2-d

∂2w

∂x2 − 2
∂2w

∂x∂y
+ w = 0,

∂2w

∂y2 + w = 0.
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Denoting ∂
∂x and ∂

∂y by ∂1 and ∂2, respectively, we get the equation ideal to be I =<
∂2

1 − 2∂1∂2 + 1, ∂2
2 + 1 >. It can be shown that I is a zero dimensional ideal. Further, with

lexicographic term ordering ∂1 ≺ ∂2, the initial ideal of I turns out to be < ∂2
1 , ∂

2
2 >, and

accordingly, the two generators turn out to be the the reduced Gröbner basis of I. It follows that
the monomials not in the initial ideal of I are precisely {1, ∂1, ∂2, ∂1∂2}. Thus, the respective
equivalence classes of these monomials generate the quotient ring M := R[∂1, ∂2]/I as a
vector space over R. We identify the elements of this basis with the standard basis row-vectors
of R

4
row. Then it follows from division algorithm by Gröbner basis that multiplications by ∂1

and ∂2 in M are represented by right multiplications by the following two matrices:

A1 =

⎡

⎢
⎢
⎣

0 1 0 0
−1 0 0 2

0 0 0 1
0 −2 −1 0

⎤

⎥
⎥
⎦ , A2 =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤

⎥
⎥
⎦ ,

respectively. We can record this equivalently in the notation used in the proof of Theorem 10 as

∂1

⎡

⎢
⎢
⎣

1
∂1

∂2

∂1∂2

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 1 0 0
−1 0 0 2

0 0 0 1
0 −2 −1 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1
∂1

∂2

∂1∂2

⎤

⎥
⎥
⎦ ,

∂2

⎡

⎢
⎢
⎣

1
∂1

∂2

∂1∂2

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1
∂1

∂2

∂1∂2

⎤

⎥
⎥
⎦ .

We define 4 state variables z = (z1, z2, z3, z4) := (w, ∂1w, ∂2w, ∂1∂2w). It then follows that

∂1z =

⎡

⎢
⎢
⎣

0 1 0 0
−1 0 0 2

0 0 0 1
0 −2 −1 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

z1

z2

z3

z4

⎤

⎥
⎥
⎦ = A1z.

Similarly, ∂2z = A2z.

In Sect. 2 we defined the 1-d behavior Bv related to the v-intersection submodule Rv .
Now, once we have obtained a first order representation of a strongly autonomous system B

a là Theorem 10, a natural question that arises is: how is this representation related with a
possible first order representation of Bv? In Theorems 15 and 16 we show that a first order
representation of Bv can be obtained as a linear combination of these companion matrices.
Utilizing this result, we show that for the strongly autonomous case, Bv is always equal to
the restriction B|v .

As a first step towards relating the first order representation of B with that of Bv , in
the following lemma, we bring out a connection between the companion matrices and the
v-intersection ideal of ann(M) (i.e., (ann(M))v = ann(M) ∩ R[〈v, ∂〉], see Definition
4). First, note that the polynomial 〈v, ∂〉 is transcendental over R. Therefore, the R-algebra
R[〈v, ∂〉] is in fact isomorphic to the polynomial ring in one variable. Hence R[〈v, ∂〉] is a PID,
and therefore, every ideal in R[〈v, ∂〉] is generated by a single polynomial in R[〈v, ∂〉].Thus,
if the v-intersection ideal (ann(M))v is nonzero, then it has a unique monic generator.
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Lemma 12 Let B be a strongly autonomous behavior. Let {A1, A2, . . ., An} ⊆ R
γ×γ be as

in Theorem 10. Further, let v = col[v1, v2, . . ., vn] ∈ R
n be nonzero. Then the following

hold.

1. The v-intersection ideal (ann(M))v is nonzero, and thus, has a unique monic generator
μv(〈v, ∂〉) ∈ R[〈v, ∂〉].

2. The eigenvalues (without counting multiplicities) of the matrix
∑n

i=1 vi Ai are given by
the roots of μv(λ) ∈ R[λ].

Proof 1. Recall that the maps given by the actions of {∂1, ∂2, . . ., ∂n} in M are represented
by companion matrices {A1, A2, . . ., An}, respectively. An extension of this idea shows that
action of a polynomial f (∂) ∈ R[∂] in M is similarly represented by the matrix polynomial
f (A1, A2, . . ., An). (The companion matrices commute with each other, and thus it makes
sense to talk about the matrix polynomial f (A1, A2, . . ., An).) Now, suppose f (∂) ∈ R[∂]
is a nonzero polynomial such that the corresponding matrix polynomial f (A1, A2, . . ., An)

is the zero matrix. It then follows that the map given by action of f (∂) in M is the zero map.
In other words, for all m(∂) ∈ M, we have f (∂)m(∂) = 0 meaning f (∂) ∈ ann(M). We
now define A := ∑n

i=1 vi Ai and consider the minimal polynomial of A, say μ(λ) ∈ R[λ].
Note that every real square matrix has a nonzero monic minimal polynomial. Therefore,
μ(λ) �= 0. Since μ(A) is the zero matrix, by putting

∑n
i=1 vi Ai for A we get μ(

∑n
i=1 vi Ai )

to be equal to the zero matrix. It then follows from the above discussion that the polynomial
μ(

∑n
i=1 vi∂i ) = μ(〈v, ∂〉) ∈ ann(M). Therefore, μ(〈v, ∂〉) ∈ ann(M) ∩ R[〈v, ∂〉] =

(ann(M))v . Clearly, μ is a nonzero polynomial.Therefore (ann(M))v contains a nonzero
polynomial μ(〈v, ∂〉), and thus, is a nonzero ideal. Since R[〈v, ∂〉] is PID, the nonzero ideal
(ann(M))v is a principal ideal generated by a unique nonzero monic polynomial. We call
this polynomial μv(〈v, ∂〉).

2. Part 1 of this proof actually shows that the minimal polynomial of the matrix A :=∑
i=1 vi Ai , μ(λ), is such that μ(〈v, ∂〉) ∈ (ann(M))v . This means that if (ann(M))v is

generated by a monic polynomial μv(〈v, ∂〉), then μv(λ) divides μ(λ).
On the other hand, let p(〈v, ∂〉) be a nonzero polynomial in (ann(M))v . This means that

the map M � m(∂) �→ p(〈v, ∂〉)m(∂), is the zero map. Therefore, the matrix polynomial
p(

∑n
i=1 vi Ai ) = p(A) is the zero matrix. Thus the minimal polynomial μ(λ) divides p(λ).

In particular, when p(〈v, ∂〉) = μv(〈v, ∂〉), the monic generator of (ann(M))v , then μ(λ)
divides μv(λ).

Thus we arrive atμ(λ) = μv(λ). But the eigenvalues of A (without counting multiplicities)
are given by the roots of μ(λ). It then follows that the eigenvalues of A are given by the roots
of μv(λ). �


An immediate corollary to the above lemma follows from looking at the characteristic
variety. In classical algebraic geometry, the space C

n is given a topology called the Zariski
topology. Here open sets are by definition complements of zero sets of polynomial equations
(see Cox et al. 2007; Hartshorne 2009). With this topology, intersection ideals can be given a
nice geometric interpretation. We state this result as a proposition below. For this result, and
later, we require the following set of complex numbers associated to an affine variety V(I).
Given 0 �= v ∈ R

n , define

Πv(V(I)) := {vTξ | ξ ∈ V(I)} ⊆ C, (19)

which we call the projection of V(I) on the complex 1-d subspace LC
v := {ξ ∈ C

n | ξ =
vτ, τ ∈ C}. Note that, projection is usually defined independent of the parametrization of
the line Lv . However, in our case, the definition of projection is dependent on the spanning
vector v. See Remark 3.
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Proposition 13 Let I ⊆ R[∂] be an ideal and V(I) ⊆ C
n its variety. Define the following

set of complex numbers called the variety of the v-intersection ideal Iv := I ∩ R[〈v, ∂〉]:
V(Iv) := {τ ∈ C | f (τ ) = 0 for all f (〈v, ∂〉) ∈ Iv}.

Also, let Πv(V(I)) be the projection of V(I) on the complex 1-d subspace LC
v := {ξ ∈

C
n | ξ = vτ, τ ∈ C}. Then the variety of Iv is equal to the Zariski closure ofΠv(V(I)), i.e.,

V(Iv) = Πv(V(I)).

For the present case, since V(B) is zero dimensional, Πv(V(B)) is already a Zariski
closed set. Therefore, from Proposition 13 we have

V((ann(M))v) = Πv(V(B)).

However, Lemma 12 says (ann(M))v is the ideal generated by μv(〈v, ∂〉) over R[〈v, ∂〉].
This means V((ann(M))v) is equal to the set of roots of μv(λ). Combining the two facts we
get that the eigenvalues of the matrix

∑n
i=1 vi Ai are given by the elements of Πv(V(B)).

We state this observation as a corollary below.

Corollary 14 Let B be a strongly autonomous behavior with {A1, A2, . . ., An} ⊆ R
γ×γ as

in Theorem 10. Let v = col[v1, v2, . . ., vn] ∈ R
n be nonzero. Define Πv(V(I)) as in Eq.

(19). Then the set of eigenvalues (without counting multiplicities) of the matrix
∑n

i=1 vi Ai

is equal to Πv(V(B)).

One important question raised in Remark 7 was: when is the restriction of a behavior
equal to the behavior obtained from the intersection submodule? For the case when the
behavior is strongly autonomous, we shall see, that this happens for every nonzero v. Our
first observation is that the quotient module Mv = R[〈v, ∂〉]w/Rv can be embedded inside
the original quotient module M as an R-subspace. This follows from the following diagram
of set-maps.

R[〈v, ∂〉]w � Mv

↓ ↓ ι
R[∂]w � M.

We define the map ι via the inclusion R[〈v, ∂〉]w ↪→ R[∂]w: for an element in Mv we take a
lift in R[〈v, ∂〉]w, consider it inside R[∂]w by the inclusion map, and then project it onto M.
From the definitions of Rv and Mv it follows that ι is well-defined, and injective. Crucially,
when M and Mv are considered as R-vector spaces then ι becomes an R-linear map of
finite dimensional R-vector spaces, and therefore, gives an embedding of Mv into M as a
subspace. Note that by this embedding, Mv is identified with the image of R[〈v, ∂〉]w onto
M.

Our next result shows that the image of ι is a (
∑n

i=1 vi Ai )-invariant subspace. In fact,
it is the smallest such subspace containing the image of the matrix Iw under the projection
R[∂]w � M. This observation constitutes the following theorem. From now on, we are
going to omit the use of ι and consider Mv to be a subspace of M. Once again, we are
going to identify M with R

γ
row, by identifying the basis vectors of M with the standard basis

vectors of R
γ
row as done in Eq. (10) above. Recall that with this identification, the image

of Iw under the map R[∂]w � M is given by the C matrix defined in Eq. (13). That is:
with {e1(∂), e2(∂), . . . , eγ (∂)} being a basis for M as a R-vector space and {s1, s2, . . . , sw}
denoting the standard basis row-vectors that generate the free module R[∂]w we have
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⎡

⎢
⎢
⎢
⎣

s1

s2
...

sw

⎤

⎥
⎥
⎥
⎦

= C

⎡

⎢
⎢
⎢
⎣

e1(∂)

e2(∂)
...

eγ (∂)

⎤

⎥
⎥
⎥
⎦
. (20)

Theorem 15 Let {e1(∂), e2(∂), . . . , eγ (∂)} be a basis for M as an R-vector space,where
γ := dimR(M). Identify M with R

γ
row as in Eq. (10). Let C ∈ R

w×γ be as defined by Eq.
(20) above and define A := ∑n

i=1 vi Ai . Then, with the above mentioned identification of M
with R

γ
row, we have

Vv := rowspan

⎡

⎢
⎢
⎢
⎣

C
C A
...

C Aγ−1

⎤

⎥
⎥
⎥
⎦

= Mv.

Proof First, recall that Mv , considered as a subspace of M via the inclusion R[〈v, ∂〉]w ↪→
R[∂]w, is equal to the image of R[〈v, ∂〉]w in M. Now, under the identification of M

with R
γ
row, the R-linear row-span of

⎡

⎢
⎢
⎢
⎣

s1

s2
...

sw

⎤

⎥
⎥
⎥
⎦

goes to rowspan(C). But, clearly, each of the

vectors {s1, s2, . . ., sw} is contained in R[〈v, ∂〉]w. Therefore, Mv , which is the image of
R[〈v, ∂〉]w in M, contains rowspan(C). Moreover, Mv is also right-A-invariant, that is, for
all b = [

b1 b2 · · · bγ
] ∈ Mv we have bA ∈ Mv . This is because multiplication from the

right by A in M represents multiplication by 〈v, ∂〉, but Mv is the image of R[〈v, ∂〉]w in
M and R[〈v, ∂〉]w is invariant under multiplication by 〈v, ∂〉. Now, Vv by definition is the
smallest right-A-invariant subspace containing rowspan(C). Since Mv is right-A-invariant
and contains rowspan(C), it follows that Mv ⊇ Vv .

Conversely, any element in Mv , say m(〈v, ∂〉), when lifted to R[〈v, ∂〉]w looks like

m(〈v, ∂〉) = [
f1(〈v, ∂〉) f2(〈v, ∂〉) · · · fw(〈v, ∂〉)

]
, (21)

where f1(〈v, ∂〉), f2(〈v, ∂〉), . . . , fw(〈v, ∂〉) ∈ R[〈v, ∂〉]. This polynomial vector can be
expanded according to ascending degrees of 〈v, ∂〉 as

[
f1(〈v, ∂〉) f2(〈v, ∂〉) · · · fw(〈v, ∂〉)

] =
(

k∑

i=1

〈v, ∂〉iαi

)

,

for some k ∈ N with αi ∈ R
w
row. As in the proof of Lemma 9 we project m(〈v, ∂〉) to M and

make use of Eq. (14) to get the following:

m(〈v, ∂〉) =
k∑

i=1

〈v, ∂〉iαi =
(

k∑

i=1

〈v, ∂〉iαi C

)
⎡

⎢
⎢
⎢
⎣

e1(∂)

e2(∂)
...

eγ (∂)

⎤

⎥
⎥
⎥
⎦
.
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Then by Eq. (12), for each i multiplication to αi C by each 〈v, ∂〉i can be replaced by multi-
plication from the right by Ai :

m(〈v, ∂〉) =
(

k∑

i=1

αi C Ai

)
⎡

⎢
⎢
⎢
⎣

e1(∂)

e2(∂)
...

eγ (∂)

⎤

⎥
⎥
⎥
⎦
. (22)

When the identification of M with R
γ
row is done, the right-hand side of the above equation

lies in

rowspan(C)+ rowspan(C A)+ · · ·
Now, by Cayley–Hamilton theorem

rowspan(C)+ rowspan(C A)+ · · · = rowspan

⎡

⎢
⎢
⎢
⎣

C
C A
...

C Aγ−1

⎤

⎥
⎥
⎥
⎦

because dimRM = γ . It follows that

m(〈v, ∂〉) ∈ rowspan

⎡

⎢
⎢
⎢
⎣

C
C A
...

C Aγ−1

⎤

⎥
⎥
⎥
⎦

= Vv.

This proves that Mv ⊆ Vv . �

We now use Theorem 15 to show that when B is strongly autonomous, its restriction to

Lv is always equal to the behavior Bv associated to the v-intersection submodule Rv = R∩
R[〈v, ∂〉]w. The one-to-one correspondence between behaviors and submodules, discussed
in Sect. 1, tells us that the quotient module corresponding to Bv is nothing but Mv . To see
this consider the following commutative diagram:

〈v, ∂〉s j �→ d
dt s j ∀ j ∈ {1, 2, . . .,w}

ϕ : R[〈v, ∂〉]w −→ R
[ d

dt

]w

↓ ↓
ϕ̃ : Mv −→ R

[ d
dt

]w
/ϕ(Rv),

where s j is the standard j th basis vector in R[∂]w. Because 〈v, ∂〉 is transcendental over R,
the map ϕ in the above diagram is an isomorphism. Moreover, from the definition of the
the behavior Bv , the equation module of Bv is equal to this ϕ(Rv). Now, observe that ϕ̃
defined via ϕ by taking lifts in R[〈v, ∂〉]w is well-defined, and not only that, it is in fact
an isomorphism of modules over 1-variable polynomial rings. Thus the quotient module
corresponding to Bv can be identified with Mv , with the role of d

dt played by 〈v, ∂〉. Since
multiplication by 〈v, ∂〉 in M is represented by the matrix A := ∑n

i=1 vi Ai , and Mv is
A-invariant, the restriction of A to this invariant subspace, A|Mv , must be the representation
of multiplication by 〈v, ∂〉. But we just showed that Mv is isomorphic to R[ d

dt ]w/ϕ(Rv),

123



Multidim Syst Sign Process

therefore, it follows that multiplication by d
dt in R[ d

dt ]w/ϕ(Rv) is represented by A|Mv .
By following exactly the same line of arguments as in the proof of Theorem 10, it can be
concluded that a state representation of Bv is given by the matrix A|Mv . Our next result
makes use of this observation to infer that B’s restriction B|v is equal to Bv .

Theorem 16 Let B ∈ Lw be strongly autonomous and let 0 �= v ∈ R
n. Then the restriction

of B to the line Lv is equal to Bv , that is,

B|v = Bv.

Proof Let C ∈ R
w×γ be the matrix as in Eq. (20). By Theorem 10, we have a first order

representation for B given by
⎡

⎢
⎢
⎢
⎣

∂1 I − A1

∂2 I − A2
...

∂n I − An

⎤

⎥
⎥
⎥
⎦

z = 0, w = Cz. (23)

Recall, by Theorem 15,Mv is the smallest right-A-invariant subspace containing rowspan(C),
where A := ∑n

i=1 vi Ai . Let γ1 := dimR(Mv). Then, if we take a basis of Mv and extend
it to a basis of M, in this new basis the matrices C and A will look like:

C = [
C1 0

]
, A =

[
A1,1 0
A2,1 A2,2

]
,

where C1 ∈ R
w×γ1 , A1,1 ∈ R

γ1×γ1 , A2,1 ∈ R
(γ−γ1)×γ1 , A2,2 ∈ R

(γ−γ1)×(γ−γ1). The structure
of C , in this new basis, is as above because rowspan(C) ⊆ Mv , while that of A is due to
the fact that Mv is right-A-invariant. Notice that in this new basis A|Mv = A1,1. Moreover,
in the new basis, the images of the standard basis vectors {s1, s2, . . ., sw} of R[∂]w in Mv

is given by rowspan(C1). It then follows from the discussion preceding the statement of the
theorem that d

dt z̃ = A1,1̃z, w̃ = C1̃z is a state representation for Bv . So every trajectory in
Bv can be obtained as

w̃(t) = C1exp(A1,1t )̃z(0).

On the other hand every solution in B|v looks like

w(vt) = Cexp

(
n∑

i=1

vi Ai t

)

z(0) = Cexp(At)z(0),

where 0 denotes the origin in R
n . It easily follows from the structures of C and A that

w(vt) = Cexp(At)z(0) = [
C1exp(A1,1t) 0

]
z(0).

Therefore,by choosing z(0) =
[

z̃(0)
∗

]
, ∗ ∈ R

γ−γ1 being arbitrary, we get

w(vt) = C1exp(A1,1t )̃z(0) = w̃(t).

Hence we conclude that Bv ⊆ B|v . That Bv ⊇ B|v has already been proved in Theorem 6.
Thus equality follows. �
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4 Restrictions of general autonomous systems

In this section we look into restrictions of general autonomous systems, which are not neces-
sarily strongly autonomous. We have already seen in Sect. 3 that for the strongly autonomous
case, restriction to the line Lv always turns out to be an autonomous system given by ODEs,
namely, the system associated to the v-intersection submodule. For a general autonomous sys-
tem, however, the situation is much different. As we shall see shortly, for a general autonomous
system, a given direction may turn out to be free, in the sense that every possible 1-d trajectory
can be obtained by restricting trajectories in the autonomous system. Interestingly, it turns
out that for a given autonomous system, a direction is either free or the restriction of the
system is given by the solution set of ODEs (see Theorem 29).

We have seen in the strongly autonomous case that the quotient module turns out to be
a finite dimensional vector space. As a consequence a strongly autonomous behavior also
happens to be a finite dimensional real vector space. This situation no longer persists for a
general autonomous system that is not strongly autonomous—the quotient module ceases
to be finite dimensional in this case. Consequently, the space of trajectories also loses finite
dimensionality. Thus, unlike the strongly autonomous case, here there can be non-exponential
type trajectories too. However, for the purpose of bringing out properties of a system restricted
to a 1-d subspace it suffices to consider only exponential type solutions (see Theorem 29 and
Corollary 30). In this section we are going to consider our solution space to be real analytic
solutions of exponential type. A crucial benefit of this consideration is that it lets us use an
algorithm (from Oberst 1990, 2006) based on Gröbner basis method (Algorithm 22 below)
to carry out explicit computation of exponential solutions of a given set of PDEs.

We begin with the definition of real entire analytic solutions of exponential type.

Definition 17 We denote by Exp(Rn,R) the set of all formal power series in n variables

w(x) =
∑

ν∈Nn

wν

ν! xν,

where

1. ν = (ν1, ν2, . . ., νn) ∈ N
n is a multi-index,

2. xν means the monomial xν1
1 xν2

2 · · · xνn
n and

3. ν! denotes ν1!ν2! · · · νn !
with the sequence of real numbers {wν}ν∈Nn being such that w is convergent everywhere,
that is, w(a) ∈ R for all a ∈ R

n .

Note that, like before, Exp(Rn,R) is endowed with an R[∂]-module structure by defining
multiplication by an element from R[∂] as differentiation,

Remark 18 In Oberst (2006), Oberst and Pauer (2001), it has been shown that the set of
exponential trajectories, Exp(Rn,R), is a large injective cogenerator. This means that the
module-behavior correspondence that we have been exploiting so far is applicable to this
case too.

With this idea of exponential solutions, we now define the notion of a free direction of an
autonomous behavior. Recall the definition (Definition 4) of restriction of a behavior to a line
spanned by a nonzero vector.
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Definition 19 Let B ∈ Lw be an autonomous exponential behavior and let 0 �= v ∈ R
n

define the line Lv . Then v is said to be a free direction of B if the restriction of the behavior
to Lv is the whole of 1-d exponential trajectories, i.e.,

B|v = Exp(R,Rw).

Example 20 As an example of free directions consider the following scalar system of PDEs:

B = ker

⎡

⎣
∂2

2
∂2

3
∂1∂3 − ∂2

⎤

⎦ .

Clearly, any exponential trajectory of the form w(x1, x2, x3) = p(x1)eαx1 with p(x1) ∈
R[x1] is a solution to the above system of equations. Every 1-d exponential function is of the
above form. So, indeed, x1-axis is a free direction.

4.1 Characterization of free directions of a scalar autonomous system

By a scalar autonomous system we mean that there is only one manifest variable, i.e., w = 1.
In this case the equation module R is equal to the characteristic ideal I, which in turn is equal
to the annihilator ideal ann(M). The next result gives necessary and sufficient conditions for
a given direction in R

n to be a free direction of a scalar autonomous system. We shall see
here that v is a free direction if and only if the v-intersection ideal Iv := I ∩ R[〈v, ∂〉] is the
zero ideal. Equivalently, by Proposition 13, v is a free direction if and only if the projection
of V(B) onto the complex 1-d subspace LC

v = {ξ ∈ C
n | ξ = vτ, τ ∈ C} is Zariski dense.

Theorem 21 Let B be a scalar autonomous behavior defined by the equation ideal I ⊆ R[∂]
and let 0 �= v ∈ R

n. Then the following conditions are equivalent:

1. v is a free direction of B.
2. The intersection ideal Iv := I ∩ R[〈v, ∂〉] is the zero ideal.
3. LetΠv(V(B)) define the projection of the characteristic variety V(B) on to the complex

line LC
v as in Eq. (19). Then

Πv(V(B)) = C.

4. The R-algebra homomorphism ϕ in the following commutative diagram is an injection.

R[∂] � R[∂]/I
↑ ↗ϕ

R[〈v, ∂〉]
.

Before we embark on proving Theorem 21, we first have a look at a Gröbner basis method
of obtaining exponential type solutions of PDEs; our proof crucially relies on this method.
In Oberst (1990, 2006) Oberst elaborated this method extensively and showed how it can
be utilized to construct power series solutions to the Cauchy problems in PDEs. Algorithm
22 is a short description of this Gröbner basis method for formal integration of PDEs. We
describe the method for the scalar case, i.e., w = 1 (see Oberst 2006 for the general case). In
this method, first a Gröbner basis, G of the equation ideal I is computed for some fixed term
ordering, say ≺. We denote by in≺(I) the initial ideal of I with respect to the term ordering ≺.
We call the monomials not belonging to in≺(I) the standard monomials, and denote the set
of standard monomials by Γ≺(I). (Note that there is a bijection between monomials in R[∂]
and the lattice of non-negative integers N

n . We often considerΓ≺(I) ⊆ N
n without explicitly
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mentioning it since there is no risk of ambiguity.) The idea behind Algorithm 22 stems from
the algebraic fact that each element in R[∂], modulo the ideal I, can be written as a unique
R-linear combination of the standard monomials (see Cox et al. 1998; Sturmfels 2002). Recall
from Definition 17 that every exponential solution can be written as a convergent power series
w = ∑

ν∈Nn
wν
ν! xν . Now note that in order for w to be a solution to the given set of PDEs it

must satisfy the following:

for all ν ∈ N
n, wν =

∑

ν′∈Γ≺(I)
αν′wν′ ,

where the monomial ∂ν upon division by the Gröbner basis G reduces to
∑
ν′∈Γ≺(I) αν′∂ν

′
.

In the sequel, for notational convenience, we use just Γ to denote Γ≺(I) when the ideal and
the term ordering are clear from the context.

Algorithm 22 [Oberst-Riquier]

Level-1
Input: A set of PDEs f1(∂)w = 0, f2(∂)w = 0, …, fr (∂)w = 0.
Computation:

– Fix a term ordering ≺ in R[∂].
– Compute a Gröbner basis G of the ideal I :=< f1, f2, . . ., fr >.
– Construct the set of standard monomials Γ := {ν ∈ N

n | ∂ν �∈ in≺(I)}.
Output:Standard monomial set Γ .
Level-2
Input: Initial data: {wν ∈ R}ν∈Γ .
Computation:

for ν �∈ Γ
– Compute by division algorithm by G to obtain

∂ν ≡
k<∞∑

i=1,νi ∈Γ
αi∂

νi modulo I.

– Set wν = ∑k
i=1 αiwνi .

end
OutputThe sequence w := {wν}ν∈Nn .

In Oberst (1990, 2006) Oberst shows that the output of the above algorithm, when written
in the power series form as w = ∑

ν∈Nn
wν
ν! xν , is indeed a solution to the given set of PDEs,

fi (∂)w = 0 for all i ∈ {1, 2, . . ., r}. Conversely, every formal power series solution is
obtained from this algorithm by giving different initial conditions {wν}ν∈Γ , where Γ is the
standard monomial set computed in Level-1 of Algorithm 22. However, note that Algorithm
22 says nothing about convergence of the solution. Importantly, in Oberst (2006); Oberst
and Pauer (2001), it was proved that if the initial data itself is an exponential trajectory then
the solution obtained following Algorithm 22 is guaranteed to be an exponential one. We
paraphrase this result in the following proposition; this will be crucial for us while proving
Theorem 21.

Proposition 23 (Theorems 24 and 26, Oberst and Pauer 2001) Given a set of PDEs f1(∂)w =
0, f2(∂)w = 0, . . . , fr (∂)w = 0, and a term ordering ≺ of R[∂], let Γ be the set of standard
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monomials, that is, monomials that do not belong to in≺(< f1, f2, . . . , fr >). Further, let
win := {wν}ν∈Γ be an arbitrary sequence of real numbers indexed by Γ . With this win as
the initial data, let {wν}ν∈Nn be the output of Algorithm 22. Suppose the following formal
power series

ŵ(x) :=
∑

ν∈Γ

wν

ν! xν

obtained from win converges for all x ∈ R
n. Then so does the power series

w(x) :=
∑

ν∈Nn

wν

ν! xν

obtained from the solution of Algorithm 22. That is, ŵ(x) ∈ Exp(Rn,R) implies w(x) ∈
Exp(Rn,R).

Keeping the above result in mind, we call an initial condition win (or ŵ(x) = ∑
ν∈Γ

wν
ν! xν)

valid if ŵ ∈ Exp(Rn,R).

Remark 24 Let w̃ = ∑
λ∈N

w̃λ
λ! tλ ∈ Exp(R,R) be any 1-d exponential trajectory. If we define

Γi := {ν ∈ N
n | ν = λei , λ ∈ N}, ei being the standard i th basis vector in R

n , and assume
that for some term ordering we have Γi ⊆ Γ , then notice that the following initial condition
is a valid one.

ŵ(x) =
∑

ν∈Γ

wν

ν! xν, where wν =
{
w̃λ if ν ∈ Γi and ν = λei

0 otherwise
.

This is because if we denote by xi the i th coordinate function, then Exp(R,R) � w̃(t) �→
w(x) := w̃(xi ) ∈ Exp(Rn,R) is an injection. Now, if indeed Γi ⊆ Γ , andwin is chosen from
a 1-d exponential trajectory w̃, then Algorithm 22 guarantees that the corresponding solution,
say w, when restricted to ei , gives back w̃. Since an initial condition can be freely chosen, it
follows that for any 1-d exponential trajectory there exists a trajectory in the solution set of
the PDEs whose restriction onto ei is that 1-d trajectory. In other words, ei is a free direction.
We exploit this observation in the proof of Theorem 21.

The next result is a technical lemma required in the proof of Theorem 21. The lemma
deals with the effect on the equation submodule and the behavior due to a change of basis in
the domain. This is closely related to the differential geometric notion of push-forward of a
map between two differentiable manifolds to a map between the two tangent spaces. We give
a short description of this notion below; details can be found in textbooks, see for example
Hörmander (1990).

Let T : R
n → R

n be an invertible linear map. We call the coordinate functions of
the domain and the codomain spaces x and y, respectively. Then x and y are related by
y = T x. This induces a map between the tangent spaces, T ∗ : TxR

n → TyR
n , as follows.

Let y �→ w(y) be in C∞ (Rn,R). Define for all 1 � i � n
(

T ∗ ∂

∂xi

)
(w(y)) := ∂

∂xi
w(T x).

T ∗ is called the push-forward of the map T . For the case when T is linear T ∗ naturally turns
out to be linear too. In fact, by making T ∗ ∂

∂xi
act on the coordinate functions y j ’s, we can
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get an expression for T ∗ ∂
∂xi

’s in terms of derivatives in y coordinates, i.e., ∂
∂y j

’s. Let T be
given by the matrix

T =

⎡

⎢
⎢
⎢
⎣

t11 t12 · · · t1n

t21 t22 · · · t2n
...

...
. . .

...

tn1 tn2 · · · tnn

⎤

⎥
⎥
⎥
⎦
.

Then it follows from the definition of T ∗ that
(

T ∗ ∂

∂xi

)
y j = ∂

∂xi

n∑

k=1

t jk xk = t j i .

It then follows by varying j that
(

T ∗ ∂

∂xi

)
=

n∑

j=1

t j i
∂

∂y j
.

This can be written in the matrix-vector form as

T ∗

⎡

⎢
⎢
⎢
⎢
⎣

∂
∂x1
∂
∂x2
...
∂
∂xn

⎤

⎥
⎥
⎥
⎥
⎦

= T T

⎡

⎢
⎢
⎢
⎢
⎣

∂
∂y1
∂
∂y2
...
∂
∂yn

⎤

⎥
⎥
⎥
⎥
⎦
. (24)

It now follows from Eq. (24) and the definition of push-forward that for w ∈ C∞ (Rn,R)

⎡

⎢
⎢
⎢
⎢
⎣

∂
∂x1
∂
∂x2
...
∂
∂xn

⎤

⎥
⎥
⎥
⎥
⎦
w(T x) = T ∗

⎡

⎢
⎢
⎢
⎢
⎣

∂
∂x1
∂
∂x2
...
∂
∂xn

⎤

⎥
⎥
⎥
⎥
⎦
w(y) = T T

⎡

⎢
⎢
⎢
⎢
⎣

∂
∂y1
∂
∂y2
...
∂
∂yn

⎤

⎥
⎥
⎥
⎥
⎦
w(y). (25)

For ease of explanation and to avoid cumbersome notation we use ∂x and ∂y to denote the
n-tuples of partial derivatives { ∂

∂x1
, . . ., ∂

∂xn
} and { ∂

∂y1
, . . ., ∂

∂yn
}, respectively. These partial

derivatives correspond to the two coordinate functions x and y, which are related by a linear
coordinate transformation. In the lemma we use C∞ (Rn,R) as the signal space, but the result
holds for Exp(Rn,R) since it too is a large injective cogenerator.

Lemma 25 Let T ∈ R
n×n define an invertible linear change of coordinates of R

n by x �→
T x =: y. Then T induces an R-algebra isomorphism ψ : R[∂x ] −→ R[∂y] by the linear
change of variables

∂x �→ T T∂y .

Suppose I ⊆ R[∂x ] is an ideal, then ψ(I) is an ideal in R[∂y]. Consider the following two
behaviors

Bx := {w(x) ∈ C∞ (
R

n,R
) | m(∂x )w = 0 for all m ∈ I},

By := {w(y) ∈ C∞ (
R

n,R
) | m(∂y)w = 0 for all m ∈ ψ(I)}.

Let vy, vx ∈ R
n be related to each other by vy = T vx . Then there is a bijective set map

between Bx |vx and By |vy .
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Proof That ψ is an isomorphism of n-variable polynomial algebras is clear from the fact
that T T is non-singular. It then follows that ψ(I) is an ideal of R[∂y]. Now notice that Eq.
(25), together with the fact that T is invertible, shows that there is a set bijection between Bx

and By given by ψ̃ : By → Bx with ψ̃(w(y)) = w(T x). This follows from the following
argument. First observe that for w ∈ C∞ (Rn,R) we have from Eq. (25)

⎡

⎢
⎢
⎢
⎢
⎣

∂
∂x1
∂
∂x2
...
∂
∂xn

⎤

⎥
⎥
⎥
⎥
⎦
w(T x) = T T

⎡

⎢
⎢
⎢
⎢
⎣

∂
∂y1
∂
∂y2
...
∂
∂yn

⎤

⎥
⎥
⎥
⎥
⎦
w(y).

More generally, for m(∂x ) ∈ R[∂x ]
m(∂x )w(T x) = ψ(m)(∂y)w(y) = m(T T∂y)w(y).

Hence it follows that w(y) ∈ C∞ (Rn,R) is in the kernel of ψ(m)(∂y) if and only if
ψ̃(w(y)) = w(T x) is in the kernel of m(∂x ). Thus from the one-to-one correspondence
between behaviors and modules (here ideals, because the behavior is scalar) we get w ∈ By

if and only if ψ̃(w) ∈ Bx .
For the restriction, observe now that forw(y) ∈ By , we have (ψ̃(w))(vx t) = w(T vx t) =

w(vy t) ∈ By |vy . Thus ψ̃ induces a set bijection between Bx |vx and By |vy . �

We now prove Theorem 21.

Proof of Theorem 21 (1 ⇒ 2): We prove this implication by contradiction. Suppose 2 is not
true, i.e., the intersection ideal Iv is nonzero. Since R[〈v, ∂〉] is PID, it follows that Iv is
generated by a polynomial g(〈v, ∂〉). Like in Sect. 2, define the 1-d behavior

Bv :=
{
w̃ ∈ Exp(R,R) | r

(
d

dt

)
w̃ = 0 for all r(〈v, ∂〉) ∈ Iv

}
.

Note that this 1-d behavior is a finite dimensional R-vector space with dimension equal to
the degree of the polynomial g(〈v, ∂〉). Therefore Bv � Exp(R,R). By Theorem 6 it follows
that B|v ⊆ Bv � Exp(R,R), which contradicts the claim of 1.

(2 ⇔ 3): Follows from Proposition 13
(3 ⇔ 4): This follows from the fact that ker ϕ = I ∩ R[〈v, ∂〉].
(4 ⇒ 1): In order to prove this implication we first prove a simpler case, and then we

shall make use of Lemma 25, that will render the general case into the simpler one.
Case 1 (v = e1 = col[1, 0, . . . , 0]): The problem here reduces to proving ϕ : R[∂1] →

R[∂]/I being injective implies e1 is a free direction. We claim that ϕ being injective implies
there exists a term ordering such that the standard monomials set Γ contains Γ1 := {ν ∈
N

n | ν = λe1, λ ∈ N}. Indeed, if we take a term ordering with ∂i � ∂1 for all 2 � i � n,
then a Gröbner basis for I, say G, with this term ordering will have no element which has a
monomial purely in ∂1 as the leading monomial. For if G had a polynomial, say f ∈ R[∂],
with leading monomial purely in ∂1, then since ∂1 has least priority in the term ordering,
the rest of the monomials in f will also be in ∂1 only. Thus f ∈ R[∂1] ∩ I = ker ϕ, which
contradicts our assumption that ϕ is injective. Now since G has no element with leading term
purely in ∂1, the initial ideal in ≺(I), too, does not contain any monomial purely in ∂1. In
other words, the standard monomial set Γ ⊇ Γ1. By Remark 24, it follows that e1 is free.

Case 2 (general v): For the general case we make use of Lemma 25. First observe that
since v = col[v1, v2, . . ., vn] is nonzero, one of its entries must be a nonzero real number.
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We may assume without loss of generality that v1 �= 0. For if it is not, then we can do
a permutation on the variables {x1, x2, . . ., xn} so that v changes to ṽ and ṽ1 �= 0. Such a
permutation exists because v has at least one entry nonzero. (By Lemma 25 it suffices to prove
that ṽ is free in this transformed system.) Now we define the following (n × n) real matrix
and the linear transformation defined by it. Because v1 has been assumed to be nonzero the
following matrix exists:

T :=

⎡

⎢
⎢
⎢
⎣

v1 0 · · · 0
v2 1 · · · 0
...
...
. . .

...

vn 0 · · · 1

⎤

⎥
⎥
⎥
⎦

−1

.

Note that T −1e1 = v, i.e., e1 = T v. Also, as in Lemma 25, T induces the following R-algebra
isomorphism between R[∂x ] and R[∂y] (say ψ : R[∂x ] → R[∂y]).

⎡

⎢
⎢
⎢
⎢
⎣

∂
∂x1
∂
∂x2
...
∂
∂xn

⎤

⎥
⎥
⎥
⎥
⎦

�→ T T

⎡

⎢
⎢
⎢
⎢
⎣

∂
∂y1
∂
∂y2
...
∂
∂yn

⎤

⎥
⎥
⎥
⎥
⎦
.

Now, by Lemma 25, it is enough to prove that e1 = T v is a free direction in the autonomous
system defined by the ideal ψ(I). We claim that R[ ∂

∂y1
] injects into R[∂y]/ψ(I). Note that a

feature of the T matrix isψ(〈v, ∂x 〉) = ∂
∂y1

. Because of this we get the following commutative
diagram.

R[〈v, ∂〉] ↪→ R[∂x ] � R[∂x ]/I
ψ ↓≈ ψ ↓≈ ψ ↓≈
R[ ∂

∂y1
] ↪→ R[∂y] � R[∂y]/ψ(I).

It follows that R[ ∂
∂y1

] injects into R[∂y]/ψ(I). Thus we have reduced the general case to that
of case 1, and thus the proof is complete. �


An immediate corollary to the above result is that no direction in a strongly autonomous
behavior is free. By statement 3 of Theorem 21, a direction defined by a nonzero real vector
v is free if and only if the projection of the variety on the line LC

v is dense in it. But, a strongly
autonomous system has only finitely many discrete set of points for its characteristic variety.
Therefore, its projection on LC

v for any 0 �= v ∈ R
n cannot be a Zariski dense set in LC

v .

Corollary 26 If B ∈ Lw is strongly autonomous, then no direction is a free direction.

Statement 3 of Theorem 21 gives a nice geometric criterion for a direction to be free. We
shall see presently an interesting consequence of that. So far we have considered free-ness
property of a given nonzero vector v ∈ R

n . However, if we look at the projection of the
characteristic variety V(B) on the complex line LC

v (the span of v in C
n), the nature of this

projection, meaning whether it is Zariski dense or not, does not change if v is replaced by
a nonzero multiple of it. Consequently, the free-ness property of v is a property of the line
and not of a particular vector that spans it. This leads us to identify these directions as points
in the projective (n − 1)-space, denoted here by RP

n−1. Our next main result, which is a
consequence of Theorem 21, shows that given a scalar autonomous behavior B, the set of
all non-free directions forms a linear closed set in RP

n−1.
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In classical algebraic geometry, the concept of irreducible varieties plays an important
role. We are going to make use of this concept to obtain a characterization of the set of
all non-free directions in RP

n−1. The definition of an irreducible set is generally given in
terms of a point set topology. A set Y which is a subset of a topological space X is said to be
irreducible if it cannot be written as a union of two strictly smaller closed sets. Although given
in topological terms, for affine varieties in C

n equipped with Zariski topology, irreducibility
happens to have a nice algebraic characterization: an affine variety is irreducible if and only
if its ideal in the polynomial ring over C is prime (see Hartshorne 2009). In order to make
use of this fact we consider our base field to be complex numbers. However, by looking into
the real part of the characteristic variety, we shall translate our results for real numbers. Our
main result Theorem 28, therefore, is with the real numbers as the base field.

Suppose the characteristic variety V(B) is irreducible. The ideal of this variety is a prime
ideal, say p. Suppose v ∈ R

n is some nonzero real vector. By Proposition 13 the Zariski
closure of the projection of V(B) on the complex 1-d subspace LC

v spanned by v, is given by
the variety of the v-intersection ideal p∩C[〈v, ∂〉]. It can be shown that this ideal in C[〈v, ∂〉]
is a prime ideal, which means: it is either zero or it is generated by a linear polynomial
(〈v, ∂〉 − α) for some α ∈ C. For the latter case, which by Theorem 21 is equivalent to v
being non-free, it follows from Proposition 13 that

Πv(V(B)) = V(p ∩ C[〈v, ∂〉]) = {α}.
This in turn means Πv(V(B)) = {α}. But Πv(V(B)) = {vTξ | ξ ∈ V(B)} by definition. It
then easily follows that V(B) is contained in the affine hyperplane HC

v :={ξ ∈ C
n | vTξ=α}.

Because v is a real vector, this means that the real part of the characteristic variety,

ΠRn (V(B)) := {x ∈ R
n | ∃ y ∈ R

n such that x + iy ∈ V(B)},
is contained in the affine hyperplane Hv := {x ∈ R

n | vTx = Re(α)}. Thus we arrive at the
following lemma.

Lemma 27 Given an autonomous scalar behavior B and 0 �= v ∈ R
n, if the characteristic

variety V(B) is irreducible then v is a non-free direction if and only if the real part of V(B)

is contained in an affine hyperplane whose normal is v.

This observation can be utilized to give a full characterization of all the non-free directions.
First, note that given a subset in R

n there exists a unique smallest dimensional affine space
containing that set, namely the affine hull of the points in that set. Now, in order for v ∈ R

n to
be a non-free direction, there must be an affine space containing ΠRn (V(B)) whose normal
is v. This affine space clearly contains the affine hull of ΠRn (V(B)). Therefore, v is normal
to the affine hull ofΠRn (V(B)). Now note that we can describe the affine hull ofΠRn (V(B))

as the solution set of a linear equation:

Aff(ΠRn (V(B))) = {x | Hx = b, for some H ∈ R
g×n, b ∈ R

g}.
It then follows that v is a non-free direction if and only if v ∈ colspan(HT).

We now show how the above geometric criterion for a direction to be non-free can be
extended to cater for the general case when V(B) is not irreducible. The technique is to do
an irreducible decomposition of V(B) as

V(B) = V1 ∪ V2 ∪ · · · ∪ Vr ,

where each Vi is irreducible and Vi �⊆ V j for i �= j . Such a decomposition of affine varieties
always exists (see Hartshorne 2009), and is unique upto permutation. The Vi s in such a
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decomposition are called irreducible components. It follows from the decomposition that

Πv(V(B)) = Πv(V1) ∪Πv(V2) ∪ · · · ∪Πv(Vr ).

So clearly in order for v to be a non-free direction Πv(Vi ) must be single points for each
Vi . In other words, by Lemma 27, v is non-free if and only if each Vi is contained in an
affine hyperplane normal to v. To elaborate this further, let Aff(ΠRn (Vi )) be the affine hull
of ΠRn (Vi ). Like the previous case, these Aff(ΠRn (Vi ))’s can be written as solution sets of
linear equations as

Aff(ΠRn (Vi )) = {x | Hi x = bi , for some Hi ∈ R
g×n, bi ∈ R

g},
Then it follows that v is a non-free direction if and only if

v ∈ colspan(HT
1 ) ∩ colspan(HT

2 ) ∩ · · · ∩ colspan(HT
r ).

This gives a full characterization of all the non-free directions. An important consequence of
this characterization is that the set of non-free directions are given by span of vectors, so it
can be written as the zero set of homogeneous linear equations. This implies that the set of
non-free directions is actually a linear closed set of RP

n−1. We sum up all these observations
in the following theorem.

Theorem 28 Let B ∈ L1 be an autonomous system with V(B) ⊆ C
n as characteristic

variety. Suppose that

V(B) = V1 ∪ V2 ∪ · · · ∪ Vr

is the irreducible decomposition of V(B). Further suppose that for i ∈ {1, 2, . . ., r}, the real
affine hull of ΠRn (Vi ), the projection of Vi onto R

n, is given by

Aff(ΠRn (Vi )) = {x | Hi x = bi , for some Hi ∈ R
g×n, bi ∈ R

g}.
Then 0 �= v ∈ R

n is a non-free direction if and only if

v ∈ colspan
(
HT

1

) ∩ colspan
(
HT

2

) ∩ · · · ∩ colspan
(
HT

r

)
.

4.2 Restriction to non-free directions and stability

By Theorem 21, a nonzero real vector v ∈ R
n defines a non-free direction if and only if

the v-intersection ideal Iv = I ∩ R[〈v, ∂〉] is nonzero. But this means that the 1-d behavior
defined by Iv , which we have called Bv , is given by a non-trivial ODE, namely the one given
by the unique monic generator of Iv . Therefore, in this case, Bv is finite dimensional. Now,
it is well-known that all the trajectories in such a nontrivial 1-d autonomous system are of
exponential type. We are going to exploit this fact and utilize Algorithm 22 to infer that in
this situation the behavior restricted to v is in fact equal to Bv .

Theorem 29 Let B be scalar autonomous behavior defined by equation ideal I ⊆ R[∂]
and let 0 �= v ∈ R

n. Let Bv denote the 1-d exponential behavior corresponding to the
v-intersection ideal Iv , i.e.,

Bv :=
{
w̃ ∈ Exp(R,R) | r

(
d

dt

)
w̃ = 0 for all r(〈v, ∂〉) ∈ Iv

}
.

Then Iv �= 0 implies B|v = Bv .
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Proof The R-algebra R[〈v, ∂〉] can be thought of as R[∂1] following the arguments used in
Theorem 21 and Lemma 25. Then the v-intersection ideal is given by the elimination ideal
I1 := I ∩ R[∂1]. Suppose g(∂1) ∈ I1 is the unique monic generator of the ideal I1. The
behavior Bv is then given by

Bv =
{
w̃ ∈ Exp(R,R) | g

(
d

dt

)
w̃ = 0

}
.

Let us consider the following exponential type power series to be an element in Bv .

w̃(t) = w̃0 + w̃1t + w̃2

2! t2 + w̃3

3! t3 + · · · + w̃k

k! tk + · · · ∈ Bv. (26)

It then follows that

w̃k =
((

d

dt

)k

w̃

)

(0) =
(

r

(
d

dt

)
w̃

)
(0),

where r( d
dt ) is the remainder after division of ( d

dt )
k by g( d

dt ), which is clearly a polynomial of
degree less than that of g. This is nothing but Algorithm 22 applied to the 1-d case. This shows
that every element in Bv is uniquely determined once the initial condition {w̃i }0�i�(deg(g)−1)
is specified. What we are going to show next is that with a suitable choice of the term ordering,
there is a Gröbner basis for I, for which an initial condition can be constructed from the above
1-d initial condition so as to guarantee a solution in B whose restriction to e1 will be w̃.

Let this w̃(t) of Eq. (26) be obtained from the initial condition

{w̃i }0�i�(d−1),

where d := deg(g). Therefore, if

r

(
d

dt

)
= a0 + a1

d

dt
+ a2

(
d

dt

)2

+ · · · + ad−1

(
d

dt

)d−1

∈ R

[
d

dt

]

is the remainder after division of ( d
dt )

k by g( d
dt ), then the said solution w̃ satisfies

w̃k =
(

r

(
d

dt

)
w̃

)
(0) = a0w̃0 + a1w̃1 + a2w̃2 + · · · + ad−1w̃d−1.

We now fix a term ordering ≺ in R[∂] such that for all 2 � i � n, ∂1 ≺ ∂i . If G ⊆ R[∂] is
the monic reduced Gröbner basis of I with respect to the term ordering ≺, it then follows
from standard Gröbner basis theory that G1 := G ∩ R[∂1] is a monic Gröbner basis for the
elimination ideal I1 (see Cox et al. 2007, 1998). First, since I1 �= 0, G1 �= ∅. Secondly,
since R[∂1] is a PID, I1 is principal, and so its monic Gröbner basis is nothing but the
monic generator g(∂1) of I1. Therefore, G1 = {g(∂1)}. Now, we are going to follow each
step of Algorithm 22 to obtain our desired solution whose restriction to e1 we want to be
w̃. Suppose Γ ⊆ N

n is the set of multi-indices corresponding to the standard monomials,
and Γ1 is the multi-indices whose every component except the first ones are zero, that is,
Γ1 := {ν ∈ N

n | ν = ke1}. Since, G1 = {g(∂1)}, we must have Γ ∩ Γ1 = {ν ∈ N
n | ν =

ke1, 0 � k � (d − 1)}. Let us fix the initial condition {wν}ν∈Γ as follows:

wν =
{
w̃k if ν ∈ Γ ∩ Γ1, ν = ke1

0 otherwise
.

Such an initial condition, when written as an exponential series, win = ∑
ν∈Γ

wν
ν! xν , is a

finite sum for all x ∈ R
n . Hence, by Remark 24, this initial condition is valid. Now suppose
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ν = ke1 ∈ Γ1 and r ′(∂) ∈ R[∂] is the remainder after division of ∂ν by the Gröbner basis G.
We claim that r ′(∂) = r(∂1), where r( d

dt ) is the remainder after division of ( d
dt )

k by g( d
dt ).

This is because ∂ν ∈ R[∂1], and since ∂1 has the least weightage as per the term ordering
≺, ∂ν , therefore, is divisible only by leading terms in G1. But we have already seen that
G1 = {g(∂1)}. Therefore, the remainder after division by G is same as that after division by
only g, which incidentally is r(∂1). So, for ν = ke1 for any k ∈ N, if we follow Algorithm
22, we get

wν = (r ′(∂)w)(0) = (r(∂1)w)(0)

=
d−1∑

i=0

aiwie1 =
d−1∑

i=0

ai w̃i = w̃k

Now notice that ifw(x) is the solution obtained by following Algorithm 22, then the restriction
of w to the x1 axis, that is, along the line defined by e1, turns out to be

w(e1t) =
∑

ν∈Γ1

wν

ν! (e1t)ν

=
∑

ν=ie1,i∈N

wν

i ! t i

=
∑

i∈N

w̃i

i ! t i = w̃(t).

Thus, for every exponential trajectory in Be1 , there exists an exponential trajectory in B,
whose restriction on e1 is same as the trajectory in Be1 . Hence Be1 ⊆ B|e1 .

That B|e1 ⊆ Be1 has already been proved in Theorem 6. Thus we conclude that B|e1 =
Be1 . Finally, by Lemma 25, for any nonzero vector v ∈ R

n such that Iv is nonzero, B|v = Bv .
�


One very interesting consequence of the above result is that stability in a given direction
can be inferred from it. Given an autonomous scalar behavior B and a nonzero vector v,
by stability along v we mean that for all w ∈ B, the limit limt→∞w(vt) = 0. Clearly, a
necessary condition for stability is that v is a non-free direction. This is because otherwise
any exponential 1-d trajectory can be obtained by restricting trajectories in B to Lv . In
particular, trajectories that are unstable in the positive half line L+

v = {vt | t � 0}, can also
be obtained by restriction. Now, if indeed a direction is non-free, then our last result ensures
that the restriction B|v is equal Bv , the behavior of the intersection ideal Iv . Therefore,
B|v has unstable trajectories in the positive half line if and only if Bv is an unstable 1-d
behavior. But, since Bv is a 1-d behavior, governed by an ODE, its stability is reflected in
the pole locations of the monic generator of Iv . Combining these observations we obtain the
following result.

Corollary 30 Let B be a scalar autonomous behavior with equation ideal I and let v ∈ R
n

be nonzero. Then B is stable on the half-line L+
v := {x ∈ R

n | x = vt, t � 0} if and only if
the following two conditions hold:

1. v is not a free direction,
2. if g(〈v, ∂〉) is the monic generator of the v-intersection Iv , then g( d

dt ) ∈ R[ d
dt ] has all

roots with negative real parts.
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Remark 31 The issue of stability with respect to a special type of collection of half-lines,
namely a closed convex cone, was dealt with in Pillai and Shankar (1998). There, it was
shown that for stability with respect to a given cone S it is necessary that the real part of the
characteristic variety be strictly contained in the polar cone S< of S. Moreover, it was also
shown that for the case when the characteristic ideal contains a polynomial with no repeated
factors, this condition becomes sufficient too. For stability on the half-line generated by
0 �= v ∈ R

n , this geometric condition translates to: the real part of the characteristic variety
should be strictly contained in the half-space {x ∈ R

n | vTx � 0}. It follows from Proposition
13 that when v is a non-free direction, this condition is equivalent to Statement 2 of Corollary
30 above. On the other hand, if v is a free direction, that is Iv = {0}, then it can be shown
that

C \ W ⊆ Πv(V(B)),

where W ⊆ C is finite [see for example (Cox et al. 2007, Theorem 3.2.3)]. This means, when
v is a free direction, we can always find a point ξ ∈ V(B) such that Re(vTξ) > 0. Clearly,
then the real part of V(B) cannot be contained in the half-space polar to v. Hence B cannot
be stable on the half-line generated by v. This way Corollary 30 strengthens the stability
results in Pillai and Shankar (1998) and makes the above mentioned geometric condition
necessary and sufficient for stability on a half-line.

5 Concluding remarks

In this paper, we have investigated the restriction of n-d systems to 1-d subspaces. We have
brought out a strong connection between the restricted solutions and an algebraic entity, called
v-intersection submodule. We have shown that the intersection submodule naturally gives
rise to a 1-d system which always contains the restricted trajectories. We then looked into a
special kind of autonomous systems, namely strongly autonomous systems, whose solution
sets are finite dimensional vector spaces. We showed that such systems always admit a first
order representation involving an n-tuple of real square matrices called companion matrices.
Then we made use of this result to show that the 1-d behavior corresponding to the intersection
submodule admits a state-space representation given by the restriction of a linear combination
of the companion matrices to an invariant subspace. Utilizing this result we showed that, for
the strongly autonomous case, the restriction of the behavior is in fact equal to the behavior
of the intersection submodule. Then we looked into general autonomous systems – not
necessarily strongly autonomous. Here we have shown that a given direction may turn out
to be free: every possible 1-d trajectory can be obtained by restriction of trajectories in the
system. Then we first gave a set of algebraic criteria equivalent to a given direction being free.
Using this result we then gave a geometric characterization of all (non)free directions. We
have shown that the set of all non-free directions is a linear closed subset of the real projective
(n − 1)-space. Finally, we proved that if a direction is non-free then restriction of the system
to the corresponding 1-d subspace turns out to be equal to the 1-d behavior associated to the
intersection ideal. We then made use of this fact to give an equivalent condition for stability
along a given half-line.
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