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Abstract— In this paper, we analyze the `2-stability and the
`∞-stability of general discrete 2-D autonomous systems. The
problem of `∞-stability has not been studied before for general
2-D autonomous systems. We give a necessary condition for the
`∞-stability of discrete 2-D autonomous systems. We also give
sufficient conditions for the `2-stability and the `∞-stability of
discrete 2-D autonomous systems, which are easy to check.

Index Terms— 2-D systems, `2-stability, `∞-stability.

I. INTRODUCTION

As a result of applications in wide variety of areas like
image processing, string stability, circuits, control, signal
processing, seismology etc., research interest in 2-D systems
and n-D systems in general has been growing and matur-
ing for the past three to four decades. Quite a few new
approaches have emerged into the literature over the time to
represent and analyze 2-D systems. The classical literature
on n-D systems is collated in [17], [16] and [15].

Behavioral theory developed by Willems (see [11] and
[12]) for 1-D systems has turned out to be an appropriate
framework to represent and analyze n-D systems. See among
others [20], [10], [21] and [14] for the behavioral approach
applied to n-D systems. We now briefly review the literature
on stability analysis of n-D systems; we will use the terms
behavior and system interchangeably.

Stability analysis of multidimensional systems is a topic
of crucial importance because of their diverse applications
which are of theoretical and/or practical interest. The internal
stability of Fornasini-Marchesini input/state/output models
for 2-D systems was studied in [8]. In [10], a notion of
directional stability for n-D behaviors is proposed which is
a generalization of BIBO stability of 1-D behaviors. In [19],
stability properties of discrete 2-D autonomous behaviors
are studied with respect to its characteristic cones. In [13],
L2-stability of continuous n-D systems described by linear
constant coefficient PDEs is discussed. Stability of strongly
autonomous continuous n-D systems is investigated in [5].
Stability of time-relevant discrete 2-D autonomous systems
is studied in [3]; it also gives an LMI characterization of
time-relevant stability.

A. Objective and Overview

In [6], a certain representation formula is provided for
discrete 2-D autonomous systems. With the help of this
representation formula, solutions of discrete 2-D autonomous
systems can be written in terms of powers of an appropriate
Laurent polynomial matrix A1(σ1,σ

−1
1 ) acting on suitable
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1-D trajectories, which are called initial conditions. In this
paper, we make use of this representation formula to an-
alyze the problem of `∞-stability for general discrete 2-D
autonomous systems. For a specific 2-D autonomous system
of platoon of vehicles, where the dynamics is governed by the
relative position of a vehicle w.r.t. its immediate neighbors,
the `∞-stability problem has been analyzed in [1] and [7].
However to the authors’ knowledge, the problem of `∞-
stability has not been studied for general 2-D autonomous
systems. We give necessary condition and sufficient con-
dition for the `∞-stability of discrete 2-D autonomous sys-
tems. We also give sufficient conditions for the `2-stability
of discrete 2-D autonomous systems. Some of the results
obtained on the `2-stability would be utilized to analyze the
`∞-stability.

B. Organization of The Paper

In section-II, we explain background and problem state-
ment. Section-III deals with mathematical preliminaries. In
section-IV and section-V, we state our results on the `2-
stability and the `∞-stability of discrete 2-D autonomous
systems. Finally paper is concluded with future work in
section-VI.

C. Notation

All norms on Rn are equivalent. Therefore, we denote
a norm on Rn by just ‖ · ‖, when the explicit norm under
consideration is irrelevant. For a linear operator F :Rn→Rn,
the spectrum Λ(F), the spectral radius ρ(F), the induced 2-
norm ‖F‖2 and the induced ∞-norm ‖F‖∞ are defined as:

Λ(F) := {λ ∈ C : det(λ I−F) = 0} (1a)

ρ(F) := max {|λ | : λ ∈ Λ(F)} (1b)

‖F‖2 := max {‖Fx‖2 : x ∈ Rn and ‖x‖2 ≤ 1} (1c)

‖F‖∞ := max {‖Fx‖∞ : x ∈ Rn and ‖x‖∞ ≤ 1} (1d)

We use {ê1, ..., ên} to denote the standard basis of Rn; and

1 to denote the vector of all ones, i.e. 1 =
n

∑
j=1

ê j. Transpose

of a vector v (a matrix B) is denoted by v′ (B′).
R∞(Z,Rn) is used to denote the space of vector valued

bidirectional sequences; i.e. R∞(Z,Rn) := {a : Z → Rn}.
R∞(Z2,Rn) is used to denote the space of 2-D sequences. To
denote the zero element in Rn, R∞(Z,Rn) and R∞(Z2,Rn)
we use boldface 0; and we expect it to become clear from
the context. For x ∈ R∞(Z,Rn), x( j) is used to denote the
value of x at j ∈ Z; therefore, x( j) ∈ Rn, ∀ j ∈ Z.

Laurent polynomial ring in two indeterminates σ1, σ2 with
real coefficients is denoted as R[σ1,σ

−1
1 ,σ2,σ

−1
2 ]. Laurent
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polynomial ring in one indeterminate is denoted analogously.
We use i to denote

√
−1, unless specified otherwise. We use

S(0,1) to denote the unit circle in C centered at origin; i.e.,
S(0,1) := {z ∈ C : |z|= 1}.

II. BACKGROUND DEVELOPMENT AND PROBLEM
FORMULATION

In this section, we first briefly summarize relevant results
from [6], and then we explain how the problem studied in
this paper is equivalent to the stability analysis of general
discrete 2-D autonomous systems with the representation
given in [6]. There are quite a few equivalent definitions
of 2-D autonomous behaviors; we refer the reader to [19],
[10], [3] and [6] for the same. In this paper, we use following
definition of discrete 2-D autonomous behavior, which is as
per [19] and [3].

Definition 2.1: Discrete 2-D behavior is said to be au-
tonomous if it is given by the kernel of a full column rank
Laurent polynomial matrix in two shift operators.

Let B be a discrete 2-D autonomous behavior with
w manifest variables; i.e. B is given by the ker-
nel of a full column rank Laurent polynomial matrix
R(σ1,σ

−1
1 ,σ2,σ

−1
2 ) ∈ Rg×w[σ1,σ

−1
1 ,σ2,σ

−1
2 ]. The shift op-

erators σ j :R∞(Z2,Rn)→R∞(Z2,Rn) for j = 1,2 are defined
as follows:

σ1 (w(h,k)) := w(h+1,k) and σ2 (w(h,k)) := w(h,k+1).

The inverse shift operators σ
−1
j for j = 1,2 are de-

fined analogously. Let R denote the equation module of
B; i.e. R := rowspan

(
R(σ1,σ

−1
1 ,σ2,σ

−1
2 )
)

over the ring
R[σ1,σ

−1
1 ,σ2,σ

−1
2 ]. The quotient module M of B is defined

as,
M := R1×w[σ1,σ

−1
1 ,σ2,σ

−1
2 ]/R. (2)

Definition 2.2: An autonomous behavior B with equation
module R is said to be strongly σ2-relevant if the quotient
module M is a finitely generated module over the ring
R[σ1,σ

−1
1 ].

We give below Theorem 3.7 from [6] for strongly σ2-relevant
autonomous behaviors.

Theorem 2.1: Let B be a strongly σ2-relevant au-
tonomous behavior. Then there exist positive integers g1, n1,
and the following one variable Laurent polynomial matrices,

1) R1(σ1,σ
−1
1 ) ∈ Rg1×n1 [σ1,σ

−1
1 ]

2) C1(σ1,σ
−1
1 ) ∈ Rw×n1 [σ1,σ

−1
1 ]

3) A1(σ1,σ
−1
1 ) ∈ Rn1×n1 [σ1,σ

−1
1 ]

with A1(σ1,σ
−1
1 ) invertible in Rn1×n1 [σ1,σ

−1
1 ], such that:

w ∈ B if and only if there exists y0 ∈ R∞(Z,Rn1) which
satisfies R1(σ1,σ

−1
1 )y0 = 0 and

w(h,k) =
(

C1(σ1,σ
−1
1 )A1(σ1,σ

−1
1 )k y0

)
(h), (3)

for all (h,k) ∈ Z2.

It has been shown in [6] (see Theorem 5.3 in [6]) with the
help of extension of Noether’s normalization lemma that,

every autonomous behavior can be converted into a strongly
σ2-relevant autonomous behavior by a suitable coordinate
transformation on the domain Z2. Therefore, without loss
of generality, we can assume that, the given discrete 2-D
autonomous behavior is a strongly σ2-relevant autonomous
behavior.

Remark 2.1: It is important to note here that, due to the
coordinate transformation required to carry out Noether’s
normalization, the new coordinate variables may not have the
same physical meaning as the old ones. For example, in the
original system the independent variables, (h,k) ∈ Z2, may
be time and space respectively, whereas after the coordinate
change, the independent variables might turn out to be some
combinations of space and time.

Let X denote the 1-D behavior given by the kernel of
R1(σ1,σ

−1
1 ) ∈ Rg1×n1 [σ1,σ

−1
1 ]. As X is a 1-D behavior, it

can be written as a direct sum of its controllable part Xcont
and autonomous part Xaut ; i.e. X= Xcont ⊕Xaut .

Definition 2.3: Let B := {w ∈ R∞(Z2,Rw) :
R(σ1,σ

−1
1 ,σ2,σ

−1
2 )w = 0} be a strongly σ2-relevant

autonomous behavior.
• B is said to be `2-stable if lim

k→∞
‖w(·,k)‖2 = 0, ∀y0 ∈

X
⋂
`2(Z,Rn1).

• B is said to be `∞-stable if lim
k→∞
‖w(·,k)‖∞ = 0, ∀y0 ∈

X
⋂
`∞(Z,Rn1).

The 1-D behavior X is A1(σ1,σ
−1
1 ) invariant (see Remark

3.11 in [6]). Now for k ∈ N, let us define yk ∈ X as,

yk(·) := A1(σ1,σ
−1
1 )k y0(·). (4)

It follows from the construction of C1(σ1,σ
−1
1 ) ∈

Rw×n1 [σ1,σ
−1
1 ] and A1(σ1,σ

−1
1 ) ∈ Rn1×n1 [σ1,σ

−1
1 ] (refer

section-3 in [6]) that, the pair
(
C1(σ1,σ

−1
1 ), A1(σ1,σ

−1
1 )
)

is observable; which is equivalent to saying that, the two

variable Laurent polynomial matrix
[

C1(ξ1,ξ
−1
1 )

ξ2I−A(ξ1,ξ
−1
1 )

]
is

zero right prime. Therefore, we have the following equiva-
lence w.r.t. (3) and (4):

lim
k→∞
‖w(·,k)‖2 = 0 ⇐⇒ lim

k→∞
‖yk‖2 = 0 (5a)

lim
k→∞
‖w(·,k)‖∞ = 0 ⇐⇒ lim

k→∞
‖yk‖∞ = 0 (5b)

Remark 2.2: Note that,
1) X

⋂
`2(Z,Rn1) = Xcont

⋂
`2(Z,Rn1).

2) X
⋂
`∞(Z,Rn1) = Xcont

⋂
`∞(Z,Rn1), when Xaut does

not have any characteristic value on S(0,1).

Remark 2.3: Note that, A1(σ1,σ
−1
1 ) is invertible in

Rn1×n1 [σ1,σ
−1
1 ], so we can also talk about stability of

strongly σ2-relevant autonomous behavior B as k tends
to (−∞). The analysis would be exactly analogous to the
case considered here and can be done by just replacing
A1(σ1,σ

−1
1 ) by A−1

1 (σ1,σ
−1
1 ).
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Let M(σ1,σ
−1
1 ) ∈ Rn1×n[σ1,σ

−1
1 ] be an observable

image representation matrix for Xcont ; and let
M†(σ1,σ

−1
1 ) ∈ Rn×n1 [σ1,σ

−1
1 ] denote its left inverse.

We define A(σ1,σ
−1
1 ) ∈ Rn×n[σ1,σ

−1
1 ] as,

A(σ1,σ
−1
1 ) := M†(σ1,σ

−1
1 )A1(σ1,σ

−1
1 )M(σ1,σ

−1
1 ) (6)

For every y∈Xcont , there exists x∈R∞(Z,Rn) such that, y=
M(σ1,σ

−1
1 )x; so for a given y0 ∈ Xcont , let x0 ∈ R∞(Z,Rn)

be such that, y0 =M(σ1,σ
−1
1 )x0. Now for k∈N, let us define

xk ∈ R∞(Z,Rn) as,

xk(·) := A(σ1,σ
−1
1 )k x0(·). (7)

Lemma 2.1: 1) Let y0 ∈ Xcont
⋂
`2(Z,Rn1) and let yk

be defined as in (4). Suppose for every k ∈ N, xk ∈
`2(Z,Rn) be such that, yk(·) = M(σ1,σ

−1
1 )xk(·). Then,

xk satisfies (7), for every k ∈ N.
2) Suppose Xaut does not have any characteristic value on

S(0,1). Let y0 ∈ Xcont
⋂
`∞(Z,Rn1) and let yk be de-

fined as in (4). Suppose for every k ∈N, xk ∈ `∞(Z,Rn)
be such that, yk(·) =M(σ1,σ

−1
1 )xk(·). Then, xk satisfies

(7), for every k ∈ N.
Proof:

1) It follows from Remark 2.2 that, Xcont
⋂
`2(Z,Rn1)

is A1(σ1,σ
−1
1 ) invariant. The proof then follows by

induction on k.
2) When Xaut does not have any characteristic value

on S(0,1), it follows from Remark 2.2 that,
Xcont

⋂
`∞(Z,Rn1) is A1(σ1,σ

−1
1 ) invariant. The proof

then follows by induction on k.

Written below are the consequences of Lemma 2.1, Remark
2.2, and the fact that M(σ1,σ

−1
1 ) is an observable image

representation of Xcont .
1) We have the following equivalence w.r.t. (4) and (7),

lim
k→∞
‖yk‖2 = 0, ∀y0 ∈ X

⋂
`2(Z,Rn1)

m (8)
lim
k→∞
‖xk‖2 = 0, ∀x0 ∈ `2(Z,Rn)

2) When Xaut does not have any characteristic value on
S(0,1),1 we have the following equivalence w.r.t. (4)
and (7),

lim
k→∞
‖yk‖∞ = 0, ∀y0 ∈ X

⋂
`∞(Z,Rn1)

m (9)
lim
k→∞
‖xk‖∞ = 0, ∀x0 ∈ `∞(Z,Rn)

Therefore, from here onwards we shall consider the follow-
ing system:

xk+1(·) = A(σ1,σ
−1
1 ) xk(·), (10)

where A(σ1,σ
−1
1 ) ∈ Rn×n[σ1,σ

−1
1 ] and xk : Z→ Rn, ∀k ∈

N∪{0}. It follows from (10) that,

xk(·) = A(σ1,σ
−1
1 )k x0(·). (11)

1Note that, Xaut generically won’t have any characteristic value on S(0,1).

Let the highest power of σ1 and σ
−1
1 in the Laurent

polynomial matrix A(σ1,σ
−1
1 ) ∈ Rn×n[σ1,σ

−1
1 ] be p and m,

respectively. Then, we can write A(σ1,σ
−1
1 ) as follows:

A(σ1,σ
−1
1 ) =

p

∑
j=−m

A j σ
j

1 , (12)

where A j ∈ Rn×n.
We analyze the problem of `2 and `∞ stability of the

system given in (10). We saw that, discrete 2-D autonomous
behavior B being strongly σ2-relevant is without loss of
generality. Therefore, we have the following consequences
from (5), (8) and (9).
• Analyzing the `2-stability of (10) is equivalent to ana-

lyzing `2-stability of discrete 2-D autonomous behavior
B.

• In a generic case (when Xaut does not have any char-
acteristic values S(0,1)), analyzing the `∞-stability of
(10) is equivalent to analyzing `∞-stability of discrete
2-D autonomous behavior B.

III. MATHEMATICAL PRELIMINARIES

A. Functional Analysis

Here we briefly mention some preliminaries from func-
tional analysis; reader can refer to [2], [9] for a detailed
treatment on these topics.

We are mainly interested in the following two normed
subspaces of R∞(Z,Rn):

1) The space of square summable sequences `2(Z,Rn)
with norm ‖ · ‖2. For x ∈ `2(Z,Rn),

‖x‖2 :=

(
∞

∑
j=−∞

(‖x( j)‖2)
2

)1/2

. (13)

2) The space of bounded sequences `∞(Z,Rn) with norm
‖ · ‖∞. For x ∈ `∞(Z,Rn),

‖x‖∞ := sup {‖x( j)‖∞ : j ∈ Z}. (14)

For every y ∈ `2(Z,Rn), we have ‖y‖∞ ≤ ‖y‖2. Therefore,
for a sequence (ym) in `2(Z,Rn) we have the following
implication:

ym
‖·‖2−−→ y =⇒ ym

‖·‖∞−−→ y (15)

However, the converse is not true. Therefore ‖ ·‖2 and ‖ ·‖∞

are not equivalent on `2(Z,Rn); in fact ‖·‖2 is stronger than
‖ · ‖∞.

Let (X ,‖·‖x) be any normed space. The space of bounded
linear (or continuous linear) operators on X is denoted as
BL(X); it is a normed space with the following operator
norm. For F ∈ BL(X),

‖F‖x := max {‖Fy‖x : y ∈ X and ‖y‖x ≤ 1} . (16)

The inequality,

‖F(y)‖x ≤ ‖F‖x ‖y‖x, ∀y ∈ X (17)

is called the basic inequality.
Let M be a doubly infinite matrix with entries from R.
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M( j,k) is used to denote the entry in j-th row and k-th
column of M. Let X be a subspace of R∞(Z,R). We say,
a doubly infinite matrix M is a linear operator on X if the
following conditions hold:

1) For every x ∈ X and for every j ∈ Z, the series
∞

∑
k=−∞

M( j,k)x(k) is summable in R.

2) If for j ∈ Z, we define y( j) :=
∞

∑
k=−∞

M( j,k)x(k); then

y ∈ X .
We define α1 and α∞ for M as follows:

α1 := sup

{
∞

∑
j=−∞

|M( j,k)| : k ∈ Z

}
(18a)

α∞ := sup

{
∞

∑
k=−∞

|M( j,k)| : j ∈ Z

}
(18b)

Following is a well known result for normed spaces `2(Z,R)
and `∞(Z,R); see section-6.5 in [2].

Proposition 3.1: Let M be a doubly infinite matrix.
1) M ∈ BL(`∞(Z,R)) if and only if α∞ < ∞. Moreover,
‖M‖∞ = α∞.

2) If (α1×α∞)< ∞, then M ∈ BL(`2(Z,R)). Moreover,

‖M‖2 ≤
√
(α1×α∞) .

Similar results hold when M is a doubly infinite block matrix
with M( j,k) ∈ Rn×n, ∀( j,k) ∈ Z2. In this case α1 and α∞

are defined as follows:

α1 := sup

{
∞

∑
j=−∞

n

∑
r=1
|M( j,k)(r,s)| : k ∈ Z and s ∈ {1, ...,n}

}

α∞ := sup

{
∞

∑
k=−∞

n

∑
s=1
|M( j,k)(r,s)| : j ∈ Z and r ∈ {1, ...,n}

}
where M( j,k)(r,s) denote the entry in r-th row and s-th

column of M( j,k) ∈ Rn×n.

B. Block Laurent Operator

Consider a Laurent polynomial matrix A(σ1,σ
−1
1 ) =(

p

∑
j=−m

A j σ
j

1

)
∈Rn×n[σ1,σ

−1
1 ]. Corresponding to each such

Laurent polynomial matrix, one can associate a doubly
infinite banded block Laurent operator, which we denote as
LA. For example, when A(σ1,σ

−1
1 ) = A−1σ

−1
1 +A0 +A1σ1,

the Laurent operator LA would be as follows:

LA =

k = 0



...
...

...
...

...
· · · A−1 A0 A1 0 0 · · ·

· · · 0 A−1 A0 A1 0 · · · j = 0

· · · 0 0 A−1 A0 A1 · · ·
...

...
...

...
...

.

We denote the ( j,k)-th entry of LA by LA( j,k). Ob-
serve that, LA( j,k) ∈ Rn×n for all ( j, k) ∈ Z2. Note
that, both α1 and α∞ are finite for LA corresponding to

A(σ1,σ
−1
1 ) =

p

∑
j=−m

A j σ
j

1 . Therefore by Proposition 3.1, LA ∈

BL(`2(Z,Rn))
⋂

BL(`∞(Z,Rn)).
Remark 3.1: Note that, for the system given in (10) we

have, xk = Lk
A x0.

IV. `2 STABILITY

In this section, we analyze the `2-stability of the system
(10), which is defined as follows.

Definition 4.1: The system given in (10) is said to be `2-
stable if

lim
k→∞
‖xk‖2 = 0, ∀ x0 ∈ `2(Z,Rn) . (20)

The following Theorem gives a sufficient condition for the
system given in (10) to be `2-stable. It follows from Theorem
10 in [3] (see also [4]).

Theorem 4.1: The system given in (10) is `2-stable if
ρ
(
A(eiω , e−iω)

)
< 1, ∀ω ∈ [0, 2π).

We give another sufficient condition for the `2-stability,
which is simple to check. Consider the system given in
(10) where A(σ1,σ

−1
1 )∈Rn×n[σ1,σ

−1
1 ] is given by (12). We

define G ∈ Rn×(p+m+1)n and H ∈ R(p+m+1)n×n as follows:

G := [ A(−m) A(−m+1) · · · A0 · · · Ap−1 Ap ] (21a)

H := [ A′p A′p−1 · · · A′0 · · · A′(−m+1) A′(−m) ]
′ (21b)

Theorem 4.2: If (‖G‖∞ × ‖H‖1) < 1, then the system
given in (10) is `2-stable.

Proof: For the banded block Laurent operator LA
corresponding to A(σ ,σ−1), we have:

α1 := sup

{
∞

∑
j=−∞

n

∑
r=1
|LA( j,k)(r,s)| : k ∈ Z and s ∈ {1, ...,n}

}
= ‖H‖1 (22)

α∞ := sup

{
∞

∑
k=−∞

n

∑
s=1
|LA( j,k)(r,s)| : j ∈ Z and r ∈ {1, ...,n}

}
= ‖G‖∞ (23)

Recall from Proposition 3.1 that, ‖LA‖2 ≤
√
(α1×α∞).

Therefore, if (‖G‖∞ × ‖H‖1) < 1, then ‖LA‖2 ≤√
(α1×α∞) < 1. As a consequence,

0 ≤ lim
k→∞
‖Lk

A‖2 ≤ lim
k→∞

(‖LA‖2)
k = 0. (24)

Note that, xk = Lk
A x0, where x0 ∈ `2(Z,Rn) is an initial

condition. Now using basic inequality, we get:

‖xk‖2 ≤ ‖Lk
A‖2 ‖x0‖2, ∀k ∈ N , (25)

and for all x0 ∈ `2(Z,Rn). Therefore,

(‖G‖∞×‖H‖1)< 1
⇓

lim
k→∞
‖Lk

A‖2 = 0

⇓
the system in (10) is `2-stable.
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V. `∞ STABILITY

In this section, we analyze the `∞-stability of the system
(10), which is defined as follows.

Definition 5.1: The system given in (10) is said to be `∞-
stable if

lim
k→∞
‖xk‖∞ = 0, ∀ x0 ∈ `∞(Z,Rn) . (26)

A. Necessary Condition
Theorem 5.1: If the system given in (10) is `∞-stable, then

ρ
(
A(eiω , e−iω)

)
< 1, ∀ω ∈ [0, 2π).

Proof: Suppose not, i.e. there exists ψ ∈ [0, 2π) for
which ρ

(
A(eiψ , e−iψ)

)
≥ 1.

Let (λ1,v1) be an eigenpair of A(eiψ , e−iψ) such that,
ρ
(
A(eiψ , e−iψ)

)
= |λ1|. Take y0 ∈ `∞(Z,Cn), which is de-

fined as,
y0( j) := e j(iψ) v1, ∀ j ∈ Z . (27)

From the banded block Laurent structure of LA and the fact
that v1 ∈Cn is an eigenvector of A(eiψ , e−iψ) corresponding
to eigenvalue λ1, it follows that:

LA y0 = λ1 y0. (28)

As |λ1| ≥ 1,

lim
k→∞
‖Lk

A y0‖∞ = lim
k→∞
|λ1|k ‖v1‖∞ 6= 0 . (29)

Using the real or the imaginary part of y0 ∈ `∞(Z,Cn) one
can construct x0 ∈ `∞(Z,Rn) such that:

lim
k→∞
‖Lk

A x0‖∞ 6= 0 . (30)

Hence a contradiction.
We give below a partial converse of Theorem 5.1; but before
that, we explain some preliminaries which are required to
prove the partial converse.

Preliminaries: Some important subspaces of `∞(Z,Rn) are
defined below.

C(Z,Rn) := {x ∈ `∞(Z,Rn) : lim
j→∞

x( j) = lim
j→(−∞)

x( j)}

C0(Z,Rn) := {x ∈ `∞(Z,Rn) : lim
j→∞

x( j) = lim
j→(−∞)

x( j) = 0}

Note that, `2(Z,Rn)⊂C0(Z,Rn)⊂C(Z,Rn)⊂ `∞(Z,Rn).
Both (`2(Z,Rn),‖ · ‖2) and (`∞(Z,Rn),‖ · ‖∞) are Banach

spaces (complete normed space). As Banach spaces cannot
have a denumerable2 Hamel basis; every Hamel basis of both
`2(Z,Rn) and `∞(Z,Rn) is an uncountable set. Normed space
(C(Z,Rn),‖ · ‖∞) is also a Banach space with uncountable
Hamel basis. We define elements of the set {ers : r ∈ Z, s ∈
{1, ...,n}} as:

ers(k) :=
{

ês, if k = r
0, if k 6= r (31)

where ês denote elements of the standard basis of Rn. The
set {ers : r ∈ Z, s ∈ {1, ...,n}} is a Schauder basis for

2A set is said to be denumerable if it is in one to one correspondence
with N.

`2(Z,Rn) and C0(Z,Rn). Let us denote the vector valued
sequence [· · · ,1′,1′,1′, · · · ]′ by e. The set {e}

⋃
{ers : r ∈

Z, s ∈ {1, ...,n}} is a Schauder basis3 for (C(Z,Rn),‖ ·‖∞).
However, `∞(Z,Rn) does not have a Schauder basis, as it is
not a separable metric space. We refer reader to [2] and [9]
for definitions of Hamel basis, Schauder basis, and separable
metric space.

Theorem 5.2: If ρ
(
A(eiω , e−iω)

)
< 1, ∀ω ∈ [0, 2π) and

the initial condition x0 ∈C(Z,Rn), then lim
k→∞
‖xk‖∞ = 0.

Proof: The set {e}
⋃
{ers : r ∈ Z, s ∈ {1, ...,n}} is

a Schauder basis for (C(Z,Rn),‖ · ‖∞). Therefore for an
arbitrary x0 ∈C(Z,Rn), there exist γ,βrs ∈ R such that:

x0 = γ e+
∞

∑
r=−∞

n

∑
s=1

βrs ers . (32)

• Claim-I: lim
k→∞
‖Lk

A ers‖∞ = 0, ∀ r ∈ Z and ∀s ∈
{1, ...,n}.
The set {ers : r ∈ Z, s ∈ {1, ...,n}} is a subset of
`2(Z,Rn). As ρ

(
A(eiω , e−iω)

)
< 1, ∀ω ∈ [0, 2π), it

follows from the Theorem 4.1 that: lim
k→∞
‖Lk

A x0‖2 =

0, ∀ x0 ∈ `2(Z,Rn). Therefore,

lim
k→∞
‖Lk

A ers‖2 = 0, ∀ r ∈ Z and ∀ s ∈ {1, ...,n}. (33)

On `2(Z,Rn), the metric induced by ‖ · ‖2 is stronger
than the metric induced by ‖ · ‖∞ . Therefore,

lim
k→∞
‖Lk

A ers‖∞ = 0, ∀ r ∈ Z and ∀ s ∈ {1, ...,n} .

This proves Claim-I.

• Claim-II: lim
k→∞
‖Lk

A e‖∞ = 0.

At ω = 0, A(eiω , e−iω) =
p

∑
j=−m

A j. Therefore we have,

ρ

(
p

∑
j=−m

A j

)
< 1. Observe that, because of the banded

block Laurent structure of LA and the structure of e ∈
C(Z,Rn), we have:

Lk
A e( j) =

(
p

∑
j=−m

A j

)k

1, ∀ j ∈ Z and ∀k ∈ N. (34)

Note that,

(
p

∑
j=−m

A j

)
∈ BL(Rn). Therefore for every

norm ‖ · ‖ on Rn, we have the following implication:

ρ

(
p

∑
j=−m

A j

)
< 1 =⇒ lim

k→∞
‖

(
p

∑
j=−m

A j

)k

y‖ = 0, ∀y ∈ Rn.

It follows from (34) that,

‖Lk
A e‖∞ = ‖

(
p

∑
j=−m

A j

)k

1‖∞ , ∀k ∈ N. (35)

3Note that e 6=
∞

∑
r=−∞

n

∑
s=1

ers. Consider a partial sum Sm =
m

∑
r=−m

n

∑
s=1

ers. Now

observe that, ‖e−Sm‖∞ = 1, ∀m ∈ N. Therefore lim
m→∞
‖e−Sm‖∞ = 1 6= 0.
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Therefore we have,

lim
k→∞
‖Lk

A e‖∞ = lim
k→∞
‖

(
p

∑
j=−m

A j

)k

1‖∞ = 0 . (36)

This proves Claim-II.
As LA is a continuous linear operator, it follows from (32)
that:

Lk
A x0 = γ(Lk

A e)+
∞

∑
r=−∞

n

∑
s=1

βrs(Lk
A ers) . (37)

From Claim-II, triangle inequality and the countable sub-
additivity of norms, we have:

lim
k→∞
‖Lk

A x0‖∞ ≤ lim
k→∞

∞

∑
r=−∞

n

∑
s=1
|βrs| ‖Lk

A ers‖∞ (38)

• Claim-III: For every ε > 0, there exists k0 which is
independent of ers such that: whenever k≥ k0, we have
‖Lk

A ers‖∞ < ε , ∀r ∈ Z and ∀s ∈ {1, ...,n}.
From Claim-I; for a given ε > 0, there exists krs ∈ N,
which depends on r ∈ Z and s ∈ {1, ...,n}, such that:
when k ≥ krs, we have ‖Lk

A ers‖∞ < ε .
Let krs be the smallest natural numbers satisfying
the above property. Now observe that, because of the
banded block Laurent structure of LA, we have:

k0s = krs, ∀r ∈ Z, ∀s ∈ {1, ...,n} . (39)

Therefore, it is enough to consider just k01, ....,k0n. Now
if we take k0 as max{k01, ...,k0n}, then for every k≥ k0
we have:

‖Lk
A ers‖∞ < ε, ∀r ∈ Z, ∀s ∈ {1, ...,n} . (40)

This proves Claim-III.
Now, because of Claim-III and the uniform convergence
Theorem for summation (integration), we can interchange
limit and summation on the right hand side of inequality
(38). Therefore, it follows from Claim-I that,

lim
k→∞

∞

∑
r=−∞

n

∑
s=1
|βrs| ‖Lk

A ers‖∞ =
∞

∑
r=−∞

n

∑
s=1
|βrs| lim

k→∞
‖Lk

A ers‖∞

= 0 . (41)

From (38) and (41), we have:

lim
k→∞
‖Lk

A x0‖∞ = 0 . (42)

B. Sufficient Condition

We give a sufficient condition for the `∞-stability of (10)
in terms of the matrix G ∈ Rn×(p+m+1)n defined in (21a),
which is simple to check.

Theorem 5.3: If ‖G‖∞ < 1, then the system given in (10)
is `∞-stable.

Proof: For the banded block Laurent operator LA corre-
sponding to A(σ ,σ−1), α∞ = ‖G‖∞. Recall from Proposition
3.1 that, ‖LA‖∞ = α∞. Therefore if ‖G‖∞ < 1, then ‖LA‖∞ <
1. As a consequence,

0 ≤ lim
k→∞
‖Lk

A‖∞ ≤ lim
k→∞

(‖LA‖∞)
k = 0. (43)

Note that, xk = Lk
A x0, where x0 ∈ `∞(Z,Rn) is an initial

condition. Now using basic inequality, we get:

‖xk‖∞ ≤ ‖Lk
A‖∞ ‖x0‖∞, ∀k ∈ N , (44)

and for all x0 ∈ `∞(Z,Rn). Therefore, if lim
k→∞
‖Lk

A‖∞ = 0, then
the system in (10) is `∞-stable.

VI. CONCLUSION

We have given sufficient conditions for the `2-stability
of discrete 2-D autonomous systems. For the `∞-stability of
discrete 2-D autonomous systems, we have given a necessary
condition along with its partial converse. We have also given
a sufficient condition for the `∞-stability, which is easy to
check. Future work is to find equivalent conditions for the `∞-
stability of discrete 2-D autonomous systems, and to analyze
the `∞-stability when Xaut has a characteristic value on the
imaginary axis.
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