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Abstract

In this paper, we study the set of trajectories satisfying both a given LTI system’s laws and also
laws of the corresponding ‘adjoint’ system: in other words, trajectories in the intersection of
the system’s behavior and that of the adjoint system. This intersection has important system
theoretic significance: for example, it is known that the trajectories in this intersection are the
ones with minimal ‘dissipation’. Underlying the notion of adjoint, is that of a power supply:
it is with respect to this supply rate that the trajectories in the intersection are known to be
‘stationary’. In this paper, we deal with half-line solutions to the differential equations governing
both the system and its adjoint. Analysis of half-line solutions plays a central role for example
in initial value problems and in well-posedness studies of an interconnection. We interpret the
set of half-line trajectories allowed by a system and its adjoint as an interconnection of these
two systems, and thus address issues about well-posedness/ill-posedness of the interconnection.
We formulate necessary and sufficient conditions for this intersection to be autonomous. For
the case of an ill-posed interconnection and resulting autonomous system, we derive conditions
for existence of initial conditions that lead to impulsive solutions in the states of the system.
We link our conditions with the strongly reachable and weakly unobservable subspaces of a
state space system. We show that absence of impulsive initial conditions is equivalent to the
well-known subspace iteration algorithms for these subspaces converging in one step.

Keywords: inadmissible initial conditions, zeros at infinity, ill-posed interconnection, strongly
reachable subspace, weakly unobservable subspace, impulse observability

1. Introduction

For an LTI system, the intersection of the sets of trajectories allowed by the system and
its ‘adjoint’ (dual) system has significance in various areas: as ‘stationary’ trajectories in the
context of LQ control (see Willems (1993) and Jugade et al. (2013)), as Hamiltonian systems
(see Rapisarda and Trentelman (2004)), as trajectories of minimal dissipation (see Trentelman
et al. (2009)). Under suitable regularity assumptions, this intersection exhibits desirable prop-
erties - like, autonomy, having McMillan degree equal to twice the McMillan degree of the
original system. One or both of these properties are lost when the regularity assumptions are
relaxed. Consequently, under non-satisfaction of the regularity assumptions, the usage of the
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interconnection of the system and its adjoint, in control problems, becomes subject to major
modifications. For example, in singular LQ control, the intersection of the system and its adjoint
may or may not contain impulsive optimal solutions: see Willems et al. (1986); Willems (1993);
Kalaimani et al. (2013) for a related exposition. In this paper, we go beyond the intersection
and view the same as an ‘interconnection’. While the interconnection point of view does not
provide, for the regular case, any significant leverage over that of the intersection, the former
point of view can handle the singular case better than the latter; this is because the singular
case is nothing but an ‘ill-posed’ interconnection of the system and its adjoint.

Following the tradition of the study of ill-posedness in the interconnection paradigm, in this
paper, we study half-line solutions of the interconnection of the system and its adjoint. Further,
we investigate the issue of whether this interconnection, when ill-posed, contains impulsive
modes. For the purpose of this paper: ‘impulsive’ modes are those trajectories that contain one
or more derivatives of the Dirac delta δ. ‘Fast’ modes include impulsive modes and jumps.

Without dwelling on the essential preliminaries (which are elaborated below in Section 2),
we first list the main questions we address in this paper. Let B be the behavior of the system,
that is, the collection of all the allowable trajectories under the system’s dynamical equations.
Further, let Σ, a constant real symmetric matrix, induce the quadratic supply rate wTΣw on
trajectories w ∈ B. Let B

⊥Σ denote the adjoint of B with respect to the supply rate wTΣw.
We address the following issues:

1. Given Σ and controllable/observable state space representations of a system B and its
adjoint system B

⊥Σ , when is the interconnection B ∧B
⊥Σ an autonomous system?

2. Find conditions on B under which the interconnection is an ill-posed interconnection.

3. If the interconnection is autonomous and ill-posed: find conditions under which there are
no initial state-space conditions causing impulsive solutions.

4. Find conditions on the system B under which the external system variables exhibit im-
pulsive solutions: relate these conditions to those in Item 3 above.

5. Can there be situations under which one or more of the states of the interconnected
system are impulsive, but the external system variables are not impulsive? Does ‘impulse
unobservability’ or ‘unobservability at infinity’ resolve this?

In this paper we formulate necessary and sufficient conditions for resolving some of the above
questions and we provide counter-examples for the unresolved ones. When studying the in-
terconnection of B and B

⊥Σ , there are three important representations for the interconnected
system: B ∧B

⊥Σ :

1. the (possibly singular descriptor) state space system obtained from the minimal state
space representations of B and B

⊥Σ ,

2. the kernel representation of B ∩B
⊥Σ obtained by using the kernel representations of B

and B
⊥Σ , and

3. the latent variable representation w = M( d
dt)ℓ and M(− d

dt)
TΣM( d

dt)ℓ = 0.

Note that, while the various representations listed above all lead to the same set of solutions
for the case of well-posed interconnection between B and B

⊥Σ , it is ill-posed interconnection
that results in difference in the fast solution sets of the various representations: this paper
focusses only on the fast modes. In this context, it turns out that even when the state space
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of the interconnected system has impulsive initial conditions, the external system variables do
not necessarily have impulsive modes. In the later part of the paper, we describe numerical
examples with these features, and further, investigate if impulse unobservability can explain
why the system is ‘impulse unobservable’.

A brief overview of the main results in this paper and the paper organization are as follows.
The following section contains definitions pertaining to the behavioral approach, quadratic dif-
ferential forms (QDFs), and preliminary results on well-posedness of interconnection and the
notion of zeros at infinity of a polynomial matrix and its relation to inadmissible initial condi-
tions, i.e. those initial conditions that cause impulsive solutions. In Section 3, we summarize
the assumptions used in this paper and also their system-theoretic justifications. Section 4
contains new results on ill-posedness of interconnection of a system B and its dual B⊥Σ , and
conditions for the interconnection to be autonomous. Section 5 contains another main result
of this paper: necessary and sufficient conditions for the ill-posed interconnection case under
which the interconnected system has no impulsive initial conditions. Section 6 raises questions
about how the presence/absence of impulsive solutions need not be the same for the case of state
variables, manifest system variables and the latent variable used in an image representation.
Section 7 contains some concluding remarks.

We use standard notation in this paper: R and C stand for the fields of real and complex
numbers respectively. The ring of polynomials in the indeterminate ξ with coefficients from R

is denoted as R[ξ], while matrices with entries from R[ξ] and having p rows and m columns is
denoted by R[ξ]p×m, which for polynomials is also Rp×m[ξ]. The spaces C∞(R,Rw) and L

loc
1 (R,Rw)

stand for the spaces of infinitely often differentiable functions and locally integrable functions
each from R to R

w. In this paper, we also need C
∞(R+,R

w), where R+ stands for (0,∞). The
set of those elements in C

∞(R,Rw) which have compact support is denoted by D(R,Rw). When
the co-domain is clear from the context, then we drop the co-domain and write C

∞(R+), for
example. Further, when both domain and co-domain are clear, we write just C∞ or Lloc

1 .

2. Preliminaries

This section deals with the preliminaries that are required for this paper. The following
subsection reviews required results from the behavioral approach to dynamical systems.

2.1. The behavioral approach

A linear differential behavior B is defined as the subspace of Lloc
1 (R,Rw) consisting of all

solutions to a set of ordinary linear differential1 equations with constant coefficients; i.e. for
R ∈ R

•×w[ξ]

B :=

{
w ∈ L

loc
1 (R,Rw) | R

(
d

dt

)
w = 0

}
. (1)

This representation is called a kernel representation of B and w is called the manifest
variable. We assume a kernel representation matrix R(ξ) to be of full row rank without loss of
generality (see Polderman and Willems (1998)); such a full row rank kernel representation is
called a minimal kernel representation. The set of subsets of Lloc

1 (R,Rw) that can be described
by an equation of the form in equation (1) is defined as Lw

1The differential equations are required to be satisfied in only a weak sense, i.e. in the distributional sense.
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The familiar steerability aspect of the state controllability definition has been extended for
behaviors and the PBH rank test generalizes ((Polderman and Willems, 1998, Chapter 5)) as
follows. For a behavior B described by a minimal kernel representation R( d

dt)w = 0, B is
controllable if and only if R(λ) has full row rank for every λ ∈ C. The set of controllable
behaviors in w variables is denoted as Lw

cont. It is also known that a behavior B is controllable
if and only if there exists a polynomial matrix M ∈ R

w×m[ξ] such that

B =

{
w ∈ C

∞(R,Rw) | there exists ℓ ∈ C
∞(R,Rm) such that w = M

(
d

dt

)
ℓ

}
. (2)

This representation of B is called an image representation. It turns out (see Polderman and
Willems (1998)) that for an image representation, without loss of generality, one can assume
M(ξ) to be such that M(λ) has full column rank for each λ ∈ C: we call this an observable
image representation. A special case when a polynomial matrix U has for each λ ∈ C both full
row rank and full column rank is when its determinant is a nonzero constant: such polynomial
matrices are called unimodular.

2.2. Dissipativity

In this subsection we review the essential notions of dissipativity theory: see Willems and
Trentelman (1998) for a thorough treatment. Consider Σ ∈ R

w×w, assumed symmetric and
nonsingular without loss of generality. A controllable behavior B ∈ L

w
cont is said to be Σ-

dissipative if ∫
∞

−∞

wTΣw dt > 0 for all w ∈ B ∩D.

Suppose w = M( d
dt)ℓ is an observable image representation of the behavior. Then B is dissi-

pative if and only if M(−jω)TΣM(jω) is non-negative definite for every ω ∈ R.

2.3. Well-posed/ill-posed interconnections, impulsive solutions

This section contains the definition of well-posedness of an interconnection and the link
with existence of impulsive initial conditions. For the purpose of this paper, we deal with
interconnection when an input/output partition of the system variables is specified. For the
system B ⊆ C

∞(R,Rw), a partition of the system variable w into w = (u, y) is said to be an
input/output partition with respect to C

∞, with u as input and y as output, if for every u in
C
∞(R,Rm) there exists a y ∈ C

∞(R,Rp) and, no further component in y can be chosen arbitrarily
in C

∞(R,R). Conforming to this partition of w, rewrite the minimal kernel representation
R( d

dt)w = 0 as

Q(
d

dt
)u+ P (

d

dt
)y = 0.

Then w = (u, y) is an input/output partition with respect to C
∞ if and only if P is square

and has nonzero determinant. With respect to this input/output partition, we speak about
the transfer matrix G(s) := −P (s)−1Q(s). Important in this paper is L

loc
1 properties of the

variables, instead of C∞: the partition w = (u, y) is an input/output partition with respect
to L

loc
1 if and only if, in addition to P being square and nonsingular, G(s) = −P (s)−1Q(s) is

proper.
A natural question that arises when dealing with two behaviors B1,B2 ∈ L

w is whether
upon ‘interconnecting’ the systems, properness-type conditions are lost. This brings us to the
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definition of a well-posed interconnection.

Definition 2.1. Consider behaviors B1 and B2, both
with the system variable w, and suppose the partitions
w = (u1, y1) and w = (y2, u2) are input/output partitions
with respect to L

loc
1 for B1 and B2 respectively. Assume

the number of components in u1 equals that in y2. The
interconnection B1 ∧ B2 of the systems B1 and B2 is
defined as the system with variables w and (d1, d2), and
laws being those of B1 and B2, together with

Figure 1: Interconnection B1 ∧B2

u1 = y2 + d1 and u2 = y1 + d2. (3)

Further, the interconnection of B1 and B2 is said to be well-posed if for any d1, d2 ∈ L
loc
1 ,

there exist unique u1, y1, u2, y2 ∈ L
loc
1 such that the laws of B1 and B2 and equation (3) are

satisfied. In other words, the interconnection is said to be well-posed if (d1, d2, u1, y1, u2, y2) =
((d1, d2), (u1, y1, u2, y2)) is an input/output partition with respect to L

loc
1 for B1 ∧B2.

Figure 1 illustrates Definition 2.1. The interconnection B1 ∧B2 is said to be ill-posed if it
is not well-posed. Note that well-posedness can be checked by merely considering the system
B1 ∧ B2 with d1 = 0 and d2 = 0: see (Kuijper, 1995, Theorem 2.1) and (Vinjamoor and
Belur, 2010, Theorem 7.1). In the case when d1 = 0 and d2 = 0, the C

∞-trajectories in the
interconnection B1 ∧ B2 can be uniquely identified with those in B1 ∩ B2: the identification
being u1 = y2 and u2 = y1. In view of this, for the rest of the paper, the system laws of B1∧B2

will include d1 = 0 and d2 = 0, and hence B1 ∧B2 ∈ L
w. Crucially, for the well-posed case, the

trajectories in B1 ∧B2 are exactly those in B1 ∩B2. Then, a kernel representation of B1 ∩B2

(and hence B1 ∧B2) is R1(
d
dt)w = 0 and R2(

d
dt)w = 0, where R1(

d
dt)w = 0 and R2(

d
dt)w = 0

are respectively minimal kernel representations of B1 and B2. In this paper, we focus on the
case when trajectories are L

loc
1 .

It follows from Definition 2.1 that when an interconnection is ill-posed, then one or more of
the following is the case.

• Non-autonomous interconnected system: for some d1 and d2 ∈ L
loc
1 there do not exist

u1, u2, y1 and y2 satisfying the system laws.

• Autonomous interconnected system, but impulse causing initial conditions (singular de-
scriptor interconnected system): there exist d1 and d2 ∈ L

loc
1 such that one or more of

u1, u2, y1 and y2 are impulsive.

These two issues are central for this paper. We review the notion of an inadmissible initial
condition and that of zeros at infinity of a polynomial matrix. For this paper, this is defined
only for an autonomous system, i.e. for systems which, loosely speaking, the system variables
do not ‘respond’ to external inputs, in other words, all variables are outputs. A system B ∈ L

w

is called autonomous if in any input/output partition, all system variables are outputs. Thus
B ∈ L

w with minimal kernel representation P ( d
dt)w = 0 is autonomous if and only if P (ξ) is

square and nonsingular.
Suppose an autonomous system B ∈ L

w has a minimal kernel representation P ( d
dt)w(t) = 0

with P (ξ) ∈ R
w×w[ξ] nonsingular. Let N be the highest degree of all the polynomial entries

in P (ξ). Let w(0),w(1)(0),. . . ,w(N−1)(0) be the values of w, d
dtw, ...,

dN−1

dtN−1w at time t = 0−.

Define w(0) = [w(0), w(1)(0), ..., w(N−1)(0)]. We call the vector w(0) ∈ R
Nw an initial condition

vector. A vector w(0) is said to be an inadmissible initial condition vector if the corresponding
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solution w(t) nontrivially contains a Dirac impulse δ(t) and/or its distributional derivatives.
See Verghese et al. (1981), Dai (1989) and Vardulakis (1991) for a similar treatment.

There are various (equivalent) definitions of the notion of a zero at infinity of a polyno-
mial/rational matrix. Loosely speaking, a matrix P (s) has one or more zeros at infinity if the
matrix Q(λ) := P (1/λ) has one or more zeros at the origin λ = 0. We adopt a more direct
definition: consider P (s) ∈ R

q×w[s] of rank say r. The polynomial matrix P (s) is said to have
no zeros at infinity if all the following inequalities hold:

ν1 6 ν2 6 · · · 6 νr,

where νi := maxs∈Si
{deg det (s)} and Si is the set of all i× i minors of P (s). If r = 1, there is

no inequality to be satisfied: in this case there are no zeros at infinity. Of course, the negative of
each of the νi are the i-th valuations at ∞: see Kailath (1980). Using the above definition, and
the fact that a unimodular polynomial matrix U(ξ) has a nonzero constant as its determinant,
we note that any nonconstant unimodular U(ξ) has zeros at infinity.

The relevance of zeros at infinity is due to (Vardulakis, 1991, Theorem 4.32), which states
that a necessary and sufficient condition for absence of inadmissible initial conditions for the
autonomous system P ( d

dt)w = 0 with P square and nonsingular is that P has no zeros at
infinity. See also Verghese et al. (1981).

2.4. Orthogonal complement of a behavior and Hamiltonian systems

We review the definition of the Σ-orthogonal complement of the system B. This system
is familiar in the control literature as dual or adjoint system. See also Anderson and Moore
(1989) where this dynamical system is termed the ‘costate dynamics’.

Definition 2.2. (See Willems and Trentelman (1998)) Consider a controllable behavior B ∈
L
w
cont and a symmetric, nonsingular matrix Σ ∈ R

w×w. The Σ-orthogonal complement of B,
denoted by B

⊥Σ, is the set of all the trajectories v ∈ L
loc
1 (R,Rw) such that

∫
∞

−∞
vTΣw dt = 0 for

all w ∈ B ∩D.

Suppose R( d
dt)w = 0 is a minimal kernel representation and w = M

(
d
dt

)
ℓ is an observable

image representation of B ∈ L
w
cont. It is known that (see (Willems and Trentelman, 1998,

Section 10), for example) a minimal kernel representation for B
⊥Σ is M

(
− d

dt

)T
Σv = 0 and

v = ΣR(− d
dt)

T ℓ is an observable image representation for B
⊥Σ . In this paper we deal with

three situations.

(a) B ∩B
⊥Σ is non-autonomous,

(b) B ∩B
⊥Σ is autonomous and the interconnection B ∧B

⊥Σ is ill-posed, and

(c) B ∩B
⊥Σ is autonomous and the interconnection B ∧B

⊥Σ is well-posed.

For the ill-posed case, we characterize conditions for existence of initial conditions resulting in
impulses in one or more variables.

We dwell further on different representations of B∩B
⊥Σ : see also (Willems, 1993, equations

(10), (12) and (18)) and (Trentelman and Rapisarda, 2001, Proposition 4.1 and Theorem 3.4)
for a similar treatment. We view the set B ∩B

⊥Σ as those trajectories in the ‘interconnected’
or the ‘closed-loop’ system obtained by connecting the system B with its adjoint system: when
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asking questions about well-posedness of the interconnection, we distinguish the interconnection
B ∧B

⊥Σ from the intersection B ∩B
⊥Σ .

B ∩B
⊥Σ =

{
w ∈ L

loc
1 (R,Rw) | R

(
d

dt

)
w = 0 and M

(
−

d

dt

)T

Σw = 0

}
. (4)

Another representation of B ∩B
⊥Σ can be obtained by using the image representations of

B and B
⊥Σ :

B ∩B
⊥Σ =

{
w ∈ L

loc
1 (R,Rw) | w = M(

d

dt
)ℓ with ℓ satisfying M(−

d

dt
)TΣM(

d

dt
)ℓ = 0

}
. (5)

It is easy to see that B ∩ B
⊥Σ is autonomous if and only if the w × w polynomial matrix

RHam(ξ) :=

[
R(ξ)

M(−ξ)TΣ

]
, which plays a role in equation (4), is nonsingular. This nonsingularity

is equivalent to that of M(−ξ)TΣM(ξ). It is less easy to see that, while the two representations
(i.e. equations (4) and (5)) indeed both describe B∩B

⊥Σ as far as slow solutions are concerned:
the fast modes need not be the same. More precisely, while RHam(ξ) could have nontrivial
impulsive half-line solutions, the corresponding M(−ξ)TΣM(ξ) need not necessarily have: see
Section 6 for concrete examples. A third important representation, a first order one, is what
we need often.

Suppose B has the following minimal input/state/output (i/s/o) representation

ẋ = Ax+Bw1 and w2 = Cx+Dw1 (6)

where x is the state vector, w1 is the input vector, w2 is the output vector. Consider Σ =[
Im 0
0 −Ip

]
, then a state space representation of B⊥Σ is given by

ż = −AT z − CT v1 and v2 = BT z +DT v1. (7)

Under the interconnection w2 = v1 and w1 = v2, a first order representation of the intercon-
nected system simplifies to




ẋ
ż
0


 =




A BBT BDT

0 −AT −CT

−C −DBT Ip −DDT






x
z
v1


 . (8)

It is well-known (see (Zhou and Doyle, 1997, Lemma 5.1), for example) that B ∧B
⊥Σ is well-

posed if and only if (Ip −DDT ) is nonsingular. In that case, the last line in the matrix-vector
equation (8) can be rewritten as v1 = (Ip − DDT )−1Cx + (Ip − DDT )−1DBT z. Substituting

this in equation (8) to eliminate v1 we get

[
ẋ
ż

]
= H

[
x
z

]
where

H :=

[
A+BDT (Ip −DDT )−1C BBT +BDT (Ip −DDT )−1DBT

−CT (Ip −DDT )−1C −(AT + CT (Ip −DDT )−1DBT )

]
.

The (2n × 2n) matrix H above is a Hamiltonian matrix, i.e. H is similar to −HT . Note,
however, that the above derivation fails when (Ip − DDT ) is singular. The nonsingularity of
(Ip − DDT ) remains a standing assumption in various applications: optimal control through
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algebraic Riccati equations and to Hamiltonian matrices, see MacFarlane (1963); Potter (1966),
for example. In this paper, we focus on the case when (Ip −DDT ) is singular, and analyze the
interconnection B ∧B

⊥Σ when it is not well-posed.
We note here that the set B∩B

⊥Σ has received attention in various contexts. For example,
stationarity properties of this set has been noted in Willems (1993) in the context of LQ control,
and the link with Euler-Lagrange equation has been brought out there. Similar studies have
been pursued later in Rapisarda and Trentelman (2004); Jugade et al. (2013). In the context of
interpolation at spectral zeros, the matrix in equation (8) is the one in Sorensen (2005), although
for the ‘passivity supply rate’ instead of the bounded real supply rate Σ (equation (9)) of this
paper. The set B ∩B

⊥Σ has been shown to be the set of trajectories of ‘minimal dissipation’
in Trentelman et al. (2009). See also van der Schaft and Rapisarda (2011); Rapisarda and van
der Schaft (2013); Rapisarda and Trentelman (2011) for use of the notion of adjoint system
for system identification and construction of canonical state maps, for example. We mention
here that, unlike smooth modes, impulsive solutions in a system behavior do get affected by
equation manipulation of the kind arising from (nonconstant) unimodular matrices. However,
the similarity transformations on the states, being constant matrices, do not affect impulsive
modes in the system: hence their usage in Cobb (1984), for example.

3. Assumptions and justifications

In this section we list the assumptions we make throughout this paper. We also give system
theoretic justification for the assumptions.

3.1. Maximum input cardinality

Consider the supply rate induced by the matrix Σ used for defining dissipativity above. By
considering a suitable coordinate transformation in the w variable, Σ can be assumed without
loss of generality to be equal to

Σ =

[
I+ 0
0 −I−

]
. (9)

Denote the positive and negative signatures of Σ, (the number of positive and negative eigen-
values of the matrix Σ respectively), by σ+(Σ) and σ−(Σ). Suppose the system is described by
a minimal kernel representation R( d

dt)w = 0 and observable image representation w = M( d
dt)ℓ

with R(ξ) ∈ R
p×w[ξ] and M(ξ) ∈ R

w×(w−p)[ξ] and define m := rank (M) = w−p. It is known that
(Willems and Trentelman, 1998, Remark 5.11) that m 6 σ+(Σ) is necessary for Σ-dissipativity
of B. This paper deals with the special case m = σ+(Σ): we call this the maximum input
cardinality condition and hence use

Σ =

[
Im 0
0 −Ip

]
. (10)

Corresponding to the partition of Σ, partition w = (u, y). It is known that Σ-dissipativity
ensures that this partition is, in fact, an L

loc
1 -input/output partition. In other words, parti-

tioning R of the kernel representation R( d
dt)w = 0 above into R = [Q P ] with respect to

w = (u, y), Σ-dissipativity results in the transfer matrix G(s) := −P (s)−1Q(s) to be proper,
and ‖G(s)‖L∞

6 1. Further, since G(s) is proper, one can obtain a minimal state-space repre-
sentation of G(s), for which, upto a similarity transformation, the state-space representation is
unique.
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3.2. Feedthrough term D = I

Assume a controllable behavior B ∈ L
w
cont satisfying assumptions in Section 3.1 is Σ-

dissipative, and suppose d
dtx = Ax + Bu and y = Cx + Du is a minimal state space repre-

sentation. Then Ip−DDT is non-negative definite. The case when Ip−DDT is positive definite
is well-understood and results in a well-posed interconnection. This paper focusses on the case
when I −DDT is singular. In order to avoid pursuing with a decomposition of the (u, y) vari-
ables into nullspace and image of Ip − DDT , we assume that (Ip − DDT ) is zero; further, we
also assume that D = I and Σ = diag (Im,−Im). The reasons are elaborated below.

Clearly, for ill-posedness, I−DDT is singular, i.e. one or more of the singular values of D are
equal to one. Further, when the system is Σ-dissipative, i.e. when the system transfer matrix
has L∞-norm at most one, the remaining singular values are strictly less than one. The singular
values of D that are strictly less than one do not cause ill-posedness of the interconnection and
hence a state space similarity transformation combined with a coordinate transformation in u
and y variables (see (Pal and Belur, 2008, equation (A.3))) result in a modified (Ã, B̃, C̃, D̃)
such that D̃ is diagonal with all diagonal entries being either zero or one. The diagonal entries
being zero are as good as the corresponding transfer matrix being strictly proper. Since the
strictly proper case and the situation when I − DDT > 0, both result in the well-understood
regular case, this particular aspect in the more general singular (I−DDT ) case can be handled
by a corresponding regular part in the final singular descriptor state space system. In order
to analyze the situation due to singularity, we thus focus on the extreme case of ill-posedness,
namely, when D is the identity matrix Im. As a special case, for a SISO system, assuming
Σ = diag (1,−1), ill-posedness of the interconnection is equivalent to D = 1.

3.3. Full column rank condition on input matrix B

For the rest of this paper, we assume the input matrix B is full column rank. By a dual
argument, we also assume C is full row rank. This is elaborated in this subsection. We first state
a necessary condition on state space representations of B under which B∩B

⊥Σ is autonomous.
The rest of the paper deals with autonomy of the interconnected system.

Lemma 3.1. Consider Σ = diag (Im,−Im) and suppose B ∈ L
2m
cont has variable w partitioned

into w = (u, y) with respect to which the transfer matrix G from u to y has a minimal state
space realization (A,B,C, Im). Suppose B ∩B

⊥Σ is autonomous. Then B is full column rank.

The proof can be found in (Jugade et al., 2013, Remark 4.3). Further, this is related to (Hautus
and Silverman, 1983, Theorem 3.26) and (Heemels et al., 2000, Lemma 3.3), and our assumption
that D = I. Consider the assumption of B being full column rank. Under the situation that
D is the identity matrix, it can be proved that if B is not full column rank, then the inputs
corresponding to the null-space of B result in a non-autonomous all-pass subsystem in the
interconnection of B and B

⊥Σ . We outline this proof here. Suppose v is a constant nonzero
vector such that Bv = 0. Then u = vℓ for any nonzero compactly supported function ℓ has the
corresponding output y = vℓ, assuming initial condition is zero. Clearly, (u, y) is an element
of both B and of B⊥Σ and is a nonzero compactly supported function. This proves that the
intersection is non-autonomous. Thus the assumption that B is full column rank is a necessary
condition for the interconnected system to be autonomous.

For the situation addressed in the above result, we interpret the above lemma, loosely
speaking, as a nontrivial kernel of B resulting in a non-autonomous and all-pass subsystem in
the interconnection of B and B

⊥Σ .
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By a similar argument, we also assume the full row rank condition on C: this is also a
necessary condition for B ∩ B

⊥Σ to be autonomous. In summary, the following assumptions
hold for the rest of this paper.

(a) The dissipativity being considered is with respect to uTu − yT y: dissipativity ensures the
input/output partition is unique, and the corresponding transfer matrix is proper.

(b) With respect to the above input/output partition, the feedthrough term D = I, i.e. a state
space system of B is d

dtx = Ax+Bu and y = Cx+ u.

(c) B is full column rank and C is full row rank.

4. Ill-posed interconnection B ∧ B
⊥Σ

In this section, we obtain a state space representation of B ∧ B
⊥Σ for the case that the

interconnection is not well-posed, i.e. (Ip −DDT ) is singular.
The main result needs the notions of the weakly unobservable subspace V and the strongly

reachable subspace W as proposed in Hautus and Silverman (1983). The weakly unobservable
subspace V is defined as the set of all initial conditions x0 for which there exists a input
u ∈ C

∞(R+) such that the corresponding output y(t) is identically zero on [0,∞). The strongly
reachable subspace W ⊆ R

n is defined as the set of all states reachable by an impulsive input
without the output y being impulsive. The sets V and W can be computed by the following
subspace iteration algorithms (Hautus and Silverman, 1983, equations (3.20) and (3.22)), each
of which has been shown there to converge in at most n steps.

Consider the state space system ẋ = Kx+Lu, y = Mx+Nu with K ∈ R
n×n and N ∈ R

p×m,
and L and M of corresponding sizes.

V0 := R
n, Vi+1 :=

[
K
M

]−1{
(Vi ⊕ 0) + im

[
L
N

]}
, Vn =: V (11)

W0 := {0}, Wi+1 := [K, L] { (Wi ⊕ R
m) ∩ ker [M, N ] } Wn =: W (12)

It is known that the above subspace iteration algorithms converge in at most n steps. The
set W1 has a special significance in this paper: it is the set of states reachable by an input
containing δ but no derivatives of δ. Further, together with autonomy of the system, W = W1

is equivalent to no initial condition resulting in an impulsive solution. We use Vi and Wi in
Theorems 4.1 and 5.1 below.

Suppose B has a minimal state space representation d
dtx = Ax+ Bu and y = Cx+ u: the

assumptions listed in the previous section hold for the rest of the paper. Recall the state space
representation for B ∧B

⊥Σ described in equation (8):




ẋ
ż
0


 =




A BBT B
0 −AT −CT

−C −BT 0






x
z
v1


 . (13)

Define

Ã :=

[
A BBT

0 −AT

]
, B̃ :=

[
B

−CT

]
, C̃ :=

[
C BT

]
. (14)

The above matrices are used to characterize the situation when the interconnection is au-
tonomous. See Remark 5.2 below for the relation with all-pass behavior of the system.

10



Theorem 4.1. Consider the interconnection of the behaviors B and B
⊥Σ with Σ as defined

in equation (9). Let (A,B,C,D) be a minimal i/s/o representation with D = I, B being full
column rank, and C being full row rank. Then statements 1, 2 and 3 are equivalent.

1. The interconnected system is autonomous.

2. The m× m matrix C̃(sI − Ã)−1B̃ is invertible as a rational matrix.

3. V ⊕W = R
2n.

Further, suppose any one of the above is true. Then we have the following:

4. ker (C̃B̃) ∩ ker (C̃ÃB̃) ∩ · · · ∩ ker (C̃Ã2n−1B̃) = {0}.

Proof. The proof is organized as follows. We prove 1 ⇔ 2, 1 ⇔ 3, and then 2 ⇒ 4.
(1 ⇔ 2) Define

P (s) :=




sIn −A −BBT −B
0 sIn +AT CT

C BT 0


 .

Evaluating the determinant of P (s) by using the Schur complement with respect to the top-left

2n× 2n block:

[
sIn −A −BBT

0 sIn +AT

]
we get

det (P (s)) = χ
A(−s)χA(s)det (C̃(sI2n − Ã)−1B̃), (15)

where χA(s) is the characteristic polynomial of A. Since autonomy of the interconnected system
is equivalent to nonsingularity of P (s), we infer the equivalence of 1 and 2.
(1 ⇔ 3) This has been shown in (Heemels et al., 2000, Lemma 3.3). See also Hautus and
Silverman (1983).
(2 ⇒ 4) Suppose the condition within statement 4 does not hold, that is, ker (C̃B̃) ∩
ker (C̃ÃB̃) ∩ · · · ∩ ker (C̃Ã2n−1B̃) 6= {0}. We show that, this implies C̃(sI − Ã)−1B̃ can-
not be invertible as a rational function matrix. Let v ∈ R

2n \ {0} be in ker C̃ÃiB̃ for all
0 6 i 6 2n− 1. Note that using the Cayley-Hamilton theorem,

C̃eÃtB̃ =
[
α0(t)C̃B̃ + α1(t)C̃ÃB̃ + · · ·+ α2n−1(t)C̃Ã2n−1B̃

]

for suitable analytic functions αi(t). Since v ∈ ker C̃ÃiB̃ for all 0 6 i 6 2n− 1, it follows from

the last equation that C̃eÃtB̃v = 0 for all t > 0. Taking Laplace transform of C̃eÃtB̃v, we get
that

C̃(sI − Ã)−1B̃v = 0, and v 6= 0,

which means C̃(sI − Ã)−1B̃ is not invertible as a rational function matrix. �

5. Impulsive initial conditions

In this section we formulate necessary and sufficient conditions for the interconnected system
B ∧ B

⊥Σ to have inadmissible initial conditions, i.e. initial conditions that cause impulsive
solutions.

The following result is one of the main results of this paper: necessary and sufficient con-
ditions on B for the interconnection B ∧B

⊥Σ to have no inadmissible initial conditions. The
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relation of the conditions with all-pass characteristics of a MIMO system is elaborated in Re-
mark 5.2. Also compare the corresponding equivalent statements in Theorem 4.1 where we
characterized just autonomy.

Theorem 5.1. Consider the state space representation of the systems B and B
⊥Σ as in equa-

tions (6) and (7) and their interconnection B∧B
⊥Σ . Assume the resulting Hamiltonian system

given by equation (13) is autonomous. Consider Ã, B̃ and C̃ as defined in equation (14) and
use them to construct Vi and Wi as described in equations (11) and (12). Then the following
are equivalent:

1. The singular Hamiltonian system has no inadmissible initial conditions.

2. ker (C̃B̃) = {0}.

3. det (CB − (CB)T ) 6= 0.

4. C̃eÃtB̃ is nonsingular at t = 0.

5. W = W1 and V = V1.

Proof. The proof is organized as follows: 1 ⇒ 2 ⇔ 3 ⇔ 4 ⇒ 5 ⇒ 1.
(1 ⇒ 2) Suppose statement 2 is not true, we show that this implies statement 1 also is not
true. Take ℓ ∈ ker C̃B̃; because 2 has been assumed to be false, we have ℓ 6= 0. Now, consider
solving equation (13) with initial condition

[
x0
z0

]
:= ÃB̃ℓ,

and distributional input
v1(t) := −ℓδ′(t),

where δ′(t) denotes the distributional derivative of the Dirac delta distribution, δ(·), supported
at t = 0. The resulting state trajectory is given by:

[
x(t)
z(t)

]
=





eÃt

[
x0
z0

]
− ÃeÃtB̃ℓ− B̃ℓδ(t) for t > 0

0 for t < 0
.

Since

[
x0
z0

]
:= ÃB̃ℓ, and ℓ ∈ ker C̃B̃ it follows that

C̃

[
x(t)
z(t)

]
≡ 0.

(Here, we have made use of the fact that eÃt commutes with Ã.) Therefore,

[
x(t)
z(t)

]
as above

and v1(t) = ℓδ′(t) solves equation (13). Since, the Hamiltonian system has been assumed to

be autonomous, v1(t) = −ℓδ′(t) is the unique distribution that makes C̃

[
x(t)
z(t)

]
≡ 0 for the

chosen initial condition,

[
x0
z0

]
:= ÃB̃ℓ. However,

[
x(t)
z(t)

]
clearly contains an impulse. Therefore,

[
x0
z0

]
:= ÃB̃ℓ is an inadmissible initial condition, which is contrary to statement 1.
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(2 ⇔ 3) This follows by using the definition of B̃ and C̃ from equation (14).

(3 ⇔ 4) This is seen by noting that C̃eÃtB̃|t=0 = C̃B̃.

(4 ⇒ 5) We assume that C̃eÃtB̃ is non-singular at t = 0, and want to show that W = W1 and

V = V1. First, the equivalence of statements 2, 3 and 4 implies that C̃eÃtB̃ being non-singular
at t = 0 is equivalent to ker C̃B̃ = {0}. It follows that ker C̃ ∩ im B̃ = {0}. Due to the full
column rank assumption on B and CT , we obtain the full column rank assumption on B̃ and

C̃T , which results in dim
(
ker C̃

)
= 2n − m and dim

(
im B̃

)
= m. These two facts together

imply that
ker C̃ ⊕ im B̃ = R

2n. (16)

Using (Wonham, 1985, Lemma 4.2), we note that a necessary and sufficient condition for ker C̃

to be (Ã, B̃)-invariant is: Ã
(
ker C̃

)
⊆ ker C̃ + im B̃. Therefore equation (16) implies that

ker C̃ is (Ã, B̃)-invariant, i.e, there exists a state-feedback matrix F ∈ R
m×2n such that ker C̃

is (Ã + B̃F )-invariant. It then follows that the consistent subspace V , for the case at hand,
is nothing but ker C̃ (because, in this particular case with D = 0, the consistent subspace
V is the largest (Ã, B̃)-invariant subspace contained in ker C̃ (Hautus and Silverman, 1983,
Theorem 3.10)). However, using the iteration equation (11), we have V1 = ker C̃. Therefore,
V = V1. Now, since the system has been assumed to be autonomous, by (Heemels et al., 2000,
Lemma 3.3) we get that

V ⊕W = R
2n,

whereW is the jump space of the system. It then follows that dimW = 2n−(2n−m) = m because

V = ker C̃ and dim
(
ker C̃

)
= 2n− m. However, note that W ⊇ im B̃ and dim

(
im B̃

)
= m.

Hence, W = im B̃ = W1.
(5 ⇒ 1) Since the Hamiltonian system has been assumed to be autonomous, by Theorem 4.1,
we must have

V ⊕W = R
2n.

This means every initial condition

[
x0
z0

]
∈ R

2n can be decomposed as

[
x0
z0

]
=

[
xW0
zW0

]
+

[
xV0
zV0

]
,

where

[
xW0
zW0

]
∈ W and

[
xV0
zV0

]
∈ V . Two key observations will help complete the proof.

Observation 1: Note that W = W1 = im B̃ and V = V1 = ker C̃ imply that

[
xW0
zW0

]
∈ im B̃, and

[
xV0
zV0

]
∈ ker C̃. (17)

It then follows that there exists ℓ ∈ R
m such that

[
xW0
zW0

]
= B̃ℓ.
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Consider the solution of equation (13) with

[
x0
z0

]
=

[
xW0
zW0

]
and v1(t) = −ℓδ(t). Clearly, using

[
xW0
zW0

]
= Bℓ, the state trajectory corresponding to this v1 evaluates to

[
x(t)
z(t)

]
= eÃt

[
xW0
zW0

]
− eÃtB̃ℓ ≡ 0 for all t > 0.

Observation 2: Since V = V1 = ker C̃, there exists a state feedback matrix F ∈ R
m×2n such

that ker C̃ is (Ã+ B̃F )-invariant. Thus,

C̃e(Ã+B̃F )t

[
xV0
zV0

]
= 0 for all t > 0,

because

[
xV0
zV0

]
∈ ker C̃ and ker C̃ is (Ã+ B̃F )-invariant.

Observations 1 and 2 together imply the following. Suppose for an initial condition

[
x0
z0

]
=

[
xW0
zW0

]
+

[
xV0
zV0

]
, we have

v1(t) =





Fe(Ã+B̃F t)

[
xV0
zV0

]
− ℓδ(t) for t > 0

0 for t < 0
,

then the resulting trajectory

[
x(t)
z(t)

]
has the property that

C̃

[
x(t)
z(t)

]
≡ 0,

in the distributional sense. This means,

[
x(t)
z(t)

]
, with the above-mentioned v1(t) solves equation

(13). However, notice that

[
x(t)
z(t)

]
=





[
x0
z0

]
for t = 0,

e(Ã+B̃F )t

[
xV0
zV0

]
for all t > 0,

which is clearly impulse-free, but perhaps has jumps. At t = 0, we have

[
x0
z0

]
, which was

chosen arbitrarily, and hence it follows that the Hamiltonian system has no inadmissible initial
conditions. This proves 1 and thus completes the proof of Theorem 5.1. �

Note that the minimal state space representation (A,B,C,D) for B was arbitrary, except
for D = I. In our analysis, we used the state space representation in equation (7) for B⊥Σ . If
one begins with a different minimal state space representation for B⊥Σ , then there must exist
a similarity transformation S such that the new representation is d

dtz = −S−1ATSz − S−1CT y

14



and u = BTSz + y and it can be verified that each of the statements in the above theorem is
unchanged due to the matrix S. In this way, our results are not dependent on any specific state
space representation for B or B

⊥Σ . In the context of Statement 5 of the above theorem, as
mentioned before Theorem 4.1: together with autonomy of the system, W = W1 is known to
be equivalent to no initial condition resulting in an impulsive solution. The following remark
relates condition 2 of the above Theorem with an all-pass MIMO transfer matrix.

Remark 5.2. Condition 2 of the above theorem is kind of opposite to the condition required for
a transfer function G(s) to be all-pass2. More precisely, consider a square MIMO transfer function
G(s) ∈ R(s)m×m which is all-pass, i.e. I−G(−s)TG(s) = 0 for every s ∈ jR. The feed-through term D of
such a transfer matrix can be assumed to be I by considering a change of coordinates in either the u or
the y variables. With this assumption on D, equating each of the Markov parameters of I−G(−s)TG(s)
to zero, the all-pass condition on G results in the following conditions on matrices A, B and C of its
state space realization:

CB −BTCT = 0, CAB + (CAB)T −BTCTCB = 0, · · · (18)

Notice that CB is nothing but the first moment of G(s) about s = ∞. Thus a necessary condition
on the first moment for G to be all-pass is that the skew-symmetric part of CB is zero. On the other
hand, condition 3 of the above theorem requires the skew-symmetric part to be nonsingular. In this
sense, the necessary and sufficient condition on G(s) for the singular Hamiltonian system to not have
any inadmissible initial conditions is opposite to the requirement that G(s) is all-pass.

Another consequence of condition 3 in Theorem 5.1, under Assumption 3.1, is that square MIMO
systems with an odd-number of inputs, in particular SISO systems, always has inadmissible initial
conditions. This is seen in the following example.

Example 5.3. Consider G(s) = s+1

s+2
with input u and output y and consider its state space realization

(A,B,C,D) = (−2, 1,−1, 1). The adjoint system has transfer function s−1

s−2
and (2, 1, 1, 1) is a state space

description. The interconnected system (described in the variables: state x and output y of the system
G and state z of its adjoint) turns out to be:

d

dt



1 0 0
0 1 0
0 0 0





x
z
y


 =




1 1 1
0 1 1
−1 1 0





x
z
y




It can be checked that the matrix pencil corresponding to the above first order differential equation
has a zero at infinity. After elimination of the variable y too, the differential equation in just x and
z turns out to contain inadmissible initial conditions. Theorem 5.1 can be used to obtain the same
inference: since CB−BTCT = 0, we conclude that there exist inadmissible initial conditions. Of course,
as noted in Remark 5.2, for SISO systems, ill-posed interconnection implies existence of inadmissible
initial conditions.

6. Impulsive solutions in the manifest/system variables

The last section (in particular, Theorem 5.1) formulated conditions under which the state-
space of the interconnected system (with the states being that of B and B

⊥Σ) has impulsive

2This remark is relevant for the case that the supply rate corresponds to uTu − yT y, for which ‘lossless’
corresponds to all-pass characteristics. When dealing with the supply rate uT y, relevant in passivity analysis, it
is singularity of (D + DT ) matrix that plays a role for the results of this paper; G(s) + G(−s)T then replaces
I −G(−s)TG(s) for the statements made in this remark.
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initial conditions. In this section we investigate further into the case when the manifest variables
w have impulsive solutions in B ∧B

⊥Σ .
Recall again from (Vardulakis, 1991, Theorem 4.32) that a necessary and sufficient condition

for absence of inadmissible initial conditions for an autonomous system P ( d
dt)w = 0 with P

square and nonsingular is that P has no zeros at infinity. Using a kernel representation for
B∩B⊥Σ of equation (4), we note that there are no impulsive modes in the variable w if and only

if

[
R(ξ)

M(−ξ)TΣ

]
has no zeros at infinity. Alternatively, using the latent variable representation

in equation (5):

B∩B
⊥Σ =

{
w ∈ L

loc
1 (R,Rw) | w = M(

d

dt
)ℓ with ℓ satisfying M(−

d

dt
)TΣM(

d

dt
)ℓ = 0

}
, (19)

we see that w is impulsive if ℓ is impulsive, equivalently, in the presence of zeros at infinity in
M(−ξ)TΣM(ξ).

The natural question is whether these are equivalent. For single input systems,M(−ξ)TΣM(ξ)

is a scalar and hence never has zeros at infinity: but

[
R(ξ)

M(−ξ)TΣ

]
can have: Example 5.3 is one

such case. In this example, G(s) = s+1
s+2 , with w = (u, y), for which R(ξ) := [(ξ + 1) − (ξ + 2)]

and M(ξ) := [(ξ + 2) (ξ + 1)]T . Verify that

RHam(ξ) :=

[
R(ξ)

M(−ξ)TΣ

]
=

[
(ξ + 1) −(ξ + 2)
(ξ + 2) (ξ + 1)

]
while M(−ξ)TΣM(ξ) = 1.

Since RHam(ξ) above is unimodular and nonconstant, RHam(ξ) has zeros at infinity, which
implies that one or both of the components in w have impulsive modes. We infer from this
example that the latent variable representation in equation (19), which imposes restrictions on
the latent variable ℓ by M(− d

dt)
TΣM( d

dt)ℓ = 0, need not be able to generate the impulsive

modes in w (through w = M( d
dt)ℓ). In fact, for the case of single input, M(−ξ)TΣM(ξ) cannot

have zeros at infinity and is unable to reveal impulsive modes in w or the corresponding state
space representation of B∧B⊥Σ . A natural question is whether the impulsive modes as revealed
by the state space representation of B∧B

⊥Σ and RHam(ξ) agree with each other: the example
below addresses this question.

Example 6.1. Consider G(s) =
(s+ 1)2

(s+ 2)2
, with w = (u, y), for which define R(s) = [(s+1)2 −(s+2)2]

and M(s) = [(s+ 2)2 (s+ 1)2]T . As far as the corresponding first order singular/descriptor state space
representation is concerned, again like in Example 5.3, since the system is SISO, there are zeros at
infinity in sE −H and hence one or more of the states contain impulsive modes. While M(−ξ)TΣM(ξ)
evaluates to a scalar and hence causes no impulsive modes in ℓ, the 2 × 2 polynomial matrix RHam(ξ)
evaluates to

RHam(ξ) =

[
R(ξ)

M(−ξ)TΣ

]
=

[
(ξ + 1)2 −(ξ + 2)2

(ξ + 2)2 (ξ + 1)2

]

which has determinantal degree 2; using the definition of zeros at infinity, verify that there are no zeros
at infinity. We infer from this example that while one or more of the states x and z have impulses, the
kernel representation RHam(ξ)w = 0 is such that the manifest variable w contains no impulsive solutions.

A natural question that arises due to the absence of impulses in the external variables
w in spite of x and z containing impulses is whether the system is impulse unobservable. We
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investigate this after a brief review of the notion of impulse observability, and the related notion:
‘observability at ∞’.

Consider the definition of impulse observable from (Cobb, 1984, page 1079): a singular
descriptor system Eẋ = Ax and y = Cx is said to be impulse observable (and also observable
at ∞ in the sense of Verghese et al. (1981)) if for every τ > 0, knowledge of y(τ) is sufficient
to determine x(τ). Closely related to impulse observable is the notion of ‘observability at ∞’
in the sense of Rosenbrock (1974), in which knowledge of the distribution y over the duration
[0, τ ] for some τ > 0 and y(0−) is sufficient to infer x(0−). Note that ‘knowledge’ of x and y in
both definitions refers to in the distributional sense. We refer to Cobb (1984) for a thorough
comparison of the definitions/equivalent conditions about the two observabilities at∞ as defined
in Rosenbrock (1974) and Verghese et al. (1981): we restrict ourselves to an equivalent condition
each to check these observabilities. Observability at ∞ in the sense of Verghese is equivalent to[
sE −A

C

]
having no zeros at ∞, while that in the sense of Rosenbrock is equivalent to

[
E − sA

C

]

having full column rank at s = 0: see (Cobb, 1984, Theorems 9 and 10) and their proofs.
For Example 6.1, it can be checked as follows that the system is observable at ∞ in both

senses. E, A and C matrices respectively evaluate to




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0



,




−4 −4 1 0 1
1 0 0 0 0
0 0 4 −1 2
0 0 4 0 3
2 3 −1 0 0




and

[
0 0 0 0 1
0 0 1 0 1

]
.

While

[
E
C

]
is obviously rank 5, absence of zeros at infinity of the matrix

[
sE −A

C

]
follows from

noting that the degree of the determinant of the 5× 5 matrix comprising of the first 4 rows and
the last row is 4: using the definition, we conclude that there are no zeros at infinity.

A conclusion inferred from the above example is that, while the states could have impulsive
behavior, the manifest variables need not have, as suggested by the kernel representation. More
crucially, in spite of the singular descriptor system satisfying observability at ∞ with respect
to two different definitions, the impulsive behavior in the states is not revealed in the manifest
variable. Perhaps a different notion of impulse observability needs to be formulated to explain
this.

7. Concluding remarks

We studied the interconnection of B and B
⊥Σ and studied half-line solutions in the inter-

connected system. While the full-line solutions are the same for three different representations
of this set (namely, the latent variable representation, the kernel representation and the state
space representation), the fast-modes in the half-line solutions set need not be the same. We
formulated necessary and sufficient conditions for the interconnected system to be well-posed
and for it to be autonomous.

When the interconnection of B and B
⊥Σ is not well-posed, under suitable regularizing

assumptions, we formulated necessary and sufficient conditions for existence of inadmissible
initial conditions for the interconnected system B ∧ B

⊥Σ in terms of the first moment about
s = ∞ of the transfer matrix: our second main result. We also related these conditions to
the one-step convergence of the well-known subspace iteration algorithms for obtaining the
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strongly reachable and weakly unobservable subspaces. We noted that the condition on the
skew-symmetric part of the first moment was opposite to that for the MIMO transfer matrix
to be an all-pass filter.

We finally saw two examples, and one of them had the feature that while the state space rep-
resentation of B∧B

⊥Σ had impulsive solutions, the kernel representation (in just the manifest
variable) did not reveal any impulsive behavior. Further, the states were observable at infinity
in the sense of both Verghese et al. (1981) and Rosenbrock (1974), thus raising questions about
why impulses in the states were not revealed in the manifest variables.
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