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Abstract— In this paper we deal with the linear matrix
inequality (LMI) arising from a singular linear quadratic reg-
ulator (LQR) problem. The maximal rank-minimizing solution
Kmax of the LMI plays a central role in obtaining a proportional-
derivative feedback law for the optimal input. The optimal cost
of the LQR, too, depends on this solution Kmax. In this paper,
we provide a method to compute this maximal rank-minimizing
solution Kmax of the singular LQR LMI. We compute this
solution using the notions of the weakly unobservable or the
slow space and the strongly reachable or the fast space of the
Hamiltonian system arising from the singular LQR problem.
In this process, we also provide a novel characterization of the
fast space in terms of the system matrices.

I. INTRODUCTION

In this paper we deal with the LMI arising from the
singular case of the infinite horizon LQR problem. Following
is the problem statement of an infinite horizon LQR problem:

Problem 1.1: Consider a stabilizable system with state-
space dynamics d

dtx = Ax + Bu, where A ∈ Rn×n, B ∈
Rn×m. Then, for every initial condition x0, find an input u
that minimizes the functional

J(x0, u) :=

∫ ∞
0

[
x(t)
u(t)

]T [ Q S

ST R

] [
x(t)
u(t)

]
dt, (1)

with limt→∞ x(t) = 0, where
[
Q S

ST R

]
> 0.

This is a regular LQR problem if the cost matrix R > 0, and
a singular LQR problem when R is singular. For the regular
problem, the optimal input u∗ is given by a state-feedback
law u∗=−R−1(ST+BTKmax)x, where Kmax is the maximal
solution of the algebraic Riccati equation (ARE):

ATK +KA+Q− (KB + S)R−1(BTK + ST ) = 0; (2)

that is, Kmax − K > 0 for any arbitrary solution K of the
ARE. The singular LQR problems do not admit the ARE due
to singularity of the matrix R. However, both the regular and
the singular LQR problems give rise to the following LMI:

L(K) :=
[
ATK+KA+Q KB+S

BTK+ST R

]
> 0. (3)

For the regular case, Kmax is the maximal rank-minimizing
solution of the LMI (3), that is rankL(Kmax) 6 rankL(K)
for any arbitrary solution K of the LMI. For singular LQR
problems, too, the maximal rank-minimizing solution Kmax

of the LMI (3) is the key to obtain the optimal solution [1].
Singular LQR problem has been extensively studied in the
seminal paper [2]. But, a feedback solution has not been
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provided there. A linear implicit control law of the form
Px + Lu = 0 has been provided in [3]. But, unfortunately,
this law is not always feedback implementable. In [4] Kmax

has been used to design a proportional-derivative (P-D)
feedback optimal control law for the single-input case. The
solution presented in this paper is expected to play a crucial
role in designing a P-D feedback law for the multi-input case.
We shall pursue this design problem elsewhere in future.

In this paper we transform Problem 1.1 to an alternative
formulation of the singular LQR problem, which separates
the regular part from the singular part of the problem. Since
R > 0, there exists an orthogonal matrix U ∈ Rm×m such that
UTRU = diag(0, R̂), where R̂ ∈ Rr×r and r := rankR.
Clearly, R̂ > 0. Define BU =: [B1 B2 ] and SU =: [ S1 S2 ],
where B2, S2 ∈ Rn×r. Then, it is easy to verify that S1 = 0
([5, Lemma 1]). Thus, without loss of generality, we can
provide the following alternative formulation of the singular
LQR Problem (for more details see [5, Lemma 1]):

Problem 1.2: Let Q ∈ Rn×n, S2 ∈ Rn×r, and R̂ ∈ Rr×r

be such that R̂ > 0 and
[

Q 0 S2
0 0d,d 0

ST
2 0 R̂

]
> 0, where d := m −

r. Consider a stabilizable system with state-space dynamics
d
dtx = Ax + B1u1 + B2u2, where A ∈ Rn×n, B1 ∈ Rn×d,
and B2 ∈ Rn×r. Then, for every initial condition x0, find an
input u := col(u1, u2) that minimizes the functional:

J(x0, u) :=

∫ ∞
0

[ x
u1
u2

]T [ Q 0 S2
0 0 0

ST
2 0 R̂

] [ x
u1
u2

]
dt with lim

t→∞
x(t) = 0. (4)

Under this transformation LMI (3) takes the form:

Lt(K) :=

[
ATK+KA+Q KB1 KB2+S2

BT
1 K 0 0

BT
2 K+ST

2 0 R̂

]
> 0. (5)

It is easy to verify that Kmax is the maximal rank-minimizing
solution of LMI (3) if and only if Kmax is the maximal rank-
minimizing solution of LMI (5).

In [6], [7], [8], it has been shown that Kmax can be
found by solving the following set of equations known as
constrained generalized continuous ARE (CGCARE):
ATK +KA+Q− (KB2 + S2)R̂−1(BT

2 K + ST
2 )=0 and KB1 =0.

But, [5] shows that such equations are generically unsolvable.
For a regular LQR problem, the maximal rank-minimizing
solution of the LQR LMI is given by the maximal solution
of the corresponding ARE. There are numerous methods
to compute the maximal solution of an ARE: see [9] for
different methods. However, these methods cannot be used to
compute the maximal rank-minimizing solution of an LQR
LMI for the singular case primarily due to the singularity
of R matrix. In this paper, we provide a novel method
of computing the maximal rank-minimizing solution of the
singular LQR LMI. This method, in principle, is an extension



of the Hamiltonian matrix based method prevalently used
for the regular case. However, one crucial distinction in our
approach is the substitution of the eigenspace of the Hamilto-
nian matrix in the regular case by the weakly unobservable
(slow) subspace of the corresponding Hamiltonian system
and the strongly reachable (fast) subspace of the primal.
This approach substantially helps in the design of the P-D
feedback for the optimal input ([4]).

II. NOTATION AND PRELIMINARIES

A. Notation
The symbols R, C, and N are used for the sets of real num-

bers, complex numbers, and natural numbers, respectively.
R+ and C− denote the sets of positive real numbers and com-
plex numbers with negative real parts, respectively. Rn×p de-
notes the set of n×p matrices with elements from R. We use
the symbol In for an n×n identity matrix and the symbol 0n,m
for an n×m matrix with all entries zero. col(B1, B2,. . . ,Bn)
represents a matrix of the form [ BT

1 BT
2 ··· BT

n ]
T . By imgA

and kerA we denote the image and nullspace of a matrix
A, respectively. The symbol rankA denotes the rank of a
matrix A. det(A) represents the determinant of a square
matrix A. The symbols deg(p(s)) and roots(p(s)) denote
the degree and the set of roots (over complex numbers) of a
polynomial p(s) with real or complex coefficients (counted
with multiplicity), respectively. The symbol num(p(s)) is
used to denote the numerator of a rational function p(s). By
degdet(A(s)) we denote the degree of the determinant of a
polynomial matrix A(s) and by numdet(A(s)) we denote the
numerator of the determinant of a rational function matrix
A(s). The symbol σ(A) denotes the set of eigenvalues of
a square matrix A (counted with multiplicity). The symbol
|Γ| denotes the cardinality of a set Γ. We use the symbol
σ(A|S) to represent the set of eigenvalues of A restricted
to an A-invariant subspace S. We use the symbol dim (S)
to denote the dimension of a space S . The space of all
infinitely differentiable functions from R to Rn is represented
by the symbol C∞(R,Rn), while C∞(R,Rn)|R+

represents
the set of all functions from R+ to Rn that are restrictions
of C∞(R,Rn) functions to R+. δ represents the Dirac delta
impulse distribution and δ(i) represents the i-th distributional
derivative of δ with respect to t.
B. Regular matrix pencils

Consider a regular matrix pencil (sU1 − U2) ∈ R[s]n×n,
i.e., det(sU1 − U2) 6≡ 0. Let λ ∈ roots (det(sU1 − U2)).
Then λ is called an eigenvalue of (U1, U2) and every nonzero
vector v ∈ ker (λU1 − U2) is called an eigenvector of
the matrix pair (U1, U2) corresponding to the eigenvalue λ.
Further, every nonzero vector ṽ ∈ ker (λU1 − U2)

i, where
i ∈ {2, 3, . . .}, is called a generalized eigenvector of the
matrix pair (U1, U2) corresponding to the eigenvalue λ. We
use the symbol σ(U1, U2) to denote the set of eigenvalues
of (U1, U2) (with λ ∈ σ(U1, U2) included in the set as many
times as its algebraic multiplicity).

C. (A,B)-invariant subspaces
Definition 2.1: Consider A ∈ Rn×n and B ∈ Rn×m. A

subspace S ⊆ Rn is said to be (A,B)-invariant if there
exists a matrix F ∈ Rm×n such that (A+BF )S ⊆ S .

We use the symbol I(A,B) for the family of all (A,B)-
invariant subspaces for a given (A,B) pair. The notation
I(A,B; kerC) denotes the family of (A,B)-invariant sub-
spaces that are contained in kerC, where C ∈ Rp×n.
It is known in the literature that the set I(A,B; kerC)
admits a supremal element [10, Lemma 4.4], and we rep-
resent it by the symbol sup I(A,B; kerC). Formally this
means that for all S ∈ I(A,B; kerC), we must have
S ⊆ sup I(A,B; kerC). The notation F(S) is used for the
collection of matrices F ∈ Rm×n such that (A+BF )S ⊆ S .

Another important concept is the notion of good (A,B)-
invariant subspaces. We explain this notion next. Define

B :={S∈I(A,B, kerC) |∃F ∈F(S) such that σ ((A+BF )|S)(C−} ,

We call subspaces in B good (A,B)-invariant subspaces
inside kerC. As shown in [10, Lemma 5.8], the set B admits
a supremal element defined as S∗g := supB, i.e., for all
elements S ∈ B,S ⊆ S∗g . Hence, S∗g is called the largest
good (A,B)-invariant subspace inside kerC.

D. Weakly unobservable and strongly reachable subspaces
Consider the system with an input-state-output (i/s/o)

representation d
dtx = Ax + Bu and y = Cx + Du, where

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. Associated
with such a system are two important subspaces called the
weakly unobservable subspace and the strongly reachable
subspace. Before we delve into the definitions of these
subspaces, we need to define the space of impulsive-smooth
distributions (see [2], [11]).

Definition 2.2: The set of impulsive-smooth distributions
Cw

imp is defined as:
C
w
imp :=

{
f = freg + fimp | freg ∈ C

∞
(R,Rw

)|R+

and fimp =

k∑
i=0

aiδ
(i)
, with ai ∈ Rw

, k ∈ N
}
.

In what follows, we denote the state-trajectory x and output-
trajectory y of the system Σ, that result from initial condition
x0 and input u, using the symbols x(x0, u) and y(x0, u), re-
spectively. The symbol x(0+;x0, u) denotes the value of the
state-trajectory that can be reached from x0 instantaneously
on application of the input u at t = 0.

Definition 2.3: A state x0 ∈ Rn is called weakly unob-
servable if there exists an input u ∈ C∞(R,Rm)|R+ such
that y(x0, u) ≡ 0 for all t > 0. The collection of all such
weakly unobservable states is called the weakly unobservable
subspace or the slow space and is denoted by Ow.

Proposition 2.4: The slow space Ow is the largest sub-
space V of the state-space for which there exists a feedback
F ∈ Rm×n such that (A + BF )V ⊆ V and (C + DF )V = 0. In
other words, Ow satisfies the above condition; and V ⊆ Ow
for any subspace V satisfying the given condition.
Proposition 2.4 tells that Ow is the largest (A,B)-invariant
subspace inside ker (C+DF ) over all F ∈ Rm×n. Therefore,
such a subspace also admits largest good (A,B)-invariant
subspace inside ker (C +DF ) over all F ∈ Rm×n. We call
such a space the good slow space of the system.

Definition 2.5: A state x1∈Rn is called strongly reachable
(from the origin) if there exists an input u∈Cm

imp such that
x(0+; 0, u)=x1 and y(0, u) ∈ C∞(R,Rp)|R+ . The collection
of all such strongly reachable states is called the strongly
reachable subspace or the fast space and is denoted by Rs.



Proposition 2.6: The fast space Rs is the smallest sub-
space W of the state-space for which there exists G ∈ Rn×p

such that (A + GC)W ⊆ W and img (B + GD) ⊆ W. In other
words, Rs satisfies the above condition; and Rs ⊆ W for
any subspace W satisfying the given condition.

E. The primal and the Hamiltonian

Suppose p := rank

[
Q 0 S2

0 0 0
ST

2 0 R̂

]
. Since

[
Q 0 S2

0 0 0
ST

2 0 R̂

]
> 0, it

admits a factorization given by
[
Q 0 S2

0 0 0
ST

2 0 R̂

]
=

[
CT

0
DT

2

]
[C 0 D2 ],

where C ∈ Rp×n, and D2 ∈ Rp×r. Using this factorization
in equation (4), it can be easily seen that the singular LQR
Problem 1.2 can be viewed as an output energy minimization
problem of the system Σ defined as follows:

d

dt
x = Ax+B1u1 +B2u2 and y = Cx+D2u2. (6)

We call the system Σ the primal for the given LQR Problem.
According to Pontryagin’s maximum principle, all the

smooth optimal trajectories must necessarily be a trajectory
of the following singular descriptor system:[

In 0 0 0
0 In 0 0
0 0 0 0
0 0 0 0

]
︸ ︷︷ ︸

E

d

dt

[ x
z
u1
u2

]
=

 A 0 B1 B2

−Q −AT 0 −S2

0 BT
1 0 0

ST
2 BT

2 0 R̂


︸ ︷︷ ︸

H

[ x
z
u1
u2

]
, (7)

where col(x, z) is the state-costate pair. The system de-
scribed by equation (7) is known in the literature as the
Hamiltonian system corresponding to the LQR Problem 1.2
and the matrix pair (E,H) is known as the Hamiltonian
matrix pair. The Hamiltonian system admits an output-
nulling representation given by

d
dt

[ xz ] = Â [ xz ] + B̂
[ u1
u2

]
and 0 = Ĉ [ xz ] + D̂

[ u1
u2

]
, where

Â :=
[

A 0
−Q −AT

]
, B̂ :=

[
B1 B2
0 −S2

]
, Ĉ :=

[
0 BT

1

ST
2 BT

2

]
, and D̂ :=

[
0 0
0 R̂

]
.(8)

It has been recently shown that not only the smooth optimal
trajectories, but also the distributional ones must necessarily
obey the Hamiltonian system’s equation distributionally [4].

Due to non-singularity of R̂, we can further reduce the
Hamiltonian system to obtain an equivalent system described
by the following differential algebraic equations:[

In 0 0
0 In 0
0 0 0

]
︸ ︷︷ ︸

Er

d

dt

[ x
z
u1

]
=

[
A−B2R̂

−1ST
2 −B2R̂

−1BT
2 B1

−Q+S2R̂
−1ST

2 −(A−B2R̂
−1ST

2 )T 0

0 BT
1 0

]
︸ ︷︷ ︸

Hr

[ x
z
u1

]
. (9)

We call the system described by equation (9), the reduced
Hamiltonian system, and the pair (Er, Hr) the reduced
Hamiltonian matrix pair. The reduced Hamiltonian system
admits an output-nulling representation ΣHam as follows:

d

dt
[ xz ] =

[
Ã −Az

−Q̃ −ÃT

]
[ xz ] +

[
B̃
0

]
u1 and 0 = [ 0 B̃T ] [ xz ] , (10)

where Ã := A − B2R̂
−1ST2 , Q̃ := Q − S2R̂

−1ST2 , Az :=
B2R̂

−1BT2 , and B̃ := B1.
The following lemma relates the transfer function matrices

of the primal and the Hamiltonian [12, Lemma 4.4].
Lemma 2.7: Consider the primal Σ, the Hamiltonian

matrix pair (E,H), the reduced Hamiltonian matrix pair
(Er, Hr), and the matrices Â, B̂, Ĉ, D̂ defined in equation
(6), equation (7), equation (9), and equation (8), respectively.
Define G(s) := C(sIn −A)−1 [B1 B2 ] + [ 0 D2 ]. Then,

1. G(−s)TG(s) = Ĉ(sI2n − Â)−1B̂ + D̂.
2. numdetG(−s)TG(s) = det(sE − H) = k ×

det(sEr −Hr) for some k ∈ R \ {0}.
Remark 2.8: Due to Statement 2 we can infer that if

λ is a root of det(sEr − Hr) (that is, λ ∈ σ(Er, Hr)),
then −λ, too, is a root of the same. Of course, the roots
also appear along with their complex conjugates. Therefore,
the roots are symmetric about the origin. Consequently,
det(sEr −Hr) is an even degree polynomial. Statement 1
and Statement 2 together imply that for a singular LQR prob-
lem degdet(sEr−Hr) =: 2ns, where ns < n (because D̂ is
singular). In this paper we assume that det(sEr−Hr) has no
root on the imaginary axis. Hence, |σ(Er, Hr) ∩ C−| = ns.
It also implies that G(s) is left-invertible as rational function
matrix, that is, the primal Σ is a left-invertible system. �

F. Characterization of the good slow space of the Hamiltonian
The following lemma provides us with a characterization

of the good slow space of the Hamiltonian (see [13]).
Lemma 2.9: Consider the reduced Hamiltonian matrix

pair (Er, Hr) as defined in equation (9). Assume that
σ(Er, Hr) ∩ jR = ∅. Define degdet(sEr − Hr) =: 2ns
and Λ := σ(Er, Hr) ∩ C− (recall from Remark 2.8 that
|Λ| = ns). Let V1Λ, V2Λ ∈ Rn×ns and V3Λ ∈ Rd×ns be
such that col(V1Λ, V2Λ, V3Λ) is full column-rank and the
following holds:[

Ã −Az B̃

−Q̃ −ÃT 0

0 B̃T 0

][
V1Λ
V2Λ
V3Λ

]
=

[
In 0 0
0 In 0
0 0 0

] [
V1Λ
V2Λ
V3Λ

]
Γ, (11)

where σ(Γ)=Λ. Then, the following are true:
1.
[
V1Λ

V2Λ

]
is full column-rank.

2. The good slow space of ΣHam =: Owg = img
[
V1Λ

V2Λ

]
.

The following lemma ([13, Lemma 14]) shows that the good
slow space, Vg , of the primal Σ is embedded into the good
slow space, Owg , of the Hamiltonian ΣHam.

Lemma 2.10: Let Vg and Owg be the good slow spaces of
the primal Σ and the Hamiltonian ΣHam, respectively. Define
the subspace VgHam := {[ v0 ] ∈ R2n | v ∈ Vg}. Then, VgHam⊆Owg.

Remark 2.11: Suppose Vg ∈ Rn×g be such that Vg is
full column-rank and imgVg = Vg, where g := dim(Vg).
Then, from Lemma 2.10 it is evident that there exist
V1e, V2e ∈ Rn×(ns−g) such that

[
Vg V1e

0n,g V2e

]
is full column-rank

and img
[

Vg V1e

0n,g V2e

]
= Owg. Hence, without loss of generality,

in this paper we assume that
[

Vg V1e

0n,g V2e

]
=
[
V1Λ
V2Λ

]
. �

The following lemma ([13, Lemma 17, Theorem 18]) plays
a pivotal role in the proofs of the main results of this paper.

Lemma 2.12: Consider V1Λ, V2Λ as defined in Lemma 2.9
and Vg as defined in Remark 2.11. Let V1e, V2e ∈ Rn×(ns−g) be
such that

[
Vg V1e

0n,g V2e

]
is full column-rank and img

[
Vg V1e

0n,g V2e

]
=

Owg. Then, the following statements are true:
1. V2e is full column-rank.
2. V T

1ΛV2Λ = V T
2ΛV1Λ (equivalently, V T

2eVg = 0 and
V T

1eV2e = V T
2eV1e).

3. V T
2eV1e > 0.

4. V1Λ =
[
Vg V1e

]
is full column-rank.

III. THE FAST SPACE OF THE PRIMAL

In this section we provide a characterization for the fast
space of the primal. As mentioned earlier, it is more conve-
nient to carry out the analysis with the reduced Hamiltonian



ΣHam, which comprises of the matrices Ã, B̃, Q̃, and Az. Thus,
we represent the fast space of the primal in terms of these
matrices. The next lemma becomes useful in order to do so.

Lemma 3.1: The fast spaceRs of the primal Σ is the same
as the fast space of the system Ω defined as follows:

d

dt
x = Ãx+ B̃u and y = C̃x, where C̃ := C −D2R̂

−1ST
2 . (12)

For proof of Lemma 3.1 please refer to the appendix.
Lemma 3.1 along with [14, Theorem 4.2, Theorem 4.7]

enables us to write the following proposition which provides
a closed-form expression as well as the dimension of the fast
space of the primal Σ.

Proposition 3.2: Consider the primal Σ and the ma-
trices Ã, B̃, C̃ as defined in equation (6) and equation
(10), respectively. Recall from Remark 2.8 that 2ns =
deg{numdet(G(−s)TG(s))}, where G(s) is the transfer
function matrix of Σ. Let Rs be the fast space of Σ. Then,

1. dimRs = nf, where nf := n− ns.
2. Rs = imgW , where

W := [ B̃ ÃB̃ ... Ãnf−dB̃ ]N (13)

such that the columns of the matrix N ∈ Rd(nf−d+1)×nf
form a basis for kerMnf−d+1 with Mj defined as

Mj :=



0p,d if j=1

0 0 . . . 0 0

0 0 . . . 0 C̃B̃

0 0 . . . C̃B̃ C̃ÃB̃

...
...

. . .
...

...
0 C̃B̃ . . . C̃Ãj−3B̃ C̃Ãj−2B̃


if j>2

. (14)

3. W is full column-rank.
We call the matrixMj the Markov parameter matrix. In [14,
Lemma 4.1 and Theorem 4.2] it has been shown that the fast
space of the primal Σ (which is the same as the fast space of
Ω) having its dimension equal to nf is equivalent to saying
that dim(kerMnf−d+1) = dim(kerMnf−d+2) = nf.

IV. CONSTRUCTIVE SOLUTION OF THE LQR LMI

In this section we provide the main results of this paper.
The first of these results provides us with a method to
compute a symmetric matrix Kmax that satisfies the LQR
LMI (5). Two subsequent results show that Kmax is, indeed,
the maximal rank-minimizing solution of the LMI.

In order to prove the main results we need a couple of
identities that we state as lemmas next. We provide the proofs
of these lemmas in the appendix.

Lemma 4.1: Let K ∈ Rn×n be an arbitrary solution of the
LQR LMI (5). Then, KW = 0, where W is as defined in
equation (13).

Lemma 4.2: Recall V2Λ and W from Lemma 2.9 and
Proposition 3.2, respectively. Then, V T2ΛW =0.
Now we provide the first main result of this paper. This result
enables us to compute a solution of the LQR LMI (5). In the
subsequent results we establish that this solution, indeed, is
the maximal rank-minimizing solution.

Theorem 4.3: Consider the LQR LMI given by equation
(5). Recall from Lemma 2.9 that the good slow space of the
Hamiltonian ΣHam is given by Owg = img

[
V1Λ

V2Λ

]
. Further

recall from Proposition 3.2 that the fast space of the primal Σ
is given byRs = imgW . Define XΛ :=

[
V1Λ W
V2Λ 0

]
=:
[
X1Λ

X2Λ

]
,

where X1Λ, X2Λ∈Rn×n. Then, the following are true:

1. X1Λ is invertible.
2. Kmax := X2ΛX

−1
1Λ is symmetric.

3. Kmax satisfies the LMI (5).
Proof 1. Recall from Remark 2.11 that there exists V1e ∈
Rn×(ns−g) such that V1Λ = [ Vg V1e ], where columns of Vg
form a basis for the good slow space Vg of the primal Σ and
g = dim (Vg). To the contrary we assume that X1Λ is not
invertible. So, there exist z1∈Rg, z2∈R(ns−g), z3∈Rnf with
col (z1, z2, z3) 6=0 such that
Vgz1+V1ez2+Wz3 =0⇒V T

2eVgz1+V T
2eV1ez2+V T

2eWz3 =0, (15)

where [ 0n,g V2e ] = V2Λ (see Remark 2.11). From Lemma
4.2, we get that V T2ΛW =

[
0
V T

2e

]
W = 0 ⇔ V T2eW = 0.

Further, by Statement 2 of Lemma 2.12, we have V T2eVg = 0.
Consequently, from equation (15) we get that V T2eV1ez2 = 0.
But, from Statement 3 of Lemma 2.12, we know that V T2eV1e
is non-singular. Thus, z2 = 0. So, equation (15) reduces to

Vgz1 +Wz3 = 0. (16)

Recall from Remark 2.8 that the primal Σ is a left-
invertible system. So, by [2, Theorem 3.26] it follows that
imgVg ∩ imgW = {0}, because the columns of Vg and
the columns of W form bases for the good slow space Vg
and the fast space Rs of the primal Σ, respectively (see
Proposition 3.2). Thus, we conclude from equation (16) that
z1 = 0, z3 = 0. This is a contradiction, because we have
assumed that col (z1, z2, z3) 6=0. Hence, X1Λ is invertible.
2. We need to show that X2ΛX1Λ

−1 = (X2ΛX1Λ
−1)T ⇔

XT
2ΛX1Λ −XT

1ΛX2Λ = 0. It follows from the definitions of
X1Λ and X2Λ that

XT
2ΛX1Λ −XT

1ΛX2Λ =

[
V T

2ΛV1Λ−V T
1ΛV2Λ V T

2ΛW

−WT V2Λ 0

]
. (17)

By Lemma 2.12 and Lemma 4.2 we get V T2ΛV1Λ = V T1ΛV2Λ

and V T2ΛW = 0, respectively. Thus, from equation (17), we
get XT

2ΛX1Λ −XT
1ΛX2Λ = 0. Hence, Kmax is symmetric.

3. By taking Schur complement with respect to R̂, we get
that K is a solution of the LMI (5) if and only if K satisfies

(ATK+KA+Q−(KB2+S2)R̂−1(BT
2 K+ST

2 ))>0, and KB1 = 0,

⇔ Lr(K) := ÃTK +KÃ+ Q̃−KAzK > 0, and KB̃ = 0, (18)

where Ã, B̃, Q̃, and Az are as defined in equation (10).
Note that KmaxX1Λ = X2ΛX

−1
1ΛX1Λ = X2Λ. Therefore,

XT
1Λ(ÃTKmax +KmaxÃ+ Q̃−KmaxAzKmax)X1Λ

=XT
1ΛÃ

TX2Λ +XT
2ΛÃX1Λ +XT

1ΛQ̃X1Λ −XT
2ΛAzX2Λ

= [ XT
2Λ −XT

1Λ ]
[

Ã −Az

−Q̃ −ÃT

][
X1Λ
X2Λ

]
=

[
V T

2Λ −V T
1Λ

0 −WT

][
Ã −Az

−Q̃ −ÃT

][
V1Λ W
V2Λ 0

]
=

[
V T

2Λ −V T
1Λ

0 −WT

] [
ÃV1Λ−AzV2Λ ÃW

−Q̃V1Λ−ÃT V2Λ −Q̃W

]
.

Further, using equation (11) in the above equation, we have

XT
1Λ(ÃTKmax +KmaxÃ+ Q̃−KmaxAzKmax)X1Λ

=

[
V T

2Λ −V T
1Λ

0 −WT

] [
V1ΛΓ−B̃V3Λ ÃW

V2ΛΓ −Q̃W

]
=

[
(V T

2ΛV1Λ−V T
1ΛV2Λ)Γ −ΓT V T

2ΛW

−WT V2ΛΓ WT Q̃W

]
. (19)

Application of Lemma 4.2 and Lemma 2.12 further yields

XT
1Λ(ÃTKmax+KmaxÃ+ Q̃−KmaxAzKmax)X1Λ =

[
0 0
0 WT Q̃W

]
. (20)

Since Q̃ > 0 and X1Λ is non-singular, we conclude that
(ÃTKmax +KmaxÃ+ Q̃−KmaxAzKmax) > 0.
Next, by equation (11), we have B̃TV2Λ = 0. Therefore,

B̃TKmax = B̃TX2ΛX1Λ
−1 = B̃T [ V2Λ 0 ]X1Λ

−1 = 0.



Hence, Kmax is a solution of the singular LQR LMI (5). �
The following theorem shows that Kmax is a rank-minimizing
solution of the singular LQR LMI.

Theorem 4.4: Kmax is a rank-minimizing solution of
the singular LQR LMI (5); that is, rankLt(Kmax) 6
rankLt(K) for any K that satisfies Lt(K) > 0.
Proof Due to the notion of Schur complement, there
exists a non-singular matrix Ũ ∈ R(n+m)×(n+m) such that

ŨTLt(K)Ũ=

[
Lr(K) KB̃ 0

B̃TK 0 0
0 0 R̂

]
, where Lr(K) is as defined in

equation (18). Further, for any K satisfying Lt(K) > 0, we
must have KB̃ = 0. So, for an arbitrary solution K of LQR
LMI (5), we have rankLt(K) = rankLr(K) + rankR̂. So,
it suffices to show that rankLr(Kmax) 6 rankLr(K). Now,

rankLr(K) > rankWTLr(K)W

= rank{WT (ÃTK +KÃ+ Q̃−KAzK)W}. (21)

By equation (20) and non-singularity of X1Λ, we infer that

rankLr(Kmax) = rankXT
1ΛLr(Kmax)X1Λ = rankWT Q̃W.

Thus, using Lemma 4.1 in equation (21), we conclude that

rankLr(K) > rankWT Q̃W = rankLr(Kmax).

This completes the proof. �

Following theorem shows that Kmax is the maximal solution
of the singular LQR LMI.

Theorem 4.5: Assume that K is an arbitrary solution of
LQR LMI (5). Then, K 6 Kmax.
Proof We first claim that ∆ := V T1Λ(K − Kmax)V1Λ 6 0.
To prove this claim, we evaluate the quantity d

dt (x
TKx) +[

x
u1
u2

]T [ Q 0 S2

0 0 0
ST

2 0 R̂

] [
x
u1
u2

]
for all trajectories col (x, u1, u2)

that belongs to the primal Σ (see equation (6)) to get:

d
dt

(xTKx) +
[ x
u1
u2

]T [ Q 0 S2
0 0 0

ST
2 0 R̂

] [ x
u1
u2

]
=
[ x
u1
u2

]T [ATK+KA+Q 0 KB2+S2
0 0 0

BT
2 K+ST

2 0 R̂

]
︸ ︷︷ ︸

Lt(K)

[ x
u1
u2

]
for all t > 0.

Since Lt(K) > 0, from the above equation it is clear that
d

dt
(xTKx) +

[ x
u1
u2

]T [ Q 0 S2
0 0 0

ST
2 0 R̂

] [ x
u1
u2

]
> 0 for all t > 0. (22)

Due to equation (11), it is straightforward to verify that
corresponding to the initial condition x0s = V1Λα, where
α ∈ Rns is arbitrary, xs := V1Λe

Γtα, us1 := V3Λe
Γtα,

and us2 := −R̂−1(ST2 V1Λ + BT2 V2Λ)eΓtα satisfy ẋs =
Axs+B1us1 +B2us2 . Thus, the trajectory col (xs, us1 , us2)
belongs to Σ. So, by equation (22), we have

d

dt
(xTs Kxs) > −

[
xs
us1
us2

]T [ Q 0 S2
0 0 0

ST
2 0 R̂

] [
xs
us1
us2

]
for all t > 0. (23)

Next, by simple algebraic manipulations using the defi-
nitions of xs, us1 , and us2 along with equation (11) and
the identities KmaxV1Λ = V2Λ, KmaxB̃ = 0, and V T1ΛV2Λ =
V T2ΛV1Λ we get that

d

dt
(xTs Kmaxxs) +

[
xs
us1
us2

]T [ Q 0 S2
0 0 0

ST
2 0 R̂

] [
xs
us1
us2

]
= 0 for all t > 0. (24)

Subtracting equation (24) from equation (23), it follows that
d

dt
{xTs (K −Kmax)xs} > 0 for all t > 0. (25)

We substitute xs = V1Λe
Γtα and ẋs = V1ΛΓeΓtα in equation

(25) and then evaluate the expression at t = 0 to yield

αT (ΓT ∆ + ∆Γ)α > 0, where ∆ = V T
1Λ(K −Kmax)V1Λ.

Since α ∈ Rns is arbitrary, we must have ΓT∆ + ∆Γ > 0.
In view of the fact that σ(Γ) ( C−, we conclude that ∆ =
V T1Λ(K −Kmax)V1Λ 6 0. This proves the claim.
Now, we prove that K − Kmax 6 0 for all K satisfying
Lt(K) > 0. Due to the non-singularity of X1Λ, it suffices
to show that XT

1Λ(K −Kmax)X1Λ 6 0. Now,

XT
1Λ(K−Kmax)X1Λ=

[
V T

1Λ(K−Kmax)V1Λ V T
1Λ(K−Kmax)W

WT (K−Kmax)V1Λ WT (K−Kmax)W

]
. (26)

From Lemma 4.1, we have KW = KmaxW = 0 and thus
from equation (26) we get XT

1Λ(K −Kmax)X1Λ = [ ∆ 0
0 0 ] .

But, since ∆ 6 0, it is evident that XT
1Λ(K−Kmax)X1Λ60.

Hence, K−Kmax 6 0 for any arbitrary solution K of the
singular LQR LMI (5). This completes the proof. �

Corollary 4.6: Kmax satisfies the property Kmax > 0.
Proof As 0 ∈ Rn×n solves the LQR LMI (5), by Theorem
4.5 it evident that Kmax > 0. �

Remark 4.7: From the definition of X1Λ and Remark 2.11
we know that X1Λ = [ Vg V1e W ]. By Theorem 4.3, X1Λ is
non-singular. Consequently, the state-space Rn admits the
direct-sum decomposition Rn = imgVg ⊕ imgV1e ⊕ imgW .
Now, from [1, Theorem 2] we know that the optimal cost
for the singular LQR Problem 1.2 must be J0 = xT0 Kmaxx0

for a given initial condition x0. Thus, if x0 is from the good
slow space of the primal, that is, x0 = Vgα for an arbitrary
α ∈ Rg, then the cost incurred by the optimal input is J0 =
αTV Tg KmaxVgα. But KmaxVg = [ 0 V2e 0 ] [ Vg V1e W ]

−1
Vg =

0. Therefore, the optimal input incurs zero cost. Similarly,
if x0 is from the fast space of the primal, that is, x0 =
Wγ for an arbitrary γ ∈ Rnf , then the optimal cost J0 =

γTWTKmaxWγ = 0. So, if x0 = [ Vg V1e W ]
[ α
β
γ

]
with α ∈

Rg, β ∈ R(ns−g), and γ ∈ Rnf is an arbitrary initial condition,
then the optimal cost J0 = βTV T

1eKmaxV1eβ. But, KmaxV1e =

[ 0 V2e 0 ] [ Vg V1e W ]−1 V1e = V2e. Hence, the optimal cost for
an arbitrary initial condition is given by J0 = βTV T

1eV2eβ. �

V. CONCLUSIONS

The method to compute the maximal rank-minimizing
solution Kmax of the singular LQR LMI provided in this
paper shows that Kmax is intimately related to the slow and
the fast space of the Hamiltonian system. For single-input
systems it has been shown in [4] that Kmax plays a pivotal
role in order to design a P-D feedback law for the optimal
input. The main advantage of using this Hamiltonian system
based approach is that it enables us to solve the singular
LQR problem for arbitrary initial conditions. It is well-
known in the literature that for arbitrary initial conditions the
optimal trajectories are, in general, impulsive in nature. This
Hamiltonian system based method is able to handle these
impulsive optimal trajectories as well. In [15] a method to
design a P-D feedback controller has been provided under
certain assumptions by using behavioral theoretic ideas. In
our forthcoming work we wish to provide a P-D feedback



solution for the multi-input case of the singular LQR problem
using the results that have been developed here. We expect
that such a solution will be devoid of such assumptions.

APPENDIX
A. Proof of Lemma 3.1

Proof We denote the fast space of the system Ω by R̃s.
R̃s ⊆ Rs: By Proposition 2.6, there exists G∈Rn×p such that

(A+GC)Rs ⊆ Rs and img [ B1 B2+GD2 ] ⊆ Rs. (27)

Next, notice that (Ã+GC̃) = (A+GC)− (B2 +GD2)R̂−1ST
2 .

From equation (27), we know that img (B2 + GD2) ⊆ Rs.
Therefore, (Ã + GC̃)Rs ⊆ Rs. Again, since B̃ = B1, from
equation (27), we further get that img B̃ ⊆ Rs. Hence, by
Proposition 2.6 we conclude that R̃s ⊆ Rs.
Rs ⊆ R̃s: By Proposition 2.6, there exists G̃∈Rn×p such that

(Ã+ G̃C̃)R̃s ⊆ R̃s and img B̃ ⊆ R̃s. (28)

Define G1 :=(G̃− G̃D2R̂−1DT
2 −B2R̂−1DT

2 ). Then, (Ã+ G̃C̃)=

(A+G1C) and (B2 +G1D2)=0. So, by equation (28), we get
that (A+G1C)R̃s ⊆ R̃s and img [ B1 B2+G1D2 ] ⊆ R̃s. Thus, we
infer that Rs ⊆ R̃s. Hence, Rs = R̃s. �
B. Proof of Lemma 4.1
Proof Recall from equation (18) that K is a solution of LMI
(5) if and only if it satisfies:

Lr(K) = ÃTK +KÃ+ Q̃−KAzK > 0 and KB̃ = 0. (29)

Assume that the columns of col(N0, N1, . . . , Nnf−d) := N
form a basis for kerMnf−d+1, where N0, N1, . . . , Nnf−d ∈
Rd×nf . Define Wi := [ B̃ ÃB̃ ... ÃiB̃ ] col(Nnf−d−i, . . . , Nnf−d), i ∈
{0, 1, . . . , (nf − d)}. Then, we claim that KWi = 0. We prove
this claim by induction.
Base case (i = 0): KW0 =KB̃Nnf−d. But, since K satisfies
equation (29), we have KB̃ = 0. Hence KW0 = 0.
Inductive step: Assume that KWi−1 = 0 for some 1 6 i 6
nf − d. We need to show that KWi = 0. Using KWi−1 =0, we
have that WT

i−1Lr(K)Wi−1 =WT
i−1Q̃Wi−1. Now,

C̃Wi−1 = C̃ [ B̃ ÃB̃ ... Ãi−1B̃ ] col(Nnf−d−i, . . . , Nnf−d)

= [ 0p,d(nf−d−i) C̃B̃ C̃ÃB̃ ... C̃Ãi−1B̃ ] col(N0, . . . , Nnf−d).

Notice that, for 1 6 i 6 nf− d, [ 0p,d(nf−d−i) C̃B̃ C̃ÃB̃ ... C̃Ãi−1B̃ ]
is the (i + 1)st block row of Mnf−d+1. Thus, using imgN =
kerMnf−d+1 in the above equation, we get that C̃Wi−1 = 0

⇒WT
i−1C̃

T C̃Wi−1 = WT
i−1Q̃Wi−1 = WT

i−1Lr(K)Wi−1 = 0.

Since Lr(K) > 0, this further implies that Lr(K)Wi−1 = 0.
Using the inductive hypothesis and Q̃Wi−1 = 0, we have

Lr(K)Wi−1 = KÃWi−1 = 0

⇔ K [ B̃Nnf−d−i ÃWi−1 ] = KWi = 0 (∵ KB̃=0).

This proves the claim. Next, since Wnf−d = W , it is clear
that KW = 0. This completes the proof. �

C. Proof of Lemma 4.2
Proof First, we claim that V T

2ΛÃ
iB̃ =∑i−1

k=0(−1)k+1(ΓT )kV T
1ΛQ̃Ã

(i−1−k)B̃ for all i ∈ N. We
prove this using mathematical induction.
Base case (i= 1): Recall from equation (11) that

−V T
1ΛQ̃− V

T
2ΛÃ = ΓTV T

2Λ and (30)

V T
2ΛB̃ = 0 (31)

We post-multiply equation (30) by B̃ and then use equation
(31) to get V T

2ΛÃB̃ = −V T
1ΛQ̃B̃ − ΓTV T

2ΛB̃ = −V T
1ΛQ̃B̃. This

proves the base case.
Inductive step: Assume that V T

2ΛÃ
iB̃ =

∑i−1
k=0(−1)k+1(ΓT )kV T

1ΛQ̃Ã
(i−1−k)B̃. We need to show

that V T
2ΛÃ

i+1B̃ =
∑i

k=0(−1)k+1(ΓT )kV T
1ΛQ̃Ã

(i−k)B̃. Post-
multiplying equation (30) by ÃiB̃ and then using the
inductive hypothesis, we have

V T
2ΛÃ

i+1B̃ = −V T
1ΛQ̃Ã

iB̃ − ΓTV T
2ΛÃ

iB̃

= −V T
1ΛQ̃Ã

iB̃ − ΓT
i−1∑
k=0

(−1)k+1(ΓT )kV T
1ΛQ̃Ã

(i−1−k)B̃

=
i∑

k=0

(−1)k+1(ΓT )kV T
1ΛQ̃Ã

(i−k)B̃.

This proves the claim. Using this claim along with the fact
that C̃T C̃ = Q̃ we get that

V T
2ΛW =V T

2Λ [ B̃ ÃB̃ ··· Ãnf−dB̃ ]N

=
[

0 −V T
1ΛQ̃B̃ ···

∑nf−d−1

k=0 (−1)k+1(ΓT )kV T
1ΛQ̃Ã(nf−d−1−k)B̃

]
N

=
[

0 −V T
1ΛC̃T C̃B̃ ···

∑nf−2
k=0 (−1)k+1(ΓT )kV T

1ΛC̃T C̃Ã(nf−d−1−k)B̃
]
N

=[ 0 (−1)nf−d(ΓT )nf−d−1V T
1ΛC̃T ··· ΓT V T

1ΛC̃T −V T
1ΛC̃T ]Mnf−d+1N.

But, sinceMnf−d+1N = 0, it is evident that V T2ΛW = 0. �
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