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Abstract

For 1-D systems, the state-space approach has perhaps become the most popular method of
analyzing these systems. There have been several attempts to imitate the state-space framework
for n-D systems. Introduction of behavioral theory by Jan C. Willems, has given fresh impetus
to this attempt to imitate state-space framework for n-D systems. In this paper, dedicated
to Jan Willems, we provide our recent attempt at obtaining a state-space framework for n-D
systems.
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1. Introduction

Jan C. Willems, in his celebrated paper Paradigms and puzzles in the theory of dynamical
systems [1], wrote: “In engineering, particularly in control and signal processing, there has
always been a tendency to view systems as processors, producing output signals from input
signals. In many applications in control engineering and signal processing, it will, indeed, be
eminently clear what the inputs and the outputs are. However, there are also many applications
where this input-output structure is not at all evident (an example at point is in the terminal
behavior of an electrical circuit).” Willems pointed out a number of situations where it is indeed
impractical to assume an input/output structure on the system variables. Examples include
Kepler’s laws of planetary motion, econometrics [2], economics (relation between production,
capital cost and labor cost) and discrete event systems [1]. Willems also argued that there are
dynamical systems (e.g., Leontief economy [2]), for which it is outright impossible to obtain an
input/output model. In a series of works [1, 2, 3, 4, 5, 6] Willems brought about a radical
change in the way a mathematical model for dynamical systems should be viewed. He showed
that systems viewed as maps from inputs (plus initial conditions) to outputs is perhaps not the
most suited approach as a modelling paradigm for dynamical systems. There is in fact a more
fundamental object, the behavior of the system – that is, the collection of trajectories allowed
by the laws of physics applied to the system – that provides a better mathematical model for
dynamical systems. With this rudimentary object – the behavior – Willems succeeded in de-
ducing – and refining where required – several existing notions of dynamical systems: linearity,
shift/time-invariance, input/output representation, autonomy, controllability, observability, sta-
bility, stabilizability, detectability, state-variables etc. This was a remarkable feat, a paradigm
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shift, indeed. This approach became known as the behavioral approach to systems theory.
The limitations of the input/output approach become much more exposed for multidimen-

sional systems (also called nD systems) – that is, dynamical systems with more than one
independent variables. For example, consider the system described by the following partial
differential equation (PDE):

∂w1

∂x1
− ∂w2

∂x2
= 0.

Although one may view w2 as an input and w1 as an output, modeling the system as a mapping
from w2 to w1 is fraught with technical problems. (For instance, the ‘transfer function’ here
would be s2

s1
, which has numerator and denominator sharing a common root! See [7, Remark 76]

for a more elaborate discussion on this.) However, the behavior (that is, the set of solutions of
the above equation) still exists, and hence, many system-theoretic questions posed in behavioral
approach of 1D systems would make perfect sense for this system too. Spurred by Willems’
treatment of 1D systems, issues like autonomy, controllability, observability, stability for nD
systems were tackled and resolved using the behavioral approach (see [8] for n = 2, and [7, 9, 10]
among others for general n). With this development, the behavioral approach has become one
of the strongest contenders for a grand unified theory of systems and control.

Despite the success of the behavioral approach to nD systems, the current state-of-the-art
lags far behind its 1D counterpart. On several issues, for which there has been a well-accepted
solution in 1D systems, for nD systems a successful resolution has either completely evaded
the community, or there have been many resolutions none of which were universally acceptable.
Defining state-variables and obtaining state-space representations from a given representation
of an nD system is one such issue that is still largely open. In this paper, we hope to provide a
partial answer to this issue. State-space representation of nD systems has been an active field
of research, especially for n = 2; see [11, 12, 13, 14, 8] among many notable works. However,
these works suffer from a crucial drawback: their restricted applicability. Indeed, in each of
the earlier works, several restrictive assumptions were made. For example, in [12, 13, 14] that
deal with state-space models for discrete 2D systems, the systems concerned are assumed to
satisfy a certain notion of causality in 2D integer grid. Needless to say, many 2D systems do
not satisfy this assumption. In this paper, we provide a methodology to construct state-space
and a first order evolution law for general nD systems that are described by linear partial
differential/difference equations with constant real coefficients; we make only one assumption:
the system is autonomous.

2. Background

2.1. nD systems

Following Willems, we define a dynamical system by a triplet (T,W,B), where T is the
indexing set (the set of independent variables over which the system’s variables, w, evolve),
W is the signal space (the set from where the manifest variables take values), and B is the
behavior of the system (the subset of the set of all possible trajectories, WT, that are allowed
by the system). In this paper, we shall assume W = Rw; w denotes the cardinality of the
vector w. These variables w are called manifest variables. Multidimensional (nD) systems are
characterized by the fact that they have n independent variables; that is, the indexing set T is
either Zn or Rn. We shall use the term continuous or discrete nD systems for the case when
T = Rn or T = Zn, respectively. The letter t will be used to denote the independent variable;
that is, t ∈ Rn for continuous systems, and t ∈ Zn for discrete systems. In this paper, we are
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going to look at a special kind of nD systems, namely, systems that are described by linear
partial differential/difference equations with constant real coefficients.

Behaviors of continuous nD systems are sets of solutions to partial differential equations
(PDEs). Such PDEs are written using polynomials in partial differential operators. Let ∂i
denote the partial differential operator with respect to the variable ti, that is, ∂i = ∂

∂ti
. The

polynomial ring in the variables {∂1, . . . , ∂n} is denoted by R[∂1, . . . , ∂n]. We often use the
short-hand ∂ to denote the n-tuple {∂1, . . . , ∂n}. The idea of solutions of PDEs intrinsically
depends on the function space where solutions are sought. In this paper, we shall consider the
space of smooth functions, denoted by C∞(Rn,Rw). Thus, a behavior B of a continuous nD
system, described by a set of linear partial differential equations with constant real coefficients,
can be defined as

B := {w ∈ C∞(Rn,Rw) | R(∂)w = 0} , (1)

where R(∂) ∈ R•×w[∂]. For obvious reasons, equation (1) is called a kernel representation of B
and R(∂) is called a kernel representation matrix of B. We write B = ker R(∂) for brevity.

For discrete nD systems, the role of ∂is is played by the shift operators, σis. In this case,
the function space that we consider is the space of vector valued (w tuple) sequences indexed
by Zn, i.e., (Rw)Z

n

= {w : Zn → Rw}. In this paper, we use the symbol W(Zn,Rw) to denote
this space. The ith shift operator σi acts on a discrete trajectory w ∈W(Zn,Rw) as

(σiw)(t1, . . . , tn) = w(t1, . . . , ti + 1, . . . , tn), (2)

for all (t1, . . . , tn) ∈ Zn. Note that σ−1i is a legitimate operator on W(Zn,Rw). Thus, unlike the
continuous case, the operator algebra for the discrete case contains polynomials having terms
with (finite) positive as well as (finite) negative powers. Therefore, the operator algebra, in this
case, is given by the n-variable Laurent polynomial ring in the variables {σ1, . . . , σn}. We denote
this ring by R[σ1, σ

−1
1 , . . . , σn, σ

−1
n ]. Like in the case of partial differential operators, we shall

use the singleton σ to denote the n-tuple {σ1, . . . , σn}, and, likewise, we shall write R[σ, σ−1]
to denote the n-variable Laurent polynomial ring in the shifts {σ1, . . . , σn}. Consequently, a
behavior B of a discrete nD system, which is the solution set of a system of partial difference
equations gets defined as

B := {w ∈W(Zn,Rw) | R(σ)w = 0} , (3)

where R(σ) ∈ R•×w[σ, σ−1]. As in the continuous case, equation (3) is called a kernel represen-
tation of B and R(σ) is called a kernel representation matrix, while B is written in short as
B = ker R(σ).

It is apparent from the last two paragraphs that continuous and discrete systems share a
common model of description – the kernel representation – with only the operator algebras and
the function spaces being different. This commonality is utilized throughout this paper – so
much so that we use common symbols to denote various objects that relate to both discrete and
continuous systems. For example, A is the operator algebra (A = R[∂] (continuous), or R[σ, σ−1]
(discrete)), Fw

n is the function space (Fw
n = C∞(Rn,Rw) (continuous), or W(Zn,Rw) (discrete)),

ξ is the n-tuple of operators (ξ = ∂ (continuous), or σ (discrete)). We shall use ξν to denote the
monomial ξν11 · · · ξνnn , where ν = (ν1, . . . , νn) ∈ Zn. The collection of all nD systems that have w

manifest variables and are described by linear partial differential/difference equations is denoted
by Lw

n. We often abuse this notation and write B ∈ Lw
n. Thus, a continuous/discrete behavior

B ∈ Lw
n is described as B = ker R(ξ) ⊆ Fw

n, where R(ξ) ∈ A•×w. Another representation of
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B ∈ Lw
n, called a latent variable representation, is required in the sequel. In this representation,

B ∈ Lw
n is described as

B := {w ∈ Fw
n | ∃` ∈ Frn such that R(ξ)w = M(ξ)`} , (4)

where R(ξ) ∈ Ag×w and M(ξ) ∈ Ag×r. The variables ` are called latent variables.

2.2. The equation module and the quotient module

Following the trend set by Willems for 1D systems, in this paper, we treat nD systems
algebraically via the operator algebra A. In this connection, two algebraic objects are of great
importance to the analysis. The first one of these algebraic objects is called the equation module,
denoted by R, and is defined as follows: suppose B ∈ Lw

n is given by a kernel representation as
B = ker R(ξ), with R(ξ) ∈ A•×w, then R is defined to be the set of all (row-)vectors in A1×w

that can be written as linear combinations of the rows of R(ξ) with coefficients from A. This
R is a submodule of the A-module A1×w. With R in place, it is easy to see that B = ker R(ξ)
admits an alternative description given by

B = {w ∈ Fw
n | r(ξ)w = 0 for all r(ξ) ∈ R} . (5)

Thus, given a submodule R ⊆ A1×w, we can define the corresponding behavior B(R) by equation
(5). The following proposition gives a characterization of the equation module. The complete
proof of the proposition can be gathered from several sources like [1, 6, 7, 15].

Proposition 2.1. Suppose R1,R2 are submodules of A1×w, and let B1 and B2 be the corre-
sponding behaviors. Further, suppose that the function space Fw

n = C∞(Rn,Rw) for continuous
systems and Fw

n = W(Zn,Rw) for discrete systems. Then the following are true:

1. B1 ⊆ B2 if and only if R1 ⊇ R2.

2. B1 = B2 if and only if R1 = R2.

3. B(R1 ∩ R2) = B1 + B2.

4. B(R1 + R2) = B1 ∩B2.

The crux of Proposition 2.1 can be expressed as follows: B ∈ Lw
n and R ⊆ A1×w are in an

inclusion reversing one-to-one correspondence with each other. This is also called a Galois
correspondence of lattices.

The second algebraic object of import is called the quotient module of B and is denoted by
M. This module M is constructed from the equation module R corresponding to the behavior B
by defining an equivalence relation ∼ in A1×w as follows: r1(ξ) ∼ r2(ξ) if r1(ξ)− r2(ξ) ∈ R. The
quotient module M then is defined to be the module of equivalence classes under the relation
∼; this is denoted by A1×w/R. In this paper, we use the ‘bar’ notation to denote equivalence
class, that is, for f(ξ) ∈ A1×w, the symbol f(ξ) denotes the equivalence class of f . The natural
map A1×w 3 f(ξ) 7→ f(ξ) ∈ M is called the canonical surjection. Elements from M acts on
w ∈ B. This action is defined as follows: let g ∈ M, and suppose f(ξ) ∈ A1×w is such that
f(ξ) = g, then

g(w) := f(ξ)w. (6)

It can be easily checked that this action is well-defined.
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2.3. Free variables and autonomy

The basic premise of the behavioral approach to dynamical systems is that the system’s
variables w need not be partitioned into inputs and outputs at the time of modelling. The
splitting, however, can be deduced once the mathematical equations of the system is known.
Willems showed this for 1D systems in [5, 1]. Oberst’s paper [7] generalizes this for nD systems
for general n. This dichotomy of variables into inputs and outputs is based on the notion of
free variables in a behavior. Freeness of a variable in turn is defined using the projection of a
behavior in the following manner: suppose w ∈ B is partitioned as w = (w1, w2) after possibly
permuting the given order of w’s components. Suppose, further, that w1 is a w1-tuple and w2

is a w2-tuple. Then the projection of B to the w1 variables is defined as

Πw1 (B) := {w1 ∈ Fw1
n | ∃ w2 ∈ Fw2

n such that (w1, w2) ∈ B} .

Definition 2.2. Suppose B ∈ Lw1+w2
n has its variable w partitioned as w = (w1, w2) with w1, w2

having w1 and w2 components, respectively. Then w1 is said to be free in B if

Πw1(B) = Fw1
n .

The problem of determining whether a variable is free or not was solved by Willems for
the 1D case [1]. A key observation in Willems’ proof was that, for 1D systems, a behavior
may be assumed without loss of generality to have a kernel representation matrix R(ξ) which
is full row-rank – that is, no non-trivial linear combination of rows of R(ξ) with coefficients
coming from the ring A can go to zero. With this, Willems showed, if w ∈ B is partitioned as
(w1, w2), and a full row-rank kernel representation matrix R(ξ) is also partitioned conformally
with (w1, w2) to give the describing system of equations as

R(ξ)w = R1(ξ)w1 +R2(ξ)w2 = 0 (7)

then w1 is free in B if and only if R2(ξ) is full row-rank over A.
The situation changes drastically for general nD systems with n > 2. In this case, it is not

always possible to bring a kernel representation matrix to full row-rank. For example, with
A = R[∂1, ∂2, ∂3], the matrix representing the curl operator in Cartesian coordinates

R(∂) =

 0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0

 , (8)

has rank 2, but B = ker R(∂) here cannot be represented by a matrix having two rows. This
happens essentially because for n > 2, the ring of operators A is no longer a principal ideal
domain. Because of this issue, the methods used for the 1D case do not extend to nD in a
straightforward manner. Necessary and sufficient condition for freeness, in this case, can be
given by utilizing the well-known fundamental principle of Ehrenpreis and Palamodov.

Lemma 2.3 (Fundamental Principle). Consider the equation

A(ξ)w1 = w2, (9)

where A(ξ) ∈ Aw2×w1 is given, w1 ∈ Fw1
n is unknown and w2 ∈ Fw2

n is given. Then there is a
solution w1 to equation (9) if and only if for every v(ξ) ∈ A1×w2 satisfying v(ξ)A(ξ) = 0 ∈ A1×w1

it holds true that v(ξ)w2 = 0.
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Using fundamental principle one can now provide a necessary and sufficient condition for free-
ness. This is the content of Theorem 2.4 below; the proof easily follows from Lemma 2.3.

Theorem 2.4. Suppose B = ker R(ξ), where w ∈ B is partitioned as w = (w1, w2) and
R(ξ) ∈ Ag×(w1+w2) is conformally partitioned as R(ξ) =

[
R1(ξ) R2(ξ)

]
so that the kernel

representation is written as equation (7). Then w1 free in B if and only if for every v(ξ) ∈ A1×g,
we have

v(ξ)R2(ξ) = 0 ⇒ v(ξ)R1(ξ) = 0.

As an example, consider R(∂) given in equation (8). For the behavior

B =
{
w = [w1, w2, w3]

T ∈ C∞(R3,R3) | R(∂)w = 0
}
,

each of w1, w2, w3 is individually free, whereas, the variables taken as pairs are not free. In
[7], Oberst extends the idea of input/output partitioning to nD systems, and generalizes the
notion of transfer functions for such input/output partitioning. However, such transfer functions
cannot in general be viewed as maps from inputs to outputs (see [7, Remark 76]).

A 1D behavior B having no free variables was shown to be autonomous by Willems in [5, 1];
autonomy was defined to be the property that for every w ∈ B, the knowledge of w in the past
uniquely determines w in the future. The notion of autonomy can be carried forward to nD
systems by taking the property of having no free variables as the definition of autonomy. The
following result then immediately follows from Theorem 2.4.

Proposition 2.5. Let B ∈ Lw
n. Then the following are equivalent:

1. B is autonomous, that is, B has no free variables.

2. B = ker R(ξ), where R(ξ) is full column-rank over A.

3. M is a torsion module.

4. The ideal ann(M) := {f(ξ) ∈ A | f(ξ)m = 0 ∀ m ∈M} is nonzero.

Remark 2.6. Stated alternatively, B is not autonomous if and only if M is not a torsion
module, or equivalently, the ideal ann(M) = {0}. In this case, M is said to be a faithful
A-module [16].

A behavior B ∈ Lw
n is said to be strongly autonomous if the ideal ann(M), in addition to being

non-zero, is also such that A/ann(M) is a finite dimensional vector space over R. This is also
equivalent to the quotient module M being a finite dimensional vector space over R.

3. Construction of states for autonomous systems

One of the most significant achievements of behavioral theory of 1D systems is a formal-
ization of the construction of states. A key idea behind this formalization is an abstraction
of state-variables through the concepts of Markovianity and the axiom of state, see [5, 8, 17].
Consequently, it was shown that having a state-variable representation is equivalent to having
a first order kernel representation, which is first order on the state-variables and zeroth order
on the other (manifest) variables [17]. Further, if a behavior is given by a kernel representation
that is not first order, it was shown in [17] how this system of equations can be converted into
a system of first order equations by constructing state-variables from the manifest variables by
a state map.
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In [18, 19], extension of these ideas to nD systems was investigated. It turns out, rather
surprisingly, that a stronger notion of Markovianity is required in order to reconcile it with
first order representation. However, this equivalence has been shown, so far, to hold for only
special cases of nD systems. Moreover, it is not clear how to construct the state-variables and
how to obtain a corresponding first order representation from a given higher order system of
equations. In this paper, we propose a method to carry out the task of constructing state-
variables for general nD autonomous systems. We show how these states that we construct
replicate to a large extent the standard notion of state-variables. Unlike the 1D case, here
we do not attempt to formulate an axiom of state in order to justify that the created latent
variables are indeed state-variables. However, the justification does come, as a matter of fact,
from an alternative formulation of state-variables by Willems [5]. In [5], a state-space system
is defined by a quadruple (T,W,X, ∂), where T and W are as before – indexing set and signal
space respectively – X is defined as an abstract state-space, and ∂ is a first order evolution law.
In this paper, we show that given any nD autonomous system, we can create a state-space X

and a first order evolution law ∂ such that the state-space system (T,W,X, ∂) is equivalent to
the original system. Note that as the original system is an nD system, the evolution law (though
first order), may well turn out to evolve in several directions (or dimensions). We shall see that
the state-space is usually an infinite dimensional vector space that is itself a dD behavior, while
the evolution is (n− d) dimensional.

Our construction methodology of state-variables is inspired by a representation formula
given in [20]. This methodology truly generalizes the existing state construction method for 1D
autonomous systems [17], and the same for strongly autonomous 2D systems [8]; see Remarks
4.1 and 4.2 in Section 4, respectively. The key factor in this generalization is a change of
coordinates in the indexing set T. This is a feature that manifests itself only when n > 2.
Interestingly, this coordinate change is not required for strongly autonomous nD systems. This
could very well be the reason that some earlier attempts to generalize state construction for
general nD systems were not completely successful.

3.1. Coordinate change and its effects

By a coordinate change on T we mean an invertible linear transformation on T. Clearly,
such a coordinate change can then be represented by a square invertible matrix T , which acts
on t ∈ T to produce t̃ = T t. For the continuous case T ∈ Rn×n having det T 6= 0, and for
the discrete case T ∈ Zn×n with det T = ±1. Such a coordinate change induces two important
maps – the pull-back, T ∗, and the push-forward, T∗ – which will be of crucial importance to us
in the sequel.

The pull-back is a map T ∗ : Fw
n → Fw

n defined as follows: for w ∈ Fw
n define

T ∗(w) = w ◦ T. (10)

That is, for t ∈ T,
(T ∗(w))(t) = w(T t).

On the other hand, the push-forward is a map T∗ : A→ A whose definition depends on whether
the system is continuous or discrete. For the continuous case, given the coordinate change,
T ∈ Rn×n, define ξ̃ := T T ξ. Then T∗ is defined as: for f(ξ) ∈ R[ξ1, . . . , ξn]

(T∗(f))(ξ) = f
(
ξ̃
)
. (11)
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For the discrete case, given the coordinate change, T ∈ Zn×n, define ξ̃i = ξTi , for all i = 1, . . . , n,
where Ti is the ith column of T . Then T∗ is defined as: for f(ξ) ∈ R[ξ1, ξ

−1
1 , . . . , ξn, ξ

−1
n ]

(T∗(f))(ξ) = f
(
ξ̃
)
. (12)

Note that, owing to the invertibility of T , both T ∗ and T∗ turn out to be invertible. While T ∗

is a linear map of infinite dimensional vector spaces, T∗ is an R-algebra homomorphism that
keeps the base field R fixed. The push-forward T∗ is easily extended to A1×w by applying it
element-wise. Under this map of A1×w to itself, a submodule R ⊆ A1×w gets mapped to another
submodule because T∗ is invertible and is an R-algebra homomorphism. Since there is no risk
of ambiguity, we use the same T∗ to denote its extension to A1×w.

With the maps T ∗ and T∗ we are now in a position to state the following crucial observation
that relates them through a behavior B ∈ Lw

n.

Theorem 3.1. Suppose B ∈ Lw
n with equation module R ⊆ A1×w. Let T : T → T be a

coordinate change. Define T ∗ : Fw
n → Fw

n and T∗ : A1×w → A1×w as above. Then

B (R) = T ∗ (B (T∗ (R))) . (13)

Proof : See the appendix. �

3.2. Noether normalization

The main reason behind carrying out the coordinate change is a normalization process that
allows us to readily construct the state-space equations. This normalization is called Noether
normalization. While the conventional form of Noether normalization works for continuous
systems, for discrete systems, however, a crucial modification is required. This modified version
was worked out in [21]; the special case of it with n = 2 can be found in [20]. See [16, 22] for
the conventional form of Noether normalization. We state the normalization process and its
end result in Lemma 3.2 below. For the remaining part of this paper, we use the symbol Ad to
denote the dD subring of A generated by the variables {ξ1, . . . , ξd}, i.e., for the continuous case
Ad := R[ξ1, . . . , ξd] and for the discrete case Ad := R[ξ1, ξ

−1
1 , . . . , ξd, ξ

−1
d ].

Lemma 3.2. Let R ⊆ A1×w be a submodule. Then there exists a coordinate change T : T→ T
and a positive integer d < n such that the quotient module Md := A1×w/T∗(R) is a finitely
generated faithful1 module over Ad.

3.3. Behaviors with a special structure

Suppose B ∈ Lw
n is such that its quotient module M is a finitely generated module over Ad

for some non-negative integer d < n. Note that for the special case of d = 0, this assumption
means M is a finite dimensional vector space over R, which, in turn, implies that B is strongly
autonomous. Further, for discrete 2D systems, this assumption with d = 1 implies that there
exists a finite union of horizontal lines in Z2 such that restriction of any trajectory w ∈ B to
that union of horizontal lines uniquely determines w (see [23]). Providing a complete system
theoretic interpretation of this assumption is a subject of future research. However, see [20,
Proposition 3.4] for many equivalent conditions to this assumption in terms of the equation
module R for the special case of discrete 2D systems.

1Faithful means ann Md = {0}. See Remark 2.6
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The module M being finitely generated over Ad means that one can fix a generating set
G := {g1, . . . , gr} ⊆M such that every element in M can be written as a linear combination of
the elements of G with coefficients from Ad. For the purpose of notational convenience, let us
partition ξ as ξ = (ζ, η), such that

ζ = (ζ1, . . . , ζd) := (ξ1, . . . , ξd) and
η = (η1, . . . , ηn−d) := (ξd+1, . . . , ξn).

We now define the following Ad-module homomorphisms µi : M→M for 1 6 i 6 (n− d) as

µi(f) = ηif (14)

for all f ∈ M. That is, µi is the map given by multiplication by ηi. It can be easily checked
that µi’s are indeed Ad-module homomorphisms. Since M has been assumed to be finitely
generated as an Ad-module, for each i = 1, . . . , (n− d), the map µi is represented by a matrix

Ai(ζ) ∈ Ar×r
d . Indeed, suppose µi(gj) =

∑r
k=1 a

j,k
i (ζ)gk, where aj,ki (ζ) ∈ Ad then

Ai(ζ) :=
[
aj,ki (ζ)

]
16j6r,16k6r

. (15)

Next, suppose that ei ∈ M is the image of ei ∈ A1×w – the ith basis vector – under the
canonical surjection A1×w � M. Once again, since M is generated by the elements of G as an
Ad-module, there exist ci,j(ζ) ∈ Ad such that ei =

∑r
j=1 c

i,jgj . Then define

C(ζ) :=
[
ci,j(ζ)

]
16i6w,16j6r . (16)

Finally, suppose G⊥ denotes the following set:

G⊥ :=
{
f(ζ) ∈ A1×r

d | f(ζ) [g1, . . . , gr]
T = 0

}
.

It is easy to check that G⊥ has the structure of a sub-module of A1×r
d over Ad; it is called the

module of relations of the generators {g1, . . . , gr} (see [9]). Since A1×r
d is a Noetherian module,

G⊥ is finitely generated as an Ad-module (see [16] for a definition of Noetherian modules and the
implication that G⊥ is finitely generated). Let X(ζ) ∈ A•×rd be a matrix whose rows generate
G⊥ as an Ad-module. That is,

rowspan X(ζ) = G⊥. (17)

With these matrices A1(ζ), . . . , An−d(ζ) ∈ Ar×r
d , C(ζ) ∈ Aw×r

d and X(ζ) ∈ A•×rd we are now
in a position to state the following crucial result.

Theorem 3.3. Let B ∈ Lw
n be autonomous with its quotient module M being finitely generated

as an Ad-module for some positive integer d < n. Suppose G ⊆ M is a finite generating set
of M as an Ad-module. Let A1(ζ), . . . , An−d(ζ) ∈ Ar×r

d , C(ζ) ∈ Aw×r
d and X(ζ) ∈ A•×rd be

as defined in equations (15), (16) and (17), respectively. Then B admits the following latent
variable representation:

B =

w ∈ Fw
n | ∃x ∈ Frn satisfying


X(ζ) 0

η1I−A1(ζ) 0

...
...

ηn−dI−An−d(ζ) 0
C(ζ) −I

[xw
]

= 0

 . (18)

Proof : See the appendix. �
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3.4. Constructing the state-space and the evolution equations

A remarkable feature of Theorem 3.3 lies in a special property that X(ζ) has in connection
with each of theA1(ζ), . . . , An−d(ζ). It follows from the construction that for each i = 1, . . . , (n−
d) there exists Fi(ζ) ∈ A•×•d such that

X(ζ)Ai(ζ) = Fi(ζ)X(ζ) (19)

(see [24, Lemma 4]). This observation prompts us to define the following object:

X := ker X(ζ) ⊆ Frd. (20)

Note that X ∈ Lrd, that is, X is a dD behavior with r number of manifest variables. It is this
dD behavior that plays the role of the state-space in our construction. Equation (19) implies
that, for all i = 1, . . . , (n − d), X is Ai(ζ)-invariant, that is, Ai(ζ) (X) ⊆ X. Therefore, Ai(ζ)’s
can be viewed as maps from X to itself. It then makes sense to define the following state-space
system:

Σstate :=
(
T̃,X,Bstate

)
, (21)

where the indexing set T̃ = Rn−d (for continuous) or T̃ = Zn−d (for discrete), the signal space
X is as defined by equation (20), and the behavior is defined by

Bstate :=
{
x̃ : T̃→ X | ηix̃ = Ai(ζ)x̃ for all i = 1, . . . , (n− d)

}
(22)

with ηi being the ith differential (for continuous2) or the ith shift (for discrete) operator defined
on the indexing set T̃.

Now note that if x̃ : T̃→ X then x̃ can be identified uniquely with an x ∈ Frn in the following
manner: suppose t = (t1, t2) ∈ T, where t1 is a d-tuple and t2 is an (n− d)-tuple, then

x(t) = x (t1, t2) := (x̃ (t2)) (t1) . (23)

This is true because X is a subset of Frd. With this identification, and the fact that X is Ai(ζ)-
invariant, it follows that the representation of B by equation (18) of Theorem 3.3 and Bstate

as given by equation (22) are equivalent. This is the content of Lemma 3.4 below.

Lemma 3.4. Let B ∈ Lw
n be autonomous with its quotient module M being finitely generated

as an Ad-module for some positive integer d < n. Suppose G ⊆ M is a finite generating set
of M as an Ad-module. Let A1(ζ), . . . , An−d(ζ) ∈ Ar×r

d , C(ζ) ∈ Aw×r
d and X(ζ) ∈ A•×rd be as

defined in equations (15), (16) and (17), respectively. Define X and Σstate as per equations (20)
and (21), where Bstate is defined as in equation (22). Then w ∈ B if and only if there exists
x̃ ∈ Bstate such that w = C(ζ)x, where x corresponds to x̃ as per equation (23).

Theorem 3.3 and Lemma 3.4 hold whenever the behavior B has the special property that the
quotient module M is a finitely generated Ad-module. However, there are many systems which
fail to satisfy this rather restrictive condition. This is where Noether normalization (Lemma
3.2) and Theorem 3.1 become crucial. Suppose an autonomous B ∈ Lw

n, with equation module

2It is important to note here that for the differential operator to define an evolution on X, the operator Ai(ζ)
must define a map from X to its tangent bundle. However, X being a linear subspace of Fr

d, the tangent space of
X at a point x ∈ X is X itself. Therefore, Ai(ζ) does indeed map x ∈ X to a point in the tangent space of X at x.
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R, is such that the corresponding M is not finitely generated over any Ad. Then find out a
coordinate change T : T → T such that under the corresponding push-forward T∗ we have
A1×w/T∗(R) to be finitely generated over an Ad for some positive integer d < n. Therefore,
Lemma 3.4 now applies to the behavior B(T∗(R)). Lemma 3.2 guarantees that such a d exists.
By Theorem 3.1, this transformed behavior B(T∗(R)) is in a one-to-one correspondence with
the original B by the pull-back of the coordinate change. Thus, the state representation of
B(T∗(R)) provided by Lemma 3.4 is effectively a state representation for the original B, too.

Theorem 3.5. Suppose B ∈ Lw
n is autonomous. Then there exist a positive integer d < n and

matrices A1(ζ), . . . , An−d(ζ) ∈ Ar×r
d , C(ζ) ∈ Aw×r

d and X(ζ) ∈ A•×rd such that Σstate can be
defined as in equation (21) with X and Bstate as defined in equations (20) and (22). Further,
define

Bs/o := {w ∈ Fw
n | w = C(ζ)x, x̃ ∈ Bstate} ,

where x and x̃ are related as shown in equation (23). Then there exists a coordinate change
T : T→ T such that

B = T ∗(Bs/o).

Proof : See the appendix. �

4. Remarks on the state-space and illustrative examples

In this section we collect a few salient features of the state-space X and the first order system
Bstate defined on X.

Remark 4.1. (special case: n = 1) Theorem 3.5 applied to an autonomous B ∈ Lw
1 results

in the conventional state-space representation of B. Indeed, for a 1D autonomous system, the
quotient module M turns out to be a finite dimensional vector space over R, which is a special
case of being a finitely generated module over an R-algebra. So, here d = 0, Ad = R, and thus,
the matrices A(ζ), C(ζ) are constant matrices. Further, since M is an R-vector space, one can
always choose a generating set G that is linearly independent over R. Therefore, X(ζ) = 0. As
a result, the state-space is a finite dimensional real vector space.

Remark 4.2. (special case: strongly autonomous) When B ∈ Lw
n is strongly autonomous,

its quotient module M turns out to be a finite dimensional vector space over R. Thus, in this
case too, d = 0 and Ad = R. Therefore in this case, there is an n-tuple of square matrices
A1, . . . , An that represent multiplication by ξ1, . . . , ξn, respectively. Thus the evolution laws
are first order in n directions, specified by the Ai matrices. Once again, X(ζ) = 0 as M is an
R-vector space and therefore G can be chosen to be linearly independent over R. Note that this
case does not involve any coordinate change in the independent variables. So, T is identity.

Remark 4.3. (the smallest value of d) The non-negative integer d plays a pivotal role in
the state construction methodology presented in this paper. A natural question that arises now
is: what is the smallest value of this d? Further, we may also ask whether this smallest value of
d is an intrinsic property of B, or it is dependent on representations of B. Quite interestingly,
it turns out that the smallest value of d is indeed an intrinsic property of B, for it is equal to a
well-known algebraic invariant of the quotient module M called Krull dimension of M. (See [16]
for the definition of Krull dimension.) We give below a brief sketch of this result, and illustrate
it further in Example 4.4. It has been shown in [24, Proposition 36], for the discrete case, that
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if dKrull is the Krull dimension of M then there exists a coordinate change T : Zn → Zn such
that A1×w/T∗(R) is a finitely generated module over Ad for some non-negative integer d < n if
and only if d > dKrull. The same can be proved for the continuous case following exactly the
same chain of arguments as in [24, Proposition 36]. Now, recall from Theorems 3.3 and 3.5 that
for the state construction to work it is necessary that A1×w/T∗(R) be finitely generated over
Ad. Therefore, from the last observation it can be argued that the smallest possible d for which
the state construction can be carried out is d = dKrull.

Among the various possible d’s for which there exists a coordinate change T : T → T
such that A1×w/T∗(R) is a finitely generated module over Ad, the smallest d is characterized
by the fact that A1×w/T∗(R) is a faithful finitely generated module over Ad (see Remark 2.6
for the definition of a faithful module). This has been proved in [24, Lemma 37] for the
discrete case; the proof of the continuous case follows along the same line. Note that Noether’s
normalization lemma (and its discrete version) (Lemma 3.2) provides a coordinate change T
that makes A1×w/T∗(R) a faithful finitely generated module over Ad. Therefore, the d that
Lemma 3.2 provides happens to be equal to dKrull, the Krull dimension of M, and, therefore,
the smallest possible. Incidentally, A1×w/T∗(R) being faithful over Ad also means that the
state-space X = ker X(ζ) ∈ Lrd is non-autonomous (see Remark 2.6).

Example 4.4. Let us consider a continuous 3D scalar system given by the following kernel
representation:

B = ker

 ∂23
∂22

∂3∂1 − ∂2

 .
In this case, clearly, A = R[∂1, ∂2, ∂3]. The equation module R here is the ideal a = 〈∂23 , ∂22 , ∂3∂1−
∂2〉. Note that the quotient module M = A/a is a finitely generated module over A2 := R[∂1, ∂2].
The set {1, ∂3} is a generating set for M as a module over A2. One can therefore compute the var-
ious matrices A1(∂1, ∂2), C(∂1, ∂2) and X(∂1, ∂2). The matrices A1(∂1, ∂2) ∈ A2×2

2 , C(∂1, ∂2) ∈
A1×2

2 and X(∂1, ∂2) ∈ A•×22 are given by

A1(∂1, ∂2) =

[
0 1
0 0

]
, C(∂1, ∂2) =

[
1 0

]
, X(∂1, ∂2) =

 ∂22 0
−∂2 ∂1

0 ∂2

 .
In this case, the state-space, X := ker X(∂1, ∂2) ⊆ C∞(R2,R2), is a 2D behavior. It can be
easily checked that X is invariant under the action of A1(∂1, ∂2). This is because

X(∂1, ∂2)A1(∂1, ∂2) =

0 0 ∂2
0 0 −1
0 0 0

X(∂1, ∂2)

The evolution law is given by ∂x
∂t3

= A1(∂1, ∂2)x which is an evolution in only one direction,
namely, along t3. Thus the evolution law is 1-dimensional. Note however that X here turns out
to be an autonomous 2D behavior because X(∂1, ∂2) is full column-rank. Therefore, X can be
further reduced to a ‘smaller’ state-space which must be a 1D behavior.

It can be checked that the quotient ring M = A/a is also finitely generated as a module
over A1 = R[∂1]. We now compute the matrices A1(∂1), A2(∂1), C(∂1), X(∂1). First, note that
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{1, ∂2, ∂3} is a finite generating set for M as a A1-module. The matrices A1(∂1) and A2(∂1) in
this case, are given by

A1(∂1) =

0 1 0
0 0 0
0 0 0

 , A2(∂1) =

0 0 1
0 0 0
0 0 0

 .
A matrix of relations X(∂1), for the chosen generating set is given by

X(∂1) =
[
0 −1 ∂1

]
.

The state-space X is thus given by

X = ker X(∂1) ⊆ C∞(R,R3).

Note that X is indeed invariant under A1(∂1) and A2(∂1) because

X(∂1)A1(∂1) = 0, X(∂1)A2(∂1) = 0.

The output matrix C(∂1) turns out to be

C(∂1) =
[
1 0 0

]
.

The first order evolution on X then gets defined as

∂x

∂t2
= A1(∂1)x,

∂x

∂t3
= A2(∂1)x, (24)

where x : R2 3 (t2, t3) 7→ x(t2, t3) ∈ X. It can be verified that w ∈ B if and only if there exists
x ∈ XR2

that satisfies equation (24) and w(t1, t2, t3) = (C(∂1)x(t2, t3)) (t1). The state-space
here is a 1D behavior and the first order evolution is in two directions – namely t2 and t3.

Note that any further reduction in d is not possible because the original behavior B is not
strongly autonomous. Thus the minimum value of d in this case is d = 1. Note that the Krull
dimension of the quotient ring M equals 1.

Remark 4.5. The first order evolutionary system Bstate over the state-space X is much akin
to the model of infinite dimensional systems followed in [25]. In fact, the two are exactly the
same when d = n− 1. However, as pointed out in Remark 4.3, it is beneficial to have d that is
the smallest possible. The smallest d equals the Krull dimension of M, and thus, is an invariant
of B. So, the smallest d need not always be n−1. Moreover, another shortcoming of the model
in [25] is that for many nD systems, the first principle model does not have the form of a first
order evolution over a (possibly infinite dimensional) state-space. In our approach, however,
for every autonomous nD system B, a state-space X and a first order system Bstate on X can
be constructed that is equivalent to B. The key step that enables this construction for every
autonomous nD system is Noether normalization (Lemma 3.2). Hence, Theorem 3.5 can also
be viewed as a generalization of the first order representation given in [25] for the special case
of autonomous systems. We illustrate this in Example 4.6 below.

Example 4.6. Consider a discrete 3D scalar behavior

B = ker ((σ1 − 1)(σ2 − 1)(σ3 − 1)).
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The equation module R is the ideal a = 〈σ1σ2σ3 − σ1σ2 − σ2σ3 − σ3σ1 + σ1 + σ2 + σ3 − 1〉.
Clearly, the quotient module M = A/a is not a finitely generated module over either A1 or A2.

So we invoke Lemma 3.2; in this case, we take the coordinate change T =
[
1 0 0
0 1 0
1 1 1

]
. Under the

corresponding push-forward T∗ the equation ideal a gets mapped to

T∗(a) = 〈σ33σ1σ2 − σ23(σ1σ2 + σ1 + σ2) + σ3(σ1 + σ2 + 1)− 1〉
= 〈σ33 − σ23(1 + σ−12 + σ−11 ) + σ3(σ

−1
2 + σ−11 + σ−11 σ−12 )− σ−11 σ−12 〉.

Now, A/T∗(a) is finitely generated as an A2-module. A generating set can be chosen as

{1, σ3, σ23}. Consequently, we get

A1(σ1, σ2) =

[
0 1 0
0 0 1

σ−1
1 σ−1

2 −(σ−1
2 +σ−1

1 +σ−1
1 σ−1

2 ) 1+σ−1
2 +σ−1

1

]
, C(σ1, σ2) =

[
1 0 0

]
,

and X(σ1, σ2) =
[
0 0 0

]
. So the first order representation of B here is given by

x(t3 + 1) = A1(σ1, σ2)x(t3), w = C(σ1, σ2)x,

where x : Z 3 t3 7→ x(t3) ∈ W(Z2,R3). Note that the system has a state-space which is a 2D
behavior (W(Z2,R3)) and the evolution law displays evolution in only one direction (t3).

5. Concluding remarks

In this paper, we have provided a framework for constructing equivalent state-space repre-
sentations for autonomous nD behaviors. We have shown that the state-space may itself turn
out to be a dD behavior (and hence infinite dimensional). We have also shown that this equiv-
alent state-space representation has a first order evolution law attached to it. This evolution
law gives equations of evolution of the behavior in (n − d) directions. The state-space thus
constructed is in complete agreement with one of Willems’ notions about state-space systems
and agrees completely with the known (and established) cases of state-space representations
like 1D systems and strongly autonomous nD systems.

Appendix A. Proofs

Proof of Theorem 3.1: The continuous case has been proved in [26, Lemma 17] for scalar
behaviors, which easily extends to the vector ones. The discrete case has been proved in [21,
Theorem 6.5] for scalar behaviors, and in [24, Lemma 23] for vector behaviors. �

Proof of Theorem 3.3: For the proof, we need the following observation first. Given M, a
finitely generated Ad-module, with generating set G = {g1, . . . , gr}, a map ψ : A1×r

d → M can
be set up as

ψ : A1×r
d � M

ei 7→ gi
(A.1)

for 1 6 i 6 r, where ei is the ith standard basis row-vector in A1×r
d . Further, with Ad-module

homomorphisms µ1, . . . , µn−d as defined by equation (14), and the corresponding matrix rep-
resentations A1(ζ), . . . , An−d(ζ) as defined in equation (15), we get that the following diagram
commutes for all 1 6 j 6 (n− d).

A1×r
d

ψ
� M

Aj(ζ) ↓ ↓ µj

A1×r
d

ψ
� M

(A.2)
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where the action Aj(ζ) on A1×r
d is right-multiplication. Moreover, it is straightforward to

check that a repeated action of the maps µj is represented by the corresponding product of
the matrices Aj(ζ). With this observation, we now define the following construction: given a
polynomial f(ζ, η) ∈ A, construct first the map f(ζ, µ) : M → M by replacing every ηj by
the corresponding µj for all 1 6 j 6 (n − d); notice that multiplication of various ηj ’s must
be replaced by compositions of µj ’s. (The order of composition does not matter, because it
follows from their definition that the µj ’s commute with each other.) It then follows from the
commutative diagram (equation (A.2)) that the action of f(ζ, µ) is represented by the matrix
f(ζ,A(ζ)) ∈ Ar×r

d , which is obtained by replacing every ηj in f(ζ, η) by the corresponding Aj(ζ)
for all 1 6 j 6 (n− d). The following lemma is crucial for the proof of Theorem 3.3. Its proof
follows immediately from the fact that f(ζ, µ) is represented by f(ζ,A(ζ)). However, a formal
proof for the discrete case can be found in [24, Lemma 7].

Lemma Appendix A.1. Let f(ζ, η) ∈ A1×w be given by f(ζ, η) =
[
f1(ζ, η) · · · fw(ζ, η)

]
.

Let A1(ζ, η), . . . , An−d(ζ) and C(ζ, η) be as defined by equations (15) and (16), respectively.
Then the following are equivalent:

1. f(ζ, η) ∈ R.

2. ψ (
∑w

i=1Ci(ζ)fi (ζ,A(ζ))) = 0.

3. There exists F (ζ) ∈ Aw×• such that
∑w

i=1Ci(ζ)fi (ζ,A(ζ)) = F (ζ)X(ζ).

Here, Ci(ζ) :=
[
ci,1(ζ) · · · ci,r(ζ)

]
.

We now prove Theorem 3.3. First, let us define the auxiliary behavior Baux := {w ∈
Fw
n | ∃x ∈ Frn such that equation (A.3) is satisfied}

X(ζ) 0
η1I−A1(ζ) 0

...
...

ηn−dI−An−d(ζ) 0
C(ζ) −I

[xw
]

= 0. (A.3)

Theorem 3.3 would be proven if we show that B = Baux.
(B ⊆ Baux) Suppose G := {g1, . . . , gr} ⊆M is a generating set for M as an Ad-module. Recall
from equation (6) the action of elements from M on trajectories in B. For w ∈ B, define

x :=

g1...
gr

w.
It then follows from the construction of X(ζ), Ai(ζ), C(ζ) that X(ζ)x = 0, ηix = Ai(ζ)x,
w = C(ζ)x. This means x,w satisfy equation (A.3). Hence, w ∈ Baux.
(B ⊇ Baux) Suppose w ∈ Baux. Then, there exists x ∈ Frn such that x,w satisfy equation
(A.3). Now, let f(ζ, η) =

[
f1(ζ, η) · · · fw(ζ, η)

]
∈ R be arbitrary. In order to show w ∈ B, it

is enough that we show f(ζ, η)w = 0. Since w = C(ζ)x we get that

f(ζ)w =

w∑
i=1

fi(ζ, η)wi =

w∑
i=1

fi(ζ, η)Ci(ζ)x,

where Ci(ζ) is the ith row of C(ζ). Clearly, we can write

w∑
i=1

fi(ζ, η)Ci(ζ)x =

w∑
i=1

Ci(ζ)fi(ζ, η)x
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because fi(ζ, η) is scalar, and so, commutes with Ci(ζ). Now, recall that x satisfies ηix = Ai(ζ)x.
Therefore, we get

w∑
i=1

Ci(ζ)fi(ζ, η)x =
w∑
i=1

Ci(ζ)fi(ζ,A(ζ))x =

(
w∑
i=1

Ci(ζ)fi(ζ,A(ζ))

)
x.

But, f(ζ, η) ∈ R, which, by Lemma Appendix A.1, implies that (
∑w

i=1Ci(ζ)fi(ζ,A(ζ))) =
F (ζ)X(ζ) for some F (ζ) ∈ Aw×•

d . Therefore,(
w∑
i=1

Ci(ζ)fi(ζ,A(ζ))

)
x = F (ζ)X(ζ)x = 0,

because x satisfies X(ζ)x = 0. Thus, f(ζ, η)w = F (ζ)X(ζ)x = 0, hence, w ∈ B. �

Proof of Theorem 3.5: Follows from Theorem 3.1, Lemma 3.2 and Lemma 3.4. �
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