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Abstract— It is well-known that the two situations: gain
margin being infinite and phase margin being infinite are indi-
vidually special cases of dissipativities with respect to suitable
supply rates; the small gain theorem and passivity result being
the respective theorems. However, in practice, the two margins
being finite also allows concluding closed loop stability using the
Nyquist stability criteria. We show in this paper that the finite
and positive gain and phase margin condition is equivalent
to dissipativity with respect to a convex combination of the
supply rates arising from infinite gain margin and infinite phase
margin supply rates. We formulate this situation into a more
general framework of Nyquist Plot Compatible (NPC) supply
rates and transformations that keep such supply rates invariant.
Keywords: dissipativity, convex combination, small gain theo-
rem, passivity result, Nyquist plot

I. INTRODUCTION AND NOTATION

Dissipativity theory has provided a unifying approach to
address a large class of control theoretic problems, namely
LQR/LQG control, H∞ control (see [2], [8]). Among various
kinds of dissipativity, quadratic ones play an important role.
While the general theory of dissipativity with respect to
quadratic supply rates does not put emphasis on the supply
rates, there are a few special supply rates that allow an
interesting kind of manipulations. In this paper, we formalize
this idea of special supply rates: we call them Nyquist
Plot Compatible (NPC) supply rates. We show how certain
transformations on these supply rates bring out frequency
domain properties of systems. We then study the classical
gain and phase margin conditions for stability using the
Nyquist criteria and relate it to dissipativity. It is well-
known that infinite phase margin condition results in closed
loop stability (in the negative unity feedback configuration
shown in Figure 1, assuming H(s) = 1) through the small
gain theorem; the relation between small gain theorem and
dissipativity is classical too (see [2]). A similar situation is
true for the passivity result, namely, feedback interconnection
of two positive real transfer functions, at least one being
strictly positive real, results in closed loop stability: the
relation to dissipativity is again classical. The following
question naturally arises as a consequence of the above
relations: can the assurance of closed loop stability by finite
and positive gain and phase margins be explained using
possibly a combination of ‘small-gain-like’ and ‘passivity-
like’ dissipativities? This paper makes this question precise
and resolves it (Theorem 6): a polynomially-convex combi-
nation of the two dissipativities indeed results in a sufficient
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condition to rule out encirclement of the critical point ‘-1’
by the Nyquist plot of the loop gain transfer function. This
main result makes use of a novel supply rate that captures
non-intersection of the negative real axis as a dissipativity
property.

The outline of the paper is as follows. Section II contains
preliminaries regarding the problem formulation and the
behavioral approach. Section III formalizes certain relations
between Nyquist plot and supply rates: this section contains
one of the main results about calculus of transformations on
the set of ‘Nyquist Plot Compatible’ supply rates. The next
section (Section IV) consists of another main result (Theorem
6) about the finite gain/phase margin condition being nothing
but dissipativity with respect to a convex combination of
two extreme supply rates. The proof of Theorem 6 follows
in Section V. We elaborate on this theorem using examples
in Section VI, following which we conclude the paper in
Section VII. The rest of this section is devoted to the notation
used in this paper. The set R stands for the real numbers,
while C stands for complex numbers. In the context of
stability of the negative unity feedback configuration, the
point ‘-1’ on the complex plane plays a key role: we call it the
critical point. In a similar context, the unit circle in C refers
to the circle of radius one centered at the origin. The set
C∞(R,Rw) means the space of infinitely often differentiable
maps from R to Rw. The subset of C∞(R,Rw) with functions
having compact support is denoted by D(R,Rw). Sometimes,
when it is clear from the context, we write just D.

II. PRELIMINARIES

In this paper, by a linear differential behavior B we
mean a subset of C∞(R,Rw) such that elements w ∈ B
satisfy a system of ordinary linear differential equations
with constant coefficients. This amounts to existence of a
polynomial matrix R(ξ) ∈ R•×w[ξ] such that

B := {w ∈ C∞(R,Rw) | R( d
dt )w = 0}.

This representation is known as a kernel representation of
B. A behavior B ∈ Lw is said to be controllable if for
every w′, w′′ ∈ B, there exist w ∈ B and τ > 0 such that
w(t) = w′(t) for all t 6 0 and w(t) = w′′(t) for all t > τ .
It was shown in [6], [5] that B = kerR( d

dt ) is controllable
if and only if R(λ) does not lose rank for any λ ∈ C. In this
paper, we consider only SISO systems and also assume the
system/behavior to be controllable.

Another important concept required for this paper is
that of a quadratic differential form (QDF). (See [7] for a
detailed exposition.) A QDF QΦ induced by a two-variable
polynomial matrix with real constant coefficients, Φ(ζ, η) :=
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∑
i,k Φikζiηk ∈ Rw×w[ζ, η], where Φik ∈ Rw×w, is a map

QΦ : C∞(R,Rw)→ C∞(R,R) defined as

QΦ(w) :=
∑
i,k

(
diw
dti

)TΦik(
dkw
dtk

).

When dealing with quadratic forms in w and its derivatives,
we can assume, without loss of generality, that Φ(ζ, η) =
ΦT (η, ζ); such a Φ(ζ, η) is called symmetric. We often re-
quire the one-variable polynomial matrix Φ(−ξ, ξ) obtained
from Φ(ζ, η): define ∂Φ(ξ) := Φ(−ξ, ξ). In this context,
the notion of para-Hermitian plays an important role. A
square polynomial matrix P (ξ) ∈ Rw×w[ξ] is called para-
Hermitian if P (−ξ) = PT (ξ). The significance of P being
para-Hermitian is that P (jω) is Hermitian for all ω ∈ R.

We call a controllable behavior B dissipative on R with re-
spect to a symmetric two-variable polynomial matrix Φ(ζ, η)
if ∫

R
QΦ(w)dt > 0 for all w ∈ B ∩D. (1)

For the purpose of this paper1 B is said to be strictly
dissipative if the integral in inequality (1) satisfies a strict
inequality for all nonzero w ∈ B ∩D.

III. TRANSFORMATIONS ON SUPPLY RATES

Dissipativity is closely related to frequency domain char-
acterization of the system (see [7]). For example, dissipativity
of a system with respect to the supply rate u2 − y2 is
equivalent to the Bode magnitude plot being below the
0 dB line, i.e., the Nyquist plot being within the unit circle.
Supply rates that allow such statements in terms of the
Nyquist plot of a transfer function allow an interesting kind
of manipulations and also play a common role in various
dissipativity studies. This is the focus of this section.

In order to formalize these notions, we present the follow-
ing definition of a collection Ω of ‘Nyquist Plot Compatible’
supply rates. In this paper we restrict ourselves to SISO
systems; a useful description of controllable SISO systems
is obtained by looking into their kernel representations.
Suppose n(s) and d(s) are coprime polynomials such that
G(s) = n(s)

d(s) , we then consider the behavior BG described
as

BG := {(u, y) ∈ C∞(R,R2) | d( d
dt )y − n( d

dt )u = 0}. (2)

Definition 1: A supply rate Φ(ζ, η) ∈ R2×2[ζ, η] is said
to induce a trichotomy of the complex plane C if corre-
sponding to Φ(ζ, η) there exists a 3-tuple of disjoint sets
{A+

Φ ,A
0
Φ,A

−
Φ} whose union is C such that for every BG,

dissipativity (lossless-ness) is equivalent to the Nyquist plot
of G being contained in A+

Φ (contained in A0
Φ). The set of all

such supply rates that induce trichotomies of C, called the
Nyquist-Plot-Compatible (NPC) supply rates Ω ⊂ R2×2[ζ, η]
is defined as

Ω := {Φ(ζ, η) ∈ R2×2[ζ, η] | Φ induces
a trichotomy of C = A+

Φ ∪A0
Φ ∪A−Φ}.

1There are other more stringent definitions of strict dissipativity; see [7].

An example of Φ that is within this set is Φ =
[

1 0
0 −1

]
(arising out of QΦ(u, y) = u2− y2). This Φ gives A0

Φ equal
to the unit circle, and A+

Φ as the interior of the unit circle.
We describe some more important and familiar elements of
Ω after the following theorem.

We show below that Ω is closed under certain important
transformations. In what follows, we use this idea to relate
interesting frequency domain properties such as gain/phase
margins with dissipativities of supply rates obtained by com-
bining two key supply rates (see Section IV). The following
theorem is one of the main results of this paper; it shows
closure of Ω under congruence transformations and finite
combinations.

Theorem 2: Let T1, T2 ∈ R2×2 be nonsingular. Then for
all Φ1, Φ2 ∈ Ω the following holds:

TT
1 Φ1T1 + TT

2 Φ2T2 ∈ Ω. (3)
Proof : First we prove that Ω is closed under congruence

transformations. Let T =
[
t1 t2
t3 t4

]
∈ R2×2 be a non-

singular matrix, define the corresponding bilinear transfor-
mation (also known as Möbius transformation) BT : C→ C
as BT (z) = t1z+t2

t3z+t4
. Suppose Φ(ζ, η) ∈ Ω, and Φ̃ := TTΦT ,

then for a transfer function G, the corresponding behavior
BG is Φ̃-dissipative if and only if the behavior corresponding
to G̃ := BT (G) is Φ-dissipative. Since Φ ∈ Ω, B eG is Φ-
dissipative if and only if the Nyquist plot of G̃ is contained in
A+

Φ , which is equivalent to Nyquist plot of G being contained
in BT (A+

Φ). This proves TTΦT ∈ Ω.
It remains to prove that Ω is closed under addition. We

first note the following observation: if the complex plane is
identified with R2, and z = (x+iy) is represented by [x y]T,
then the set A+

Φ induced by a Φ(ζ, η) ∈ Ω is given by an
algebraic inequality f(x, y) > 0, where f(x, y) ∈ R[x, y].
Let Φ1,Φ2 ∈ Ω be such that A+

Φ1
and A+

Φ2
are given by

f(x, y) > 0 and g(x, y) > 0. It then follows that A+
Φ1+Φ2

is given by f(x, y) + g(x, y) > 0, For any G such that
the Nyquist plot of G is in A+

Φ1
and A+

Φ2
, it follows that

f(x, y) > 0 and g(x, y) > 0, and hence f(x, y)+g(x, y) also
is positive for all points on the Nyquist plot, and conversely.
This proves Φ1 + Φ2 ∈ Ω. �

The set Ω has some familiar elements; we already saw

Σbr =
[

1 0
0 −1

]
, which arises in the Bounded Real

Lemma, and the associated trichotomy, namely the unit
circle and its interior, etc.. We now elaborate on some more
examples.

1: The Φ =
[

0 1
1 0

]
results in A0

Φ equal to the imaginary

axis and A+
Φ as the open right half complex plane. Of course,

dissipativity with respect to this supply rate is precisely by
systems having a positive real transfer function, and this is
equivalent to Nyquist plot being in the right half complex
plane. (We have ignored the stability aspect in the definition
of positive real; this matters only over half-line dissipativity
and not in this paper.)
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2: Consider Φ =
[

2αβ α+ β
α+ β 2

]
which plays a key role

in sector nonlinearities and is related to the circle criterion.
See [2] for the link between Integral Quadratic Constraints
(IQC), dissipativity and the circle criterion. The trichotomy
in this case is such that A0

Φ is the circle centered at (β +
α)/(2βα) and radius (β − α)/(2βα). Assuming α, β > 0,
A+

Φ is the exterior of this circle. It turns out that this matrix
can be obtained by applying a congruence transformation on[

0 1
1 0

]
. However, such a transformation is not unique;

one of them is given by T =
[
α
√
β

√
β√

β 1/
√
β

]
.

3: Consider Φ =
[

0 η
ζ 0

]
. It turns out that A0

Φ for this

case is the real axis and A+
Φ is the open lower half complex

plane (see [3]).
In the context of Example 3 above, notice that a supply rate

such that A0
Φ is just the negative real axis is useful, for one

can then characterize non-intersections of the negative real
axis (i.e., infinite gain margin) as a dissipativity property.
This is the subject of the following section, in particular,
Corollary 5, and is one of the main results of this paper.

Such transformations as above can be related to the idea
of multipliers used in nonlinear systems analysis. In this
context, dynamic multipliers give rise to transformations that
are polynomial matrices. An analogue of the above result in
this situation requires further investigation. In the sequel, we
further explore the set Ω by considering polynomial scalar
combination of two key supply rates in Ω and we relate this
to gain/phase margin properties.

IV. GAIN/PHASE MARGINS AND DISSIPATIVITY

In this section we relate the traditional gain and phase
margin conditions to dissipativity. It is well-known that
G(jω) 6 1 for all ω ∈ R if and only if the system
(more precisely, the behavior BG defined in Equation (2)) is
dissipative with respect to the supply rate u2 − y2, where u
is the input and y is the output. Similarly, |∠G(jω)| 6 90o

is equivalent to dissipativity with respect to the supply rate
uy. Our main result Theorem 6 shows that the situation
when both gain and phase margins are finite and positive
is equivalent to dissipativity of the system with respect
to a convex combination of supply rates corresponding to
these conditions individually. Precise statement requires the
following development.

G(s)

H(s)

−

+

Fig. 1. Standard unity feedback configuration

Consider the negative unity feedback configuration shown
in Figure 1. The Nyquist plot of GH does not encircle the

point ‘-1’ on the complex plane if the transfer function GH
satisfies |GH(jω)| < 1 for all real ω, or if |∠GH(jω)| <
180o for all real ω. Consequently, we obtain the following
classical sufficient condition for closed loop stability. In the
context of the feedback configuration shown in 1, we use
well-posedness: the interconnection is said to be well-posed
if 1 +G(∞)H(∞) 6= 0.

Proposition 3: Let G and H be two stable proper real
rational transfer functions, and suppose their interconnection
is well-posed. The closed loop is asymptotically stable if any
one of the following conditions hold:

1) For each ω ∈ R, G(s)H(s) satisfies |GH(jω)| < 1.
2) For each ω ∈ R, G and H satisfy: |∠G(jω)| < 90o

and |∠H(jω)| < 90o.
Of course, the above conditions are not essential for ruling

out encirclements of the critical point by the Nyquist plot.
Amongst the various ways in which the above result can be
strengthened, we focus on the traditional gain/phase margin
conditions for closed loop stability: this is a combination of
the conditions 1 and 2 above. We state this as a proposition
for easy reference.

Proposition 4: Let G and H be two stable proper real
rational transfer functions. Suppose the transfer function GH
satisfies

∠GH(jω) = 180o ⇒ |GH(iω)| < 1. (4)

Then, the feedback interconnection is asymptotically stable.
While the condition stated in Equation (4) is not neces-

sary2, it captures gain/phase margin conditions taught in a
first level control course. Further, the condition relaxes both
the conditions stated in Proposition 3. This section deals with
the question: can condition (4) be obtained as a ‘convex
combination’ of conditions 1 and 2 in Proposition 3? We
now formulate this question using dissipativity with respect
to suitable supply rates, and show that a convex combination
indeed gives condition (4).

Since it is only the loop gain GH that affects closed loop
stability conditions, we assume without loss of generality that
H = 1. Though this does not affect stability, this crucially
affects the supply rate corresponding to passivity, and our
modification of the supply rate to handle non-intersection of
the negative real axis is one of the novel aspects of this paper.
This is addressed further below; we now continue with just
G(s). The condition G(jω) 6 1 for all ω in R is known
to be equivalent to dissipativity of B with respect to the
supply rate Qsg(u, y) := u2−y2. The following result is the
analogue in the context of infinite gain margin: we write this
as a corollary, since it follows from Theorem 6 below. The
supply rate Σpa formalizes in a novel way the fact that non-
intersection of the negative real axis is, in fact, dissipativity
with respect to a quadratic supply rate.

Corollary 5: Consider the feedback interconnection
shown in Figure 1. Suppose H(s) = 1, G(s) = n(s)

d(s) ,

2This is due to the situation that G(0) < 0 or due to multiple
intersections of the negative real axis/unit circle: there could possibly be
zero encirclements though the condition in Proposition 4 (Equation (4)) is
not satisfied. See Section VI for an example.
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and let the behavior BG be as defined in (2). Define
Σpa ∈ R2×2[ζ, η] as

Σpa(ζ, η) =
[

n(ζ)n(η) −d(ζ)n(η) + ε
−n(ζ)d(η) + ε d(ζ)d(η)

]
. (5)

Then, the following are equivalent.
• The Nyquist plot of G does not intersect the negative

real axis.
• |∠G(jω)| < 180o for all ω ∈ R.
• BG is Σpa(ζ, η) dissipative.

The proof of this corollary follows from our main result
(Theorem 6 below). The more general statement in Proposi-
tion 4 that gain and phase margins each being positive assures
closed loop stability, notwithstanding that there are both
negative real axis intersections and unit circle intersections
by the Nyquist plot, is addressed in the theorem below: a
polynomially convex combination suffices for this purpose.

Theorem 6: Consider a SISO LTI system given by the
transfer function G(ξ) = n(ξ)

d(ξ) and let BG be the set

{(u, y) ∈ C∞(R,R2) | d( d
dt )y − n( d

dt )u = 0}.

Define Σpa(ζ, η) ∈ R2×2[ζ, η] as in Equation (5) above and

let Σbr =
[

1 0
0 −1

]
. Then the following two statements

are equivalent:
1) there exist p, q ∈ R[ξ] and ε > 0 such that B is strictly

dissipative with respect to
Φε(ζ, η) := p(ζ)Σbrp(η) + q(ζ)Σpaq(η),

2) for each ω ∈ R, either |G(jω)| < 1, or |∠(G(jω))| <
180 degrees, or both.

Notice that the second condition in the above theorem
rules out encirclements of the critical point -1 by the Nyquist
plot of G. The above theorem shows the equivalence between
this and dissipativity of the system with respect to a supply
rate that depends on the two extreme supply rates: small gain
and passivity supply rates. The first extreme case is classical,
the second extreme situation has been elaborated as Corollary
5 above. In other words, when a transfer function G(s) has
infinite phase margin (i.e., its Nyquist plot lies within the
unit circle), or when the Nyquist plot does not intersect the
negative real axis (i.e., infinite gain margin), then either q
or p can be taken to be zero respectively, and Theorem 6
reduces to the small gain theorem and Corollary 5.

V. PROOF OF THEOREM 6

The proof requires some more preliminaries. The first
concerns controllable behaviors: see Section II for the def-
inition. Controllable behaviors happen to be precisely the
behaviors that admit an image representation: there ex-
ists an M(ξ) ∈ Rw×m[ξ] such that B := {w | ∃` ∈
C∞(R,Rm) such that w = M( d

dt )`}. For the purpose of
this paper, we need the image representation to have the
property that ` can be deduced from w ∈ B; this is called
observability. The image representation above is said to be
observable if M(λ) has full column rank for all λ ∈ C. It
turns out that image representations can be assumed to be
observable without loss of generality.

We make use of the following result from [7], which
relates the dissipativity of a behavior to the non-negativity
of a certain matrix on the imaginary axis.

Proposition 7: Consider B = imM( d
dt ) and Φ ∈

Rw×w[ζ, η]. Then B is dissipative with respect to Φ(ζ, η)
on R if and only if

MT (−jω)∂Φ(jω)M(jω) > 0 for all ω ∈ R. (6)
One can check that strict dissipativity is equivalent to
MT (−jω)∂Φ(jω)M(jω) > 0 for almost all ω, i.e.
MT (−jω)∂Φ(jω)M(jω) is nonsingular as a polynomial
matrix, and satisfies non-negativity for all ω ∈ R.

We also need the notion of the inertia of a polynomial
matrix. The inertia of a Hermitian constant matrix S ∈ Rw×w

is the triple (σ−(S), σ0(S), σ+(S)), the number of negative,
zero and positive eigenvalues of S respectively. When deal-
ing with a nonsingular Hermitian matrix S, we abuse this
notation of inertia by skipping the middle integer and just
write the 2-tuple (σ−(S), σ+(S)). In our case, the concerned
Hermitian matrix depends on ω, therefore the inertia of such
a matrix, also depends on ω. Moreover, when the polynomial
matrix S(ω) is nonsingular, i.e. det(S(ω)) 6≡ 0, we require
to use the 3-tuple notation for inertia only at finitely many
points. Hence we stick to 2-tuple notation, which is sufficient
almost everywhere. We make this precise after considering a
simple example.

Consider P (ξ) ∈ R2×2[ξ] defined as the diagonal matrix
with (1 + ξ2) and (9 + ξ2) on the diagonal. This polynomial
matrix is para-Hermitian, i.e. P satisfies P (−ξ) = P (ξ)T .
As a result, for each ω ∈ R, P (jω) is Hermitian. Since
P (jω) is nonsingular, we define its inertia at ω0 ∈ R
to be the 2-tuple (σ−(P (jω0)), σ+(P (jω0))): assuming, of
course, P (jω0) is nonsingular. This allows us to define the
inertia for a nonsingular para-Hermitian polynomial matrix
P (ξ) for almost all points on the imaginary axis. The inertia
of P (jω0) is left undefined if jω0 is a zero of P (ξ). Thus
inertia of P (2i) = (1, 1), and that of P (0) = (0, 2), while in-
ertias of P (3i) and P (i) are undefined. The definition below
makes this precise for general para-Hermitian polynomial
matrices.

Definition 8: Suppose P (ξ) ∈ Rw×w[ξ] is para-Hermitian
and assume P (ξ) is nonsingular. Let ω0 ∈ R be such
that jω0 is not a zero of P (ξ), i.e. det(P (jω0)) 6= 0.
Then, the inertia of P (jω0) is defined as the 2-tuple:
(σ−(P (jω0)), σ+(P (jω0))). If P (jω0) is singular, then the
inertia is undefined.

The above definition allows inertia of a nonsingular para-
Hermitian polynomial matrix to be defined for almost all
values on the imaginary axis. Notice in the example above
that the inertia can change about zeros of P (ξ) on the
imaginary axis. Due to dissipativity condition of a behavior
requiring a certain minimum number of positive eigenvalues
at every point on the imaginary axis (see [1]), we need the
inertia to be such that the number of negative eigenvalues
are not too many at any ω ∈ R. For this purpose we define
a total ordering over the set of two tuples (σ−(S), σ+(S))
that satisfy σ−(S) + σ+(S) = w (the integer w playing the
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role of the size of the supply rate matrix, i.e. the number of
variables).

Definition 9: Consider two 2-tuples (ν1, π1) and (ν2, π2)
that satisfy ν1+π1 = ν2+π2 = w. We say (ν1, π1) < (ν2, π2)
if ν1 > ν2. In this case, (ν1, π1) is said to be worse than
(ν2, π2).
Let P (ξ) ∈ Rw×w[ξ] be para-Hermitian and nonsingu-
lar. Define νmax to be the maximum number of negative
eigenvalues of P (jω) as ω varies over R, i.e. νmax :=
maxω∈R{σ−(P (jω))}. The worst inertia of P (ξ) is defined
as (νmax, w − νmax), and correspondingly, the worst inertia
matrix (see [4]) is defined as

Jworst :=
[
Iw−νmax 0

0 −Iνmax

]
. (7)

Notice that in our case for any ω ∈ R we have
(σ−(∂Φ(jω)) + σ0(∂Φ(jω)) + σ+(∂Φ(jω))) = 2. The fol-
lowing result from [4, Theorem 3.6.5] concerns factorization
of para-Hermitian polynomial matrices that might not have
constant inertia almost everywhere on the imaginary axis.

Proposition 10: Let P (ξ) ∈ Rw×w[ξ] be para-Hermitian
and nonsingular and let Jworst ∈ Rw×w be its worst inertia
matrix. Then there exist polynomial matrices3 K and L ∈
R•×w[ξ], with K square and nonsingular, such that

P (ξ) = KT (−ξ)JworstK(ξ) + LT (−ξ)L(ξ). (8)
Proof of Theorem 6: 1) ⇒ 2): Assume that there exist
polynomials p, q ∈ R[ξ] and ε > 0 such that B is strictly
Φ-dissipative. From proposition 7, this means for all ω ∈ R
the following holds:[

d(jω)
n(jω)

]∗
∂Φε(jω)

[
d(jω)
n(jω)

]
> 0.

The LHS simplifies to

|p(jω)|2
(
|d(jω)|2 − |n(jω)|2

)
+|q(jω)|2

(
2εRe(n(−jω)d(jω)) + 4(Im(n(−jω)d(jω)))2

)
.

This implies[
p(jω)
q(jω)

]∗ [ Γ(ω) 0
0 Π(ω)

] [
p(jω)
q(jω)

]
> 0, (9)

where

Γ(ω) := |d(jω)|2 − |n(jω)|2 and
Π(ω) := 2εRe(n(−jω)d(jω)) + 4(Im(n(−jω)d(jω)))2.

Since both p(−jω)p(jω) and q(−jω)q(jω) are non-negative
for each ω ∈ R, the above inequality rules out existence of
any ω0 such that Γ(ω0) < 0 and Π(ω0) < 0. Therefore,
for almost all ω ∈ R, either |d(jω)|2 − |n(jω)|2 > 0 or
2εRe(n(−jω)d(jω)) + 4(Imn(−jω)d(jω))2 > 0 or both.
Thus statement 2) follows.

2) ⇒ 1): Condition 2) implies that
[

Γ(ω) 0
0 Π(ω)

]
has

worst inertia (1, 1) or (0, 2). (Any one of the two inequalities
within Condition 2) implies worst inertia of (1, 1) and when

3The number of columns of K and L equals w, but number of rows
depends on the particular ∂Φ(ξ) and hence is left unspecified. We use • to
leave the relevant integer unspecified.

both inequalities are satisfied, the worst inertia is (0, 2).) The
latter case requires no proof since any pair of polynomials
(p, q) satisfying coprimeness on the imaginary axis also
satisfies inequality (9), thus proving condition 1). For the

former case, from proposition 10 above,
[

Γ(ω) 0
0 Π(ω)

]
can be written as

KT (−jω)JworstK(jω) + LT (−jω)L(jω), (10)

where Jworst = diag(1,−1) and matrices L(ξ) and K(ξ) ∈
R•×2[ξ], with K square and nonsingular.

As done in Theorem 3.4.7 in [4], equation (10) is used to
find p, q that meet the requirements in statement 1 as follows:

1) Choose a transfer function h(ξ) ∈ R(ξ) with L∞
norm strictly less than one. Its coprime numerator and
denominator polynomials, say p′ and q′ respectively,
satisfy p′(−jω)p′(jω)− q′(−jω)q′(jω) > 0 for all ω.

2) Next, construct the adjugate adj K(ξ) of K(ξ).

The required p, q are given by
[
p(ξ)
q(ξ)

]
:=

(adj K(ξ))
[
p′(ξ)
q′(ξ)

]
.

Using this p and q (after cancelling common factors,
if any), one can reverse the chain of arguments before
inequality (9) in order to conclude strict dissipativity. This
concludes the proof of 2) ⇒ 1). �

VI. EXAMPLES

In this section we study two examples; the first one
having a Nyquist plot with finite gain and phase margins and
hence is dissipative with respect to a suitable polynomially
convex combination of the extreme supply rates, while the
second one has a Nyquist plot without encirclements of the
critical point, but is not dissipative with any such convex
combination.

Consider the transfer function G(s) = 30
(s+1)(s+2)(s+3) ,

whose Nyquist plot is as shown in Figure 2. Since the point
of intersection of the negative real axis and the Nyquist plot
lies inside the unit circle, Condition 2) of Theorem 6 is
satisfied and hence the system is dissipative.

We next consider the transfer function G(s) =
50(s2+2s+100)
s3+6s2+11s+6 : see Figure 3 for its Nyquist plot. The negative
real axis intersections are at -61 and at -4/3. While the critical
point -1 is not encircled, the negative real axis is intersected
twice, and both outside the unit circle. This example shows
how non-encirclements of the point -1 does not imply
dissipativity with respect to some convex combination of the
two supply rates. Of course, this is an example of how the
close loop is stable for k = 1 (the gain k is multiplied to the
loop gain for this analysis), but not for arbitrary decrease of
k: the closed loop is unstable for 1

61 < k < 3
4 . It is important

to note that traditionally gain and phase ‘margins’ applied to
situations where decrease in the gain did not cause instability.

As mentioned in Footnote 2, another situation is the
transfer function G(s) = −(2s+15)

s+5 . This system is also not
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Fig. 2. Nyquist plot of G(s) = 30
(s+1)(s+2)(s+3)

Fig. 3. Nyquist plot of G(s) =
50(s2+2s+100)

s3+6s2+11s+6

dissipative with respect to any convex combination of the
two supply rates, though there are no encirclements of the
critical point. Like the previous example, this system has
unstable closed loop for k in the range of ( 1

3 ,
1
2 ).

VII. CONCLUDING REMARKS

In this section, we summarize the key results in this
paper. We formulated properties that certain special supply
rates have using the Nyquist plot of system transfer func-
tions. Such supply rates, called Nyquist Plot Compatible
(NPC) supply rates, are closed under addition and under
the congruence transformation (Theorem 2). Various familiar
integral quadratic constraints (IQC’s) and frequency domain
properties could be explained using this formulation.

The general formulation about NPC supply rates was
specialized to the gain and phase margin conditions for
stability. While infinite phase margin condition, and hence
stability, could be captured as dissipativity with respect to

a supply rate, the analogue for infinite gain margin is not
as straightforward. The passivity result handles the case of
two positive real transfer functions resulting in closed loop
stability, but this supply rate does not appear to allow a
combination with Σbr (of the Bounded Real Lemma) to
yield the finite gain/phase margin situations. We proposed
a new supply rate such that dissipativity with respect to this
is equivalent to non-intersection of the negative real axis,
and hence infinite gain margin: Corollary 5. A polynomially
convex combination of the two supply rates immediately
yields the traditional result that, assuming open loop stability,
finite and positive gain and phase margin conditions on the
open loop results in closed loop stability (Theorem 6).

The polynomials p and q of Theorem 6 can be thought
of as the numerator and denominator of a filter F which
when combined with G in series results in dissipativity of
BTG with respect to one of the two extreme supply rates.
The close relation between the bounded real lemma and the
positive real lemma probably plays a role in making this
precise. This remains to be explored further.

A noteworthy point about the supply rate Σpa(ζ, η)
corresponding to non-intersection of the negative real axis
by the Nyquist plot of a transfer function G is that Σpa(ζ, η)
depends on G, and dissipativity is required to be satisfied for
some ε > 0, (with ε possibly depending on G). The seeming
dependence of the supply rate Σpa(ζ, η) on the system

is unlike other supply rates such as Σbr =
[

1 0
0 −1

]
and Σpr =

[
0 1
1 0

]
, which respectively correspond to

non-intersection of the unit circle and the imaginary axis.
This property is perhaps linked to the fact that there is
no essential difference between lines and circles on the
complex plane, while half-lines are intrinsically different.
Consequently, the small gain theorem (infinite phase
margin condition) applies to positive and negative phase
shifts, while the infinite gain margin condition applies to
only positive gain shifts. This matter too requires further
investigation.
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