New Results in Optimal Quadratic Supply Rates

Debasattam Pal, Subhrajit Sinha, Madhu N. Belur and Harish K. Pillai

Abstract—This paper concerns studying dissipativity of a address the issue of improper controllers for fhe subop-
system with supply rates that depend on one or more param- timal control problem in section V. We present necessary
eters. We show that suitable choice of supply rate turns out to and sufficient conditions for the solvability of the sub-

make dissipativity equivalent to traditional gain/phase margin timal bl ithout Kina th tricti fi
conditions for stability. Further, the well-known circle criterion optimal problem without making the restrictive assumptions

corresponds to a different supply rate, and here optimizing typically assumed in state space control theory (see [10]). A
the supply rate is nothing but finding the largest circle such remarkable aspect of our main result for this section is that

that circle criterion implies absolute stability for time-varying  jt can be related to well-known system theoretic concepts
nonlinearities. £ -control is another example of dissipativity of invariant zeros, thouglwithout an apriori input/output

with respect to a relevant supply rate, and here we show that, it f th trol iabl Finall h h th
in fact, improper L -controllers are easily dealt with using partiion ot the control variables. Finally we show how the

our approach (unhke the standard state space methods) We reSU|t |n thIS SeCtIOH can be Used |n the fO||0WIng SeCt'On
formulate and prove necessary and sufficient conditions for to infer the solvability of thel., optimal control problem

Lo -control, and then conclude that optimal controllers always  (section VI). Here we show that due to nonrequirement of
exist (under suboptimal solvability conditions). properness of the controller, the optimal controlééways
Keywords: Dissipative systems, behaviors, optimal control, . . . S . .
. o exists (assuming suboptimal solvability is possible). This
circle criterion, £.-control. \ _
result is among the main results of the paper.
I. INTRODUCTION AND NOTATION Before we begin with some preliminaries in the following

section, we devote a few words about the notation used

Analysis and design of control systems based on dissjy this paper. The set>®(R,R*) means the space of in-
pativity has been an active field of research. The theory ‘?ifnitely often differentiable maps fror to R¥. The subset
dissipativity formalizes the concept of dissipation of energyy ¢>(R,R¥) with functions having compact support is
and gives a firm footing for analysis of systems from energyenoted byD (R, R*). Sometimes we will drop the argument
absorption view-point. Among many others, dissipativitfynen it is clear from the context, and write just, for
with respect to a quadratic supply function plays a key rolgyample. Also, in order to identify the number of components
because a number of important control theoretic concep$ a vectorw, we simply use, for examplegw € ¢ (R, RY).
can be generalized into dissipativity with quadratic suppl)tina”y, within text, we often require to stack vectors or

functions, for example, the LQR/LQG contr6i,, problem, matrices into a colummeol(Ry, R») denotes BT RY|T.
circle and Popov criteria, and synthesis of passive systems

(see [14], [16], [6]). In this paper we relate dissipativity to Il. PRELIMINARIES

supply rates to get the optimal such rate. In section lll, Wgean a subset of>=(R,R¥) such that elementsy € B
known system theoretic ideas of gain and phase margins. \ifith constant coefficients. This amounts to existence of a
the context of circle criterion, we show how dissipativityp0|ynomia| matrix R(¢) € R**¥[¢] such that® = {w €
concepts can be used in order to find the ‘largest’ circlgeo(r Rr¥) | R(&)w = 0}. We denote the set of all such
satisfying this criterion thus assuring absolute stability fofinear differential behaviors witlr number of variables by
sector-bound time varying nonlinearities (see IV). Next wew This representation is known askarnel representation
o o ] ] of 8. Though there are many possible kernel representations
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is said to becontrollable if for every w’,w” € 9B, there dissipative if the integral in inequality (1) satisfies a strict
exists aw € B and ar > 0 such thatw(t) = w'(¢) for all  inequality for allnonzerow € % N ®. One can check that
t <0andw(t) =w"(t) for all t > 7. We denote the set of strict dissipativity is equivalent td®(iw) > 0 for almost all

all controllable behaviors witly variables asgy . It was w.

shown in [13], [9] thatB = kerR(%) is controllable if and The notion of orthogonal complement of a behavior is
only if R(X) does not lose rank for any € C. Controllable related to dissipativity, and we require it in this paper.
behaviors are precisely the behaviors that admiiraage Consider € £¥,, having kernel representatidd( 4 )w =
representation there exists anV/(§) € R¥*™[¢] such that 0. The orthogonal complemerB. of the behavior3 is

B := {w | 3¢ € €°(R,R") such thatw = M(;)¢}. For defined asB* := {w € ¢*°(R,R¥) | [, wTvdt = 0 for all
the purpose of this paper, we need the image representatiom % N D}. It turns out thatB+ € £¥ . and, in fact, has
to have the property that can be deduced from € B;  image representatiom = R” (—%)¢.

this is called observability. The image representation above

is said to be observable #/()\) has full column rank for [1l. GAIN/PHASE MARGINS AND DISSIPATIVITY

all A € C. It turns out that image representations can be

m rvable with I f generality. . . .
assumed to be observable without loss of generality here as GM and PM respectively) have been important in

Sometimes, dull behaviorBy,; is associated withB that . .
) ) _ frequency domain methods of design of control systems.
has a latent variable representation by taking the latent varIL- . . L
) ) i hey nicely capture the essence of certain properties like
ables as manifest variables, thathg,; C € (R, R¥™) is

iven by: B = {(w,£) | such thatR()w — M(L)e} relative stability and robustness which are desirable for a
g Y Stan = AW, a8 control system. In this section we relate these concepts with
Another important concept required for this paper is th

) o i %Iissipativity. It is well-known that GM and PM are related to
notion of a quadratic differential form (QDF). (See [15] for

. . ) i small gain and passivity respectively, which again are only
a detailed exposition.) A QDEB)¢ induced by a two-variable . T ) o .
_ . - special cases of dissipativity. Our main result in this section
polynomial matrix with real constant coefficien®((, n) :=

S Ducint € RVC, 1), where ® shows that, the GM and PM conditions are equivalent to
ik kG € ww , 7, wnere

ik ER™ isamap . . ... . .
dissipativity with respect to a supply r. ,n) obtained as

Qs : CX(R,R¥) — C®(R,R) defined asQq(w) = patvIty P pply rate. ) i

Zi,k(%ltg}>Tq)ik<?iikw)' When dealing with quadratic forms a combination of the small gain matri,, := 0 _1

in w and its derivatives, we can assume, without loss of 0 ¢

0

generality, that®(¢,n) = ®7(n,(); such a®(¢,n) is and the passivity matrix,, :=
The small gain matrix’,, and the passivity matrix,,

called symmetricand the set of all such symmetric two-
variable polynomial matrices is denoted B/*¥[(,n]. We . :

poly By (< ) are such that they are supply rates with respect to which the
unity feedback path is ‘least dissipative’: in our case ‘least

often require the one-variable polynomial matdxX—¢, &)
dissipative’ means that inequality (1) is satisfied with an

Concepts of gain margin and phase margin (abbreviated

obtained from®((,n): defined®(&) := &(—¢,€).

This paper concerns optimizing the dissipativity property . . . . .
lity. f 1 forth ty f k int tion;
of a controllable behavioB. We call a controllable behavior equality. (See figure 1 for the unity feedback interconnection;

o . i the ¢ in the figure is equal td.) The passivity matrix:,,
B e £ . dissipative orR with respect to a symmetric two- ¢ 9 d ) P y b

cont ] ) 0
variable polynomial matrix®(¢,n) if is adapted from the more commonly used ma r|x1
/Q(p(w)dt >0 1 due to the same_reason: Fo _ens_ure that the unity feedback
R path of our case is least dissipative.

for all w € BND. We will make use of the following result  If some system is dissipative with respect to jiist, this
from [15], which relates the dissipativity of a behavior towould mean that the unity feedback results in asymptotic
the non-negativity of a certain para-Hermitian matrix on thatability, using the small gain theorem. While the intercon-

imaginary axis. nection of two passive systems (at least one being strictly
Proposition 1: Consider %8 = imM (%) and & € passive) results in closed loop asymptotic stability: this is

R¥*¥[¢,n]. ThenB is dissipative with respect t@((,n) captured by th&,, matrix.

on R if and only if However, gain and phase margin conditions (assuming

open loop system is stable) being positive also assure us of
closed loop stability. The following theorem, our main result
of this section, says that the gain and phase margin conditions
1There are other more stringent definitions of strict dissipativity; see [15are closely related to a suitable polynomial combination of

MT(—iw)dd(iw)M(iw) =0 forall w e R.  (2)
For the purpose of this pagef is said to bestrictly



If G satisfies the following inequality strictly

— A 01" [ 208 @+8) ][0
= < y(t 200 o+ y(t
dt >0
L] [y e )]
= 4)
Pt Y u € £2[0,00), then we have absolute stability for all

nonlinearities, possibly time-varying; in the sector{a, 3].

Supposes happens to be a gain that stabilizes the transfer
Fig. 1. Feedback Interconnection functionG, i.e, ¢(t,y) := By results in closed loop stability,

then the question arises as to the minimum valuer dhat

) . results in absolute stability. This brings us to the problem
these two spec_lal supply _ratéssg and Zp,. We skip the addressed in this section: the question of optimizing the
proof for page limt constraints; see [7] for the same. 28  (a+p)

Theorem 2:Consider a SISO LTI system given by theSuIOpIy raie (a+ B) 2
transfer functionG(¢) = % (or equivalently,(u,y) € Problem Statement:Consider an LTI system having transfer
U(%) ). Then the following two statements function G(¢) in the forward path with a nonlinearity in
Y(%) ' the feedback path as shown in figure 1. Supp@de such
are equivalent: that14 5G(€) has all its zeros in the left half complex plane.

Find the smallestv such that we have absolute stability due

B = im

1) there exisp, ¢ € R[¢] such thatB is strictly dissipative

with reSpect 16b((, 1) := p(C)Zuep () +a(Q) Epag(n), 10 S19° SHtOMlON forp Inthe sectote
2) for almost allw € R, either ” G(zw) ||< 1, or e following lemma answers the above problem and is

wIm(G(iw)) < 0, or both easily convertible into an algorithm. Its proof is straightfor-

Remark 3:Condition 2) in above theorem formalizes theWard and is hence skipped.
Lemma 4:Let G(§) € R(§) and let3 > 0 be such that

well-known condition that, assuming transfer functiGrhas | 1 5G(¢) has all its zeros in the left half complex plane
positive DC gain, if the open loop system is stable then theJr (©) s z ! plexp '

. . . . The minimuma such that we have absolute stability due to
gain and phase margins being positive guarantees closed loqQ L . .
o . ... circle criterion for allp in the sector[a, §] is the leasta
stability. The above theorem relates this to strict dissipativit L ) )
. . hat satisfies the inequality:
with respect to a suitable supply rate.

G(iw 2 « Giw
() 2 @ |6 g
IV. CIRCLE CRITERION. COMPUTATION OF THE LARGEST
SECTOR is satisfied for allw € R.
Using coprime polynomiald/(¢) and Y () such that
In this section we develop a systematic approach t6'(¢) = Y (£)/U() we can rewrite the aboveational

calculate the largest sector that a sector-nonlinearity camequality as gpolynomialinequality by replacingG (iw) 1]
belong to, keeping an inter-connection stable. Consider thy [Y (iw) U(iw)]. In fact, for a fixeds, the L.H.S. of
interconnection of the linear system (with transfer functiornequality (5) is a polynomial inv and «.. Considered as a
G) and the sector nonlinearity in the feedback path as polynomial inw with coefficients fromR[a], this polynomial
shown in figure 1. Letp belong to the sectofx, 5] with is even inw:

a < [ and 8 > 0. The sector condition oy can be ,
expressed asy” < y - ¢(t,y) < By*, which in matrix form Pa(@)ao(@) + az(0)w® + .. + azo(a)™ >0 (6)

with a; € R[a]. We now elaborate on how one can find the
l y ~|T [ “f o ] l y ] S0 minimum « such that inequality (5) is satisfied for alle R.
o(t,y) [ olt,y) |~ The minimuma for which p,(w) is non-negative results
in po(w) and g, (w) := % to lose coprimeness. Using
for all ¢+ and for ally € £2(R,R) (where £2 denotes the @ Sylvester resultant condition on these two polynomials
space of functions that are square integrable over its domaifiith coefficients that are polynomials in), one can get

Let G(¢) = 19 where U(€), Y (€) € R[¢]. The well- all real candidates’s (< ) that cause loss of coprimeness

known circle criteria can be rewritten using the Integral 2|n this section, we do not dwell on the precise form of the strictness of
Quadratic Constraints (IQC) formulation of [6] as follows.the inequalities since the focus is on computing the largest sector.



of p, andgq,,, and for these finitely many candidates checking
Nyquist Diagram

non-negativity of inequality op,,(w) gives us the required 3 .

minimum value ofa. ‘ Pl
Remark 5:Notice that the above method works even al :

whenG (&) is not stable, unlike the 1QC result. The analogue : L S0 B0

of the above method for optimizing a slightly different i j

supply rate gives rise to another method to compute the T y &, e e

Hs norm of a transfer matrix. This has been dealt in [2].
Another important point to note is that we have addressed
the optimization of the sectowith respect tothe circle
criterion. We do not address the issue that for certain cases, 4}
the circle criterion can itself be unnecessarily conservative;
for example, if non-quadratic storage is allowed (see [3],
[4]). We thank Prof. Jan C. Willems for his useful inputs.

The following example shows how the minimumcom- |
puted by the above method gives rise to the circle that A5 3 25 7 -5 o 05 0 85 1 45
touches the Nyquist plot of the unstable transfer function Rest =
G(s), and is encircled twice anti-clockwise by the Nyquist
plot (due to two unstable poles 6f(s)). Fig. 2. Nyquist Plot

Example 6:Consider G(s) = % whose
Nyquist plot is shown in figure 2. Le8 = 5/3, which
happens to result in closed loop stability (for the gan
In this case we hav& (s) = (—s? + 195+ 6) and U (s) =
(252 — 65 +4). Inequality (5) giveg4 — 2a)w* + (2998 — l b ] l 0 1 1 [ o1 ] [ 0
1100)w? + (504cr + 336) > 0 for all w € R. In this case, | 1, - 1 -1 1
we geta = 0.34 as the required minimum corresponding
to 3 = 5/3; the circle corresponding to this pajt, 3) is
shown in Figure 2. (The other value of obtained by the
above method corresponds to a non-real frequencand
hence is ignored.)

Imaginary Axis
=]
T

>

Example 7:Consider the state-space description of the
plant
0 1 0
1

with to-be-regulated variableg and z; satisfyingz; = x;
and zo = u, and the measuremenptsatisfyingy = x;. It
can be checked that a state-space controller cannot restrict
this plant to a controlled behavior who§é., norm is at

V. IMPROPER CONTROLLERS FOR , CONTROL most one. However, a controller of the form=, which is

In this section we will address the solvability of te,  improper, solves the problem.

(or H,) control problem when the restrictive regularity It is important to note that the closed loop system and
assumptions on the “feed-through” terms of the plant arthe open loop system are both of dynamic order two.
relaxed. The regularity assumptions are required in orddhis was possible only because the transfer function from
to have the controller in the conventional observer-statglisturbanced to the measurementg was strictly proper.
feedback structure, which is equivalent to the properne$3f course, from Theorem 10 of [16, part Il], it is expected
of the controller transfer function. These assumptions aitBat this transfer function’s strict properness is necessary for
restrictive in the sense that even when they are violatedpntroller's improperness.
which can make thé ., optimal control problem unsolvable  Through this observation we notice that more general
with a proper controller, an improper controller might stillconditions are expected to be necessary and sufficient for
exist that succeeds in making the controlled system achieselvability.
the optimalL ., norm. Our main result provides necessary It is well-known that, in state spacé., optimal con-
and sufficient conditions for the solvability of tlie,, control trol, invariant zeros of the system plays an important role
problem without making any assumptions implying properin determining the solvability of the problem. It almost
ness of the controller transfer function. However, before walways remains as a standing assumption that the system
state our main result we give a simple motivating exampleas no invariant zeros on the imaginary axis (see [12]).
to show that situations where the controller has impropédnterestingly our main result is very much reminiscent of the
transfer function comes quite naturally in linear systems. invariant zeros condition. It turns out that these conditions

U+

X2



are related quite expectedly to certain stabilizability and ddsut it assumes no conditions implying controller properness.

tectability conditions (see remark 11). However, note that nbet the full plant behaviofPs,;; be given by the following

input/output partitions are assumed on the control variablekernel representation:

and as shown by the above example, improper controllers are

pretty easily accommodated ., (and hence eventually Pran:={(d, z,¢) | Ra(ge)d+Ra(§p)z+ Re(gg)e=0}.  (9)

H) controllers. The following is a kernel representation of the plant behavior
Our description of the plants is similar to that in [16]. Thep C € (R, R%*+#) associated with this full behavior.

system variables are partitioned into exogenous disturbance

d, to be regulated output and control variable:. The full- Pi={(d2) | Rae(§)d + Rae( )z = 0} (10)

behavior of the plant is denoted here By € £27**°.  The theorem below is the main result of this section.

The associated plant behavidt is obtained by eliminat-  Theorem 9:Consider the kernel representation of the full

ing ¢ from Pp, which is defined as? := {(d,z) € plantbehavior as in equation (9). The associated plant behav-

€2(R,R?) | 3c € €*(R,R?) such that(d, z,c) € Prai}.  jor P be given by equation (10). Suppose the hidden behavior

The control objective is to restrict this plant behavior to ay gnd the plant behavidP are controllable. Then thé ..

sub-behaviofK to meet the control specifications. In such & gnrgl problem is solvable if and only if the following four
formulation of the control problem the controller is allowed.yngitions below are true.

to put in restrictions on the control variabteonly. In .,
control, the specification is given in terms of the dissipativity
on R_ of the controlled behavior with respect to a real
constant matrix

1) R,(X) has full column rank for all € (R.

2) There exists a partitioning off into (dy,ds) such
that d, is input and(ds, z) is output forN and the
corresponding transfer function fromy to (do, 2) is

S = [ vy 0 ] ) proper.

0 I 3) R,.()) is full row rank for every) € iR.

andm(X) = o, (%,) (see [16] for a detailed formulation of ~4) There exists a partitioning of into (z1,z) such

the problem). It is shown in [16] that a controlled behavior, ~ that (d,z1) is input andz is output for? and the
X with the controller putting restrictions only on the control corresponding transfer function froifal, z1) to zo is
variables exists if and only N C X C P, whereN, called proper.

the ‘hidden behavior’ is given by, See [7] for proof, which we skip due to page limit

constraints. However, we state the following lemma about
polynomial matrices, which plays a crucial role in our proof
If we relax the condition of dissipativity oR_ to that onR, of Theorem 9. See [7] for a proof of the lemma. We need
we get the corresponding., control problem. In this section the notion of column zeros of a polynomial mat(&) €

we restrict ourselves to the caselof, control only. Thel .,  RP*9[¢]: definecolzeros(R(€)) :=={A € C |3 0# v € C?
problem is said to be solvable for a plant if there exists auch thatR(\)v = 0}. In caseR(¢) is not full column rank,
controlled behavioX as above and some positive readuch  colzeros(R(£)) turns out naturally to be the whole @.
thatX is X, dissipative orR andm(X) = o4 (X,). We now Otherwise, it is a finite set.

state a portion of Theorem 7.2.1 from [1], which we will Lemma 10:ConsiderR(¢) := [ Ri(§) R2(§) } with
utilize to prove our claims. We state this as a propositiorRl(g) c R(dJrzfl)Xd[ﬂ and Ry (&) € R(d+zf1)xz[§]_ Let

N :={(d,2) € €°(R,R**?) | (d, 2,0) € Prun}- (8)

below. M;(€) - ax1
Proposition 8: The L, control problem is solvable if and (€)= My(&) | with M (§) € RT¢] and My (€) €
only if R=*1[¢] be such thaR(&)M () = 0 and M (A) full column
o N is X, dissipative onR and rank for all A € C. Then,
o« PLis -7 dissipative orR. 1) colzeros(M;(€)) C colzeros(Rz(€)).

We are now in a position to state our main result of thi®) In particular, if Ro(€) is full column rank then so is
section, which gives necessary and sufficient conditions fav/; ().
the L, control problem to be solvable, purely in terms of3) Further, if R(A) has full row rank for allA € C, then
the kernel representation of the plant behavior devoid aflzeros(Rz(&)) = colzeros(Mi(€)).
any explicit dissipativity conditions. An interesting feature Remark 11:Condition 1) of the above theorem says that
of the following result is that it can be related to well-knownL ., control is solvable only ifR, is full column rank on
systems theoretic concepts of stabilizability and detectabilitthe imaginary axis. This is equivalent to the to-be-regulated



is that the optimal controller always exists. This is possible
essentially because, for a state space way of addressing
such optimal control problems, the issue of nonproperness

Fig. 3. Standard control problem

at optimality is not addressable.

VIl. CONCLUDING REMARKS

We first proved how gain and phase margin conditions
variable z being detectable from the rest of the systemor stability are nothing but dissipativity with respect to a
variables (see [9] for detectability) on the imaginary axisgonvex-like combination of two important supply rates that

On the other hand condition 3) states that for thg,

arise from small-gain theorem and the passivity theorem.

control problem to be solvable, it is also necessary that e then showed that the sector for circle criterion can
the variablec. This is nothing but the stabilizability on the method. We stated necessary and sufficient conditions for

imaginary axis of just the: variables through the control Lo

variablec, of the unforced plant defined &8u11 unforced =
{(z,¢) € €°(R,R**) | (0, z,¢) € Prun }-

VI. Lo, OPTIMAL CONTROL

-control, which turn out to relax properness conditions on
the controller (had an apriori input/output partition been fixed
for the control variables). As an important consequence of
this, we concluded that optimdl .-control problem admits

a solution whenever the suboptimal case admits one.

In this section we address the problem of solvinglap
optimal control problemi.e., find a controller that minimizes
the L., norm of the closed loop system in the following [1]
configuration. The results of the previous section allow us
to conclude, as shown below, that if the (suboptimal), 2]
control problem is solvable for some, then, in fact, the
optimal control problem too is solvable.

Recall the definition of£., from equation (7). Like the
supply rate for sector nonlinearities (in section 1V) where[4]
there was a parameter to be extremized, we have here
the parametery to be minimized. The key issue here is [5]
that if a behavior® € £7 . is dissipative with respect [6]
to X, for somey > 0, then one can find the minimum
~ such that this dissipativity holds. In order to compute
this v, one uses the method described in [2]. Define
N =min,cg, {N is ¥, dissipative}, as the minimunmy
for which N is X, dissipative. Similarly, define/» as the
minimum ~ such that®+ is —(3,)~! dissipative. (The
minima exist and are finite if the corresponding condition&t!
in Theorem 9 are satisfied.) Using these values, one can in
fact solve theoptimal L., control problem, as stated in the [11]
following theorem. The proof is skipped since it follows from[lz]
the main theorem of the previous section, suitably combined
with the algorithm to compute the minimum values; see
[2] for the algorithm.

Theorem 12:ConsiderN and P ¢ £¥ ., the hidden
and the plant behaviors of a system. Suppose £hg
control problem is solvable for some > 0, equivalently,
the necessary and sufficient conditions listed in Theorem g
are satisfied. Then thé.-optimal control problem is also
solvable. The optima value iSvop = max(yn, y9)

One of the important consequences of the above theorem

(3]

(8]
El

[13]
[14]

[15]

] D. Pal,
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