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Abstract— Dissipative systems have played an important
role in the analysis and synthesis of dynamical systems. The
commonly used definition of dissipativity often requires an
assumption on the controllability of the system. However, it is
very natural to think of Lyapunov functions as storage functions
for autonomous systems with power supplied to the system
equal to zero. We use a definition of dissipativity that is slightly
different (and less often used in the literature) to study a linear,
time-invariant, possibly uncontrollable dynamical system. This
paper contains various results in the context of uncontrollable
dissipative systems that smoothly bridge the gap between stor-
age functions for controllable dissipative systems and Lyapunov
functions for autonomous systems. We provide a necessary and
sufficient condition for an uncontrollable system to be strictly
dissipative with respect to a supply rate under the assumption
that the uncontrollable poles are not “mixed”; i.e., no pair of
uncontrollable poles is symmetric about the imaginary axis: this
condition is known to be related to the solvability of a Lyapunov
equation. We show that for an uncontrollable system the set of
storage functions is unbounded, and that the unboundedness
arises precisely due to the set of Lyapunov functions for an
autonomous linear system being unbounded. Further, we show
that stabilizability of a system results in this unbounded set
becoming bounded from below. Positivity of storage functions is
known to be very important for stability considerations because
the maximum stored energy that can be drawn out is bounded
when the storage function is positive. In this paper we establish
the link between stabilizability of an uncontrollable system and
existence of positive definite storage functions. In the context
of autonomous systems, we prove that the Lyapunov operator
is onto if and only if its image has observable symmetric rank
one matrices.

Index Terms— dissipativity, uncontrollability, storage func-
tions, behaviors, Lyapunov equation

I. INTRODUCTION

Dissipativity of dynamical systems helps in the analysis
and design of control systems. An important assumption in
some of these developments is that of controllability of the
dynamical system. In this paper we study dissipativity of gen-
eral linear time-invariant systems, possibly uncontrollable.

Dissipativity of a system is about the absence of any
source of energy within the system, and hence all interactions
with the environment have to satisfy the condition that the
“net energy” is directed inwards. This is made precise below
in Definition 3.1. For example, a passive electrical network
made out of passive circuit elements must continue to be
dissipative even if it loses controllability. In this paper we
consider a general linear time-invariant system and work
on a theory of dissipativity free from any controllability
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assumption. Our work is based on the signature characteristic
of a dissipative system to store energy, i.e., existence of a
storage function. An important issue that immediately arises
is whether to include unobservable variables to describe this
storage of energy (see [10]). Our main result sorts out this
issue: for the case of strict dissipativity, we show that a
storage function depending only on the manifest variables
suffices, and no unobservable variables are necessary.

The present theory of dissipative systems is well-
developed primarily for controllable systems because it is
possible there to define dissipativity without taking recourse
to the existence of a storage function. This is done using an
integral inequality involving only the compactly supported
trajectories allowed by the system. This definition turns out
to be inadequate for a general, possibly uncontrollable, linear
behavior. In order to overcome this inadequacy, there has
been prior work of taking existence of storage functions
satisfying a dissipation inequality as a definition of dis-
sipativity; see [7], for example. In this paper we further
develop using this definition. The principal finding is that a
certain condition on the uncontrollable poles, which we call
the unmixing condition, plays a key role. If no pair of the
uncontrollable poles of the system is symmetric with respect
to the imaginary axis, then the noncontrollability poses no
hindrance to strict dissipativity, i.e., the strict dissipativities
of the behavior and its controllable part are equivalent
(Theorem 3.4). This result is utilized to show useful identities
about positive storage functions and unboundedness of the
set of storage functions for the case of uncontrollability.

The paper is structured as follows. The rest of this section
has a few words about the notation we follow. Section II
contains some preliminaries we require regarding behavioral
theory. The next section (section III) has some definitions that
we need in order to state the main result of this paper. Here
we also present the main result: a necessary and sufficient
condition for a general linear time-invariant system to be
strictly dissipative with respect to a supply rate that depends
on the manifest variables, under the assumption that the
set of uncontrollable poles satisfies the unmixing condition.
Interestingly, this unmixing condition on the uncontrollable
poles is reminiscent of the solvability condition of Lyapunov
equations: this is elaborated in sections III and VII. In
section VI we present some insight on the nature, namely,
unboundedness of the set of all storage functions of an
uncontrollable dissipative behavior. (The set of storage func-
tions is known to be bounded in the case of controllability.)
Section VII explores into the extent of necessity of the
unmixing property that we have assumed throughout this
paper. In this section we show an interesting result about
rank one symmetric matrices and solvability of the Lyapunov

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

WeA03.5

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 97



equation.
The notation we follow is standard. R and C stand for the

fields of real and complex numbers. The ring of polynomials
in ξ with real coefficients is denoted by R[ξ]. Rp×w[ξ]
stands for the set of p× w matrices with entries from R[ξ].
Likewise R[ζ, η] denotes the set of real polynomials in the
indeterminates ζ and η; Rw×w[ζ, η] stands for the set of
w × w matrices with entries in R[ζ, η]. C∞(R, Rw) denotes
the space of all infinitely often differentiable functions from
R to Rw, and D(R, Rw) denotes its subspace of all compactly
supported trajectories. We use • when it is unnecessary to
specify a dimension. For example, R ∈ R•×w means R is
a real matrix with w columns. When dealing with many
variables, in order to keep track of the dimensions, we use
the same letter as a generic variable w, but in typewriter font
w, to denote the number of components; for example, w ∈
C∞(R, Rw). In the context of stability, we require certain
regions of the complex plane C. The open left and right half
complex planes are denoted by C− and C+, respectively. To
improve readability within text, we use col(·, ·) to stack its
arguments into a column, i.e., col(w1, w2) = [wT

1 wT
2 ]T .

For page limit constraints, we have omitted the proofs of
the main results; the proofs can be found in [2].

II. BEHAVIORS, QDFS, AND STATE REPRESENTATIONS

A linear differential behavior B is defined to be the
subspace of C∞(R, Rw) consisting of solutions to a set of
ordinary linear differential equations with constant coeffi-
cients; i.e.,

B :=
{

w ∈ C∞(R, Rw) | R

(
d
dt

)
w = 0

}
,

where R(ξ) is a polynomial matrix having w number of
columns: R ∈ R•×w[ξ]. We shall denote the set of linear
differential behaviors with w number of variables by Lw. The
linear differential behavior B ∈ Lw can also be written as
B = ker R( d

dt ). That is why this representation is called a
kernel representation of B. We call w the manifest variable;
these are the variables of interest. In this paper, w is the
variable through which the system exchanges energy with
the environment. It turns out that we can assume, without
loss of generality, that R(ξ) is of full row rank (see [4]); in
this paper, a kernel representation matrix R(ξ) is assumed
to be of full row rank. For a behavior B = ker R( d

dt ), the
row rank of R(ξ) gives the output cardinality (number of
outputs in the system). Though the variables w can often be
partitioned into inputs and outputs in more than one way,
the output cardinality remains the same: rank R. Further,
the cardinality does not depend on the R used to define it,
but depends only on B. In this sense, the output cardinality
is an integer invariant of B and we denote it by p(B). The
number of inputs to the system, the input cardinality, is
another integer invariant of B. This integer is denoted by
m(B) and is calculated using m(B) = w − p(B), where w
is the number of components in the manifest variable w.

A concept of central importance for this paper is that of
controllability. A behavior B ∈ Lw is said to be controllable
if for every w′, w′′ ∈ B, there exists a w ∈ B and a τ > 0

such that

w(t) = w′(t) for all t 6 0,

= w′′(t) for all t > τ.

We denote the set of all controllable behaviors with w
variables as Lw

cont. A behavior B = ker R( d
dt ) is controllable

if and only if R(λ) does not lose rank for any λ ∈ C.
In the context of uncontrollable systems, we use the key

notion of uncontrollable poles and uncontrollable character-
istic polynomial. Suppose B = ker R( d

dt ) and suppose B
is not controllable. Then there exist one or more complex
numbers λ such that R(λ) loses rank. These complex num-
bers, together with multiplicities, are defined as uncontrol-
lable poles in the definition below. Uncontrollable poles are
the roots of a monic polynomial called the uncontrollable
characteristic polynomial. Definition 2.1 below is for easy
reference of this definition.

Definition 2.1: Let R ∈ Rp×w[ξ] have full row rank and
suppose R( d

dt )w = 0 is a kernel representation for B.
Consider a factorization of R into R(ξ) = F (ξ)Rcont(ξ)
such that Rcont ∈ Rp×w[ξ], Rcont(λ) has full row rank for
every complex number λ, and det F is a monic polynomial.
The uncontrollable characteristic polynomial of B, denoted
by χ

un(B), is defined as det F . The set of uncontrollable
poles is defined as roots ( χ

un), and is denoted by Λun(B).
If the behavior B is clear from the context, we write just

χ
un and Λun. Notice that if B is controllable, then χ

un =
1. When a behavior is not controllable, we often require
the controllable part of B. This is the largest controllable
behavior contained in B; the controllable part of B is
denoted by Bcont. Consider the above definition in which R
has been factorized as described to obtain Rcont. A kernel
representation for Bcont is induced by Rcont. For a detailed
exposition on behaviors, controllability, and uncontrollable
characteristic polynomial, we refer the reader to [4].

This paper deals with dissipativity and in this context
we deal with quadratic forms in the system variables and
a finite number of their derivatives. It turns out to be very
natural to associate two variable polynomial matrices to such
quadratic forms. Consider a two variable polynomial matrix
Φ(ζ, η) :=

∑
i,k Φikζiηk ∈ Rw×w[ζ, η], where Φik ∈ Rw×w.

A Quadratic Differential Form (QDF) QΦ induced by Φ(ζ, η)
is a map QΦ : C∞(R, Rw) → C∞(R, R) defined by

QΦ(w) :=
∑
i,k

(
diw

dti

)T

Φik

(
dkw

dtk

)
.

A quadratic form induced by a real symmetric constant
matrix S ∈ Rw×w is a special QDF and we shall often need
this in this paper. Throughout this paper, ample use is made
of the well-developed theory of QDFs; only the essential
results of which are reviewed here. See [7] for a thorough
and complete treatment on QDFs.

III. DISSIPATIVE SYSTEMS: DEFINITION AND MAIN
RESULT

Dissipative systems are those that have no source of energy
within, and hence any energy stored within the system has
to have been supplied from its environment. This intuitive
physical concept was made concrete in [9], [7] using the
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dissipation inequality: at any time instant, the rate of increase
of stored energy is at most the power supplied to the system.
In this paper, the power supplied and the stored energy are
both QDFs in the manifest variables w of the system. In
this paper we use the following definition of dissipativity;
its relation to other definitions is discussed below.

Definition 3.1: A linear differential behavior B ∈ Lw is
said to be dissipative with respect to supply rate S ∈ Rw×w

if there exists a quadratic differential form QΨ(w) such that

d
dt

QΨ(w) 6 QS(w) for all w ∈ B. (1)

The quadratic differential form QΨ is called a storage
function for B with respect to the supply rate S.

The inequality (1) above is called the dissipation inequal-
ity. In some control problems like in LQR and the suboptimal
H∞ control, a stricter notion of dissipativity plays a key role.
In this paper we shall deal primarily with strict dissipativity,
although many of our results are valid for just dissipativity
also. We define strict dissipativity as follows.

Definition 3.2: A linear differential behavior B ∈ Lw is
said to be strictly dissipative with respect to S ∈ Rw×w if
there exists an ε > 0 and a storage function QΨ(w) such that

d
dt

QΨ(w) 6 QS(w)− ε|w|2 for all w ∈ B.

Because the above definitions require the existence of
a hitherto unknown storage function, it has been common
to use an equivalent statement for the definition of (strict)
dissipativity when dealing with controllable systems. The
following result from [7] shows the equivalence.

Proposition 3.3: Let B ∈ Lw
cont and S ∈ Rw×w be

nonsingular. Then the following statements are equivalent.
1. There exists a storage function QΨ(w) such that

d
dtQΨ(w) 6 QS(w)− ε|w|2 for all w ∈ B.

2. The integral inequality
∫

R QS(w)dt > ε
∫

R |w|
2dt is

satisfied for all w ∈ B ∩D.
The above proposition shows that the existence of a stor-

age function satisfying the dissipation inequality is equivalent
to saying that the total energy transferred into the system is
strictly positive whenever we start the system from rest and
bring the system back to rest. Statement 2 was used as the
definition of strict dissipativity in [7]. With ε = 0, we get
the definition of nonstrict dissipativity given in [7], [8]. It is
important to note here that the second statement above holds
over only compactly supported trajectories in B, while the
first holds for all w ∈ B: controllability of B is crucial
here. However, for an uncontrollable behavior, Statement 2
of Proposition 3.3 puts no restrictions on the trajectories in
the behavior which are outside the controllable part (see [3]),
and hence this cannot be used as a definition of dissipativity
for uncontrollable systems.

We define signature of a real symmetric nonsingular
matrix S, denoted by σ(S) as the pair of integers σ(S) =
(σ−(S), σ+(S)), where σ−(S) and σ+(S) are the number of
negative and positive eigenvalues of S, respectively. In this
paper we shall deal only with the case when the positive
signature σ+(S) equals the input cardinality m(B) of the
behavior B.

We are now ready to state one of the main results of this
paper. The following theorem tells that if a certain unmixing

Fig. 1. An LCR circuit.

condition is satisfied for the uncontrollable poles, then the
controllable part of a behavior being strictly dissipative is
equivalent to the existence of a storage function for the
whole behavior’s strict dissipativity. Recall from Definition
2.1 that the uncontrollable characteristic polynomial χ

un

of B is the monic polynomial whose roots (with suitable
multiplicities) are those complex numbers where R(ξ) (of
a minimal kernel representation) loses rank. Theorem 3.4
below states that if the uncontrollable poles are such that no
pair of the uncontrollable poles is symmetric with respect
to the imaginary axis, then noncontrollability of B poses no
hindrance to strict dissipativity of B; i.e., strict dissipativities
of B and Bcont are equivalent.

Theorem 3.4: Consider a linear differential behavior B ∈
Lw and a nonsingular S ∈ Rw×w with the input cardinality
of B equal to the positive signature of S: m(B) = σ+(S).
Assume that the uncontrollable characteristic polynomial of
B, χ

un, is such that χ
un(ξ) and χ

un(−ξ) are coprime.
Then, B is strictly S-dissipative if and only if its controllable
part Bcont is strictly S-dissipative.

We call the condition of coprimeness of χ
un(ξ) and

χ
un(−ξ) the unmixing condition. In the context of au-

tonomous systems, it is well known that the unmixing
condition is a necessary and sufficient condition for the
existence of a unique solution to the Lyapunov equation.

Throughout this paper, we shall assume S has the
following form:

Σ :=
[
Im 0
0 −Ip

]
. (2)

This is without loss of generality using Sylvester’s law of
inertia. The following sections relate the above main result
to properties of storage functions and Lyapunov functions.

IV. DISSIPATIVITY OF UNCONTROLLABLE BEHAVIORS

We first consider an example of a simple electrical circuit
as shown in Figure 1. Under the condition R1C 6= L/R2,
the port variables (manifest variables) (v, i) satisfy the
following differential equation:

R(
d
dt

)
[

v
i

]
= 0,

where R(ξ) = [p(ξ) q(ξ)] with p(ξ) =
LCξ2 + (R1 + R2)Cξ + 1 and q(ξ) =
−

(
R1LCξ2 + (R1R2C + L)ξ + R2

)
.

For the case that R1C = L/R2, and R1 = R2, the
system becomes uncontrollable. The corresponding kernel
representation is[(

R2C
d
dt

+ 1
)
−

(
L

d
dt

+ R2

)] [
v
i

]
= 0.
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If the voltage across the capacitor vC and current through
the inductor iL are considered as internal system variables,
then we can write the following dissipation inequality:

d
dt

(
Cv2

C + Li2L
)

6
[
v i

] [
0 1
1 0

] [
v
i

]
.

However, it turns out that the latent variables (vC, iL) are not
observable from (v, i), and so the storage function in the left-
hand side of above inequality cannot be written in terms of
a QDF in just the manifest variables. We ask the question: is
it possible to find a storage function in terms of the manifest
variables, or do we have to have, for some cases, storage
functions in terms of “hidden” variables only (variables that
are unobservable from the manifest variables are also said to
be hidden)? Our main result Theorem 3.4 addresses this issue
under the unmixing assumption, and gives a necessary and
sufficient condition for the existence of a storage function in
terms of manifest variables. Thus Theorem 3.4 rules out the
necessity of hidden variables to construct storage functions.

For the case of the above example, as derived in [10],
q(v −R1i)2 with any q > 0 is a storage function, i.e.,

d
dt

q(v −R1i)2 6 vi,

which is a dissipation inequality in just the manifest vari-
ables. This storage function has no apparent interpretation
as physical energy (see [2, Remark 5.1]). Further, q > 0
makes the set of storage functions unbounded for this case:
in section VI we shall prove the unboundedness for general
uncontrollable behaviors.

Remark 4.1: Dissipativity is closely related with solvabil-
ity of a class of LMIs. and to algebraic Riccati inequali-
ties/equations (abbreviated as ARI/ARE); see [5], [2]. The
question of solvability of the positive-real LMI without
imposing system theoretic assumptions like controllability
or observability has been dealt with in [1]. However, a very
restrictive assumption made there is that the whole set of
eigenvalues of the system matrix A satisfies the unmixing
property, i.e., spec(A)∩ (spec(−A)) = φ. According to our
main result (Theorem 3.4) this assumption is not necessary.
It is sufficient that only the uncontrollable poles satisfy the
unmixing property. We shall see later in section VII the
extent of necessity of this unmixing property. The following
example shows how the positive-real LMI is solvable when
some elements of spec(A) have symmetry with respect to
the imaginary axis and the system is uncontrollable.

Example 4.2: Consider an i/s/o system with the following
A,B, C, D matrices:

A =
[
0 1
1 0

]
, B =

[
−1
−1

]
, C =

[
0 1

]
, D = 1.

Observe that spec(A) = {1,−1}, which is symmetric with
respect to the imaginary axis. Here Λun = {−1}, and the
other eigenvalue (= 1) is controllable. An equivalent kernel
representation of the manifest behavior is given by[(

d2

dt2
− d

dt
− 2

)
−

(
d2

dt2
− 1

)][
w1

w2

]
= 0.

We ask the question: is this i/s/o system dissipative with
respect to S :=

»
0 1
1 0

–
or equivalently, is there a real

symmetric solution K = KT ∈ R2×2 for the following LMI
(the positive-real LMI)[

−AT K −KA CT −KB
C −BT K D + DT

]
> 0?

Obviously, Λun = {−1} satisfies the unmixing property,
and one can check that the controllable part Bcont =
ker

[
d
dt − 2 d

dt + 1
]

is strictly S-dissipative, which from
Theorem 3.4 implies that B is strictly S-dissipative.
This can be verified by checking that the following real
symmetric matrix induces a storage function that satisfies
the dissipation inequality

K =
[
−0.957 −1.457
−1.457 −1.957

]
,

and therefore solves the LMI.

V. POSITIVE STORAGE FUNCTIONS AND
STABILIZABILITY

In this section we establish an important link between
stabilizability of systems and positive definiteness of storage
functions of strictly dissipative systems. The importance of
this link lies in the fact that the energy stored in physical
systems is a nonnegative quantity and dissipative physical
systems satisfy an additional property that, if the system was
initially discharged, then the net energy supplied into the
system upto any time instant is nonnegative; this is called
half-line dissipativity. We review these concepts (from [7])
below and prove similar results for uncontrollable systems
in this section.

For this paper, we need half-line dissipativity for only
the negative half of the real line: R−. A controllable be-
havior B ∈ Lw

cont is said to be Σ-dissipative on R− if∫ 0

−∞QΣ(w)dt > 0 for all w ∈ B∩D. Half-line dissipativity
is related to (semi-)definiteness of the storage function. A
storage function QΨ is called nonnegative if QΨ(w)(t) > 0
for all t ∈ R and w ∈ B. For controllable behaviors, it was
shown in [7] that existence of a nonnegative storage function
is equivalent to dissipativity of B on R−. The importance of
nonnegative storage functions is due to such functions being
bounded from below (namely, by zero), because of which we
expect that when the supply of energy is stopped, then the
trajectories cannot become unbounded. This link to stability
was made precise and proved in [8, Proposition 1, Part I].

It is known (see [6] or [2, Corollary 5.6]) that every
storage function is a static function of the states of the
system, i.e. for a dissipative behavior B with a minimal
state map X ∈ Rn×w[ξ], a storage function QΨ is associated
to a symmetric matrix K ∈ Rn×n such that QΨ(w) =
(X( d

dt )w)T KX( d
dt )w. Hence QΨ is nonnegative if and only

if K > 0 (see [7]). In the context of strict dissipativity, we
define a positive definite storage function: a storage function
QΨ is called positive definite if K > 0.

The following result is one of the main results of this
paper. It relates existence of positive definite storage func-
tions to stability of the autonomous part of the uncontrollable
dissipative behavior. A behavior with a stable autonomous
part is nothing but a stabilizable behavior. A behavior B ∈
Lw is called stabilizable if for every w ∈ B, there exists a
w′ ∈ B such that w(t) = w′(t) for t 6 0 and w′(t) → 0 as
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t →∞. A behavior is stabilizable if and only if Λun ⊂ C−
(see [4]).

Theorem 5.1: Let a linear differential behavior B ∈ Lw

be strictly Σ-dissipative with m(B) = σ+(Σ). Then there
exists a positive definite storage function if and only if the
following are satisfied:

1. there exists ε > 0 such that
∫

R− QΣ(w)dt >∫
R− ε|w|2dt for all w ∈ B ∩D and

2. Λun ⊂ C−.
The first condition is clearly a necessary condition for

existence of a positive definite storage function; namely, the
controllable part has to be strictly dissipative on R−. The
second condition is also necessary because of the notion that
the storage function behaves like a Lyapunov function for
an autonomous system, and as is well known, a positive
Lyapunov function exists if and only if the autonomous
system is asymptotically stable. The fact that these two
conditions are together sufficient for the existence of a
positive definite storage function for the whole behavior is
one of the main contributions of this paper. Also notice that
Λun ⊂ C− is a very special case of the unmixing condition.
Thus the uncontrollability of the stabilizable behavior poses
no hindrance to existence of a storage function for strict
dissipativity as long as the controllable/autonomous parts
allow storage/Lyapunov functions individually. As noted
above, this is the principal finding of this paper.

It is shown in [2] that, in fact, every storage function for
the behavior is positive definite. This has been shown for
the controllable case in [7, Theorem 6.4]. Intuitively, storage
functions being positive is closer to their interpretation as
energy-like functions. Also, the meaning of dissipativity that
there is no source of energy in the system appeals to both
positive definite storage functions and the stabilizability of
the system. In the following section we explore other prop-
erties of the set of storage functions, like (un)boundedness
of this set.

VI. SET OF ALL STORAGE FUNCTIONS FOR AN
UNCONTROLLABLE SYSTEM

An important topic of interest is the set of all storage
functions of a dissipative behavior. For LQR/LQG theory
and H∞ control, certain extremum storage functions give
stabilizing controllers. In this section we show that the set of
storage functions is unbounded for uncontrollable dissipative
systems and that for stabilizable systems, this set is bounded
from below.

Theorem 6.1: Let B ∈ Lw be uncontrollable, and suppose
the set of its uncontrollable poles Λun satisfies the unmixing
property, i.e., Λun ∩ (−Λun) = φ. Further, let B be strictly
Σ-dissipative. Then the set of all storage functions is an
unbounded convex set.

The example below shows how the Lyapunov equation due
to the behavior’s uncontrollability plays a key role in making
the set of storage functions unbounded.

Example 6.2: Consider behavior B having an i/s/o rep-
resentation with A =

»
−2 0
0 −1

–
, B =

»
1
ε

–
, C =

[
1 1

]
and supply rate S =

»
1 0
0 −1

–
. This system is close to

being uncontrollable; it loses controllability when ε = 0.

Inspection of this almost uncontrollable system helps in ob-
taining a useful appreciation of the fact that uncontrollability
forces the set of all storage functions to become unbounded.
With ε = 0.001, there are four real symmetric solutions
for Kto the corresponding algebraic Riccati equation are:
K1 =

»
0.268 0.366
0.366 0.567

–
, K2 =

»
3.735 −1.370
−1.370 1.437

–
, K3 =»

0.000 −0.002
−0.002 1.492

–
× 107, K4 =

»
0.00 0.04
0.04 107.04

–
× 104. The

last two solutions are clearly much larger (elementwise)
than the first two. The reason for this can be linked to the
corresponding ‘lambda-sets’ being close to inadmissible for
the last two cases (see [2] for details). The example brings
out the tendency of the set of ARI solutions, and therefore the
set of storage functions, to become unbounded as the system
loses controllability. At uncontrollability, i.e. when ε = 0, the
set becomes unbounded and the direction in which the set
goes off to infinity is given by P =

»
0 0
0 1

–
.

A very interesting fact about the set of all storage functions
comes up for the case when the behavior is uncontrollable
but stabilizable; i.e., the set of uncontrollable poles Λun is
contained in the open left half of the complex plane (see the
previous section for the definition and related results about
stabilizability). We show below that for stabilizability, the set
of storage functions, though an unbounded set, is bounded
from below. In other words, there exists a storage function
QΨ− such that every storage function QΨ satisfies QΨ(w)−
QΨ−(w) > 0 for all w ∈ B. We state this result as a theorem
below.

Theorem 6.3: Let B ∈ Lw be an uncontrollable, strictly
Σ-dissipative behavior. Also assume that the set of uncon-
trollable poles satisfies Λun ⊂ C−. Then the set of all storage
functions is bounded from below; i.e., there exists a storage
function QΨ−(w) for B such that for each storage function
QΨ(w) for B, QΨ−(w) 6 QΨ(w) for all w ∈ B.

Note the analogy of this result with that for controllable
behaviors, where the set of storage functions is bounded and
has a maximum and a minimum element (see [7, Theorem
5.7]). While we have shown unboundedness for the case
of uncontrollability, stabilizability ensures the existence of
a minimum element in this unbounded set.

We saw in the previous section that, for a strictly dis-
sipative and stabilizable behavior B, dissipativity on R−
of Bcont assures the existence of positive definite storage
functions. Combining this result with the one above, we infer
that the lower bound of the set of storage functions is, in
fact, positive (see discussions following Theorem 5.1). This
formalizes the intuition that such a system is devoid of any
energy sources within it, and hence the maximum extractable
energy1 from any given state is bounded.

Using a very similar argument as in the above proof, one
can show that if the behavior is antistabilizable, meaning all
the uncontrollable poles are unstable, i.e., Λun ⊂ C+, then
the set of storage functions is bounded from above.

VII. AUTONOMOUS SYSTEMS: THE LYAPUNOV
EQUATION

As seen in Theorem 3.4, the unmixing property of the
uncontrollable poles makes strict dissipativity of the con-

1This has been called available storage in [7].
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trollable part equivalent to that of the whole behavior.
As mentioned in the introduction, the unmixing property
serves as a sufficient condition for solvability of a Lyapunov
equation and the corresponding Lyapunov operator becomes
singular when this condition is not satisfied. We shall see in
this section that the Lyapunov operator is onto if and only if
there exists an observable rank one symmetric matrix in its
image.

It is possible to show that, when the eigenvalues of A are
mixed, the Lyapunov equation solution, if one exists, need
not be symmetric. However, the existence of a nonsymmetric
solution guarantees existence of a symmetric solution: if K
is a solution to the Lyapunov equation, then so are KT

and (K + KT )/2. With this simple observation we now
give a necessary and sufficient condition for the existence
of solution to a Lyapunov equation for the special case that
the constant term is of rank one. Interestingly, for this case
when the constant term is rank 1, the unmixing condition
becomes necessary.

Theorem 7.1: Let A ∈ Rn×n and C ∈ Rp×n. Consider the
Lyapunov equation AT K+KA+CT C = 0 with (C,A) pair
observable. Assume rank(CT C) = 1. Then there exists a
solution K to the Lyapunov equation if and only if spec(A)∩
spec(−A) = φ.

It is well known that the unmixing condition is equivalent
to existence and uniqueness of solution to the Lyapunov
equation. In other words, the unmixing condition is equiv-
alent to the image of the Lyapunov operator containing all
symmetric matrices. The above theorem shows that unmixing
is necessary and sufficient for the image to contain a symmet-
ric matrix of rank one (satisfying observability conditions).
equation is not solvable.

That the unmixing is not necessary in general for more
than one output is quite expected. The following example
gives one such simple instance.

Example 7.2: Consider the autonomous system with i/s/o
representation d

dtx = Ax, y = Cx, where

A =
[
−1 0
0 1

]
, C =

[
2 0
0 2

]
.

Observe that A has “mixed” eigenvalues, i.e., Λun ∩
(−Λun) 6= φ. Σ-dissipativity of such an autonomous system
together with σ+(Σ) = m(B) is equivalent to existence of a
real symmetric solution to the following Lyapunov inequal-
ity: AT K+KA+CT C 6 0. Notice that K =

»
2 + b a

a −2− c

–
with a, b, c ∈ R and b, c > 0 gives a solution to the above
Lyapunov inequality. This example shows that the unmixing
condition of uncontrollable poles is not necessary for the
system to be dissipative.

VIII. CONCLUDING REMARKS

In this paper we studied dissipativity for a general, possi-
bly uncontrollable, LTI system. Our starting point was a more
appropriate, though less often used, definition of dissipativity
in terms of a differential inequality called the dissipation
inequality. With this definition we brought out an equivalence
between the dissipativities of a behavior and its controllable
part, under the important unmixing condition (Theorem 3.4).
For the case of strict dissipativity, Theorem 3.4 also settles

the issue of whether to allow unobservable variables in the
defining dissipation inequality: the theorem rules out the re-
quirement of unobservable variables. The important intuitive
idea that storage of energy should take place through the
state variables comes as a natural consequence of Theorem
3.4.

Next we looked into the set of all storage functions for a
strictly Σ-dissipative system. It is well known that this set
is a bounded convex polyhedron for a controllable system.
We showed that for an uncontrollable system the set loses
its boundedness property. Further, this set becomes bounded
from below if the system is stabilizable. If in addition the
controllable part is strictly Σ-dissipative on R−, then we
showed that this lower bound on the set is positive. We
used this result to formalize the physical notion of stored
energy being finite in a dissipative system that has no
source of energy within: it is not possible to extract an
indefinite amount of energy from a stabilizable system whose
controllable part is strictly dissipative on R−.

The unmixing condition plays a crucial role in most of
the main results of this paper. We showed that unmixing is
not necessary in general for existence of a Lyapunov func-
tion and therefore for dissipativity. However, an interesting
situation arises when the system has only one output. In
Theorem 7.1 we showed that under suitable observability
conditions a singular Lyapunov operator cannot have a rank
one symmetric matrix in its image. The extent of necessity of
the unmixing condition for a more general situation remains
to be investigated.

In this paper we have dealt only with the maximum input
cardinality case, i.e., the case when the number of inputs is
equal to the positive signature of the supply rate function
Σ. A study of the general case can also be utilized for
dissipativity synthesis problems for uncontrollable systems.
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