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Abstract— In this paper we deal with a special class of
quadratic supply rates, dissipativity with respect to which can
be directly read off from a system’s Nyquist plot. These supply
rates are called Nyquist-plot-compatible (NPC) supply rates
[8]. The characterizing property of these supply rates is that
to each of them a specific region in the complex plane can be
associated: dissipativity w.r.t. these supply rates is equivalent
to systems’ Nyquist plots being contained in the region. The
classical results of small gain and passivity theorems are special
cases of dissipativity w.r.t. NPC supply rates. We show in this
paper, that apart from the aforementioned two special cases,
there are many more such NPC supply rates. In particular, we
construct supply rates for regions in the complex plane given
by the right-half (or, left-half) of a vertical line, interiors (or,
exteriors) of circles of various radii with centers on the real-
axis. We then show that a system’s Nyquist plot being contained
in the union of two regions is equivalent to dissipativity w.r.t. a
frequency weighted combination of the corresponding two NPC
supply rates. We finally give an algorithm for finding out these
weighting polynomial functions.

I. INTRODUCTION

Dissipativity theory has rightfully become one of the
cornerstones in modern control theory. The evidence of
this fact lies in its successful application to myriad con-
trol problems, e.g., LQR/LQG optimal control [21], H∞
optimal/suboptimal control [18], [22], absolute stability of
interconnection (the Luré problem) [5]–[7], [9], [14], [15],
etc. This paper deals with a particular issue concerning
the latter-most topic: problem of stability of interconnection
using dissipativity.

The key idea behind the solution to the absolute stability
problem is: given that the plant is dissipative w.r.t. a quadratic
supply rate, if a controller too is made dissipative w.r.t. a
supply rate determined by the plant’s supply rate and the
interconnection topology, then the interconnected system is
guaranteed to be stable [6], [14]. Note, however, that a design
procedure using this idea necessarily presumes that the plant
is a priori known to be dissipative w.r.t. a certain quadratic
supply rate. This raises the issue that given a plant, how do
we know whether it is dissipative w.r.t a quadratic supply
rate? And, if so, how do we find out a suitable supply rate
so that the plant is dissipative w.r.t that? In this paper we
provide a partial answer to this issue. Our inspiration comes
from the classical results of small-gain and passivity.

In small-gain and passivity theorems (when applied to
SISO LTI systems), the system’s Nyquist plot turns out to
have a direct relation with dissipativity w.r.t. two special
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quadratic supply rates. Indeed, for a SISO system with u, y
as input and output, respectively, dissipativity w.r.t. r2u2−y2

is equivalent to the system’s Nyquist plot being contained in
the disk of radius r around the origin. Likewise, for passivity,
i.e., dissipativity w.r.t. uy, it is necessary and sufficient that
the system’s Nyquist plot be contained in the right half of
the complex plane.

In this paper, we show that there is a sizeable class of
quadratic supply rates, each of which has a specified region
in the complex plane such that a system is dissipative w.r.t.
a supply rate in this class if and only if its Nyquist plot
is contained in the designated region of the complex plane.
Naturally, the small-gain and passivity supply rates turn out
to be special cases of these supply rates. We call these supply
rates Nyquist-Plot-Compatible (NPC) supply rates.1

NPC supply rates help us in coming up with a supply
rate given a SISO system and its Nyquist plot. Typical
regions, as shown in this paper, for NPC supply rates include
interiors (or, exteriors) of circles with centers on the real
axis, right half or left half of a vertical line, etc. However,
quite often, given a Nyquist plot it may not be apparent
whether there is some NPC supply rate w.r.t. which the
system is dissipative2. Sometimes the Nyquist plot may turn
out to lie in the union of the dissipativity regions of two
well-known NPC supply rates. We show in this paper, that
this is equivalent to dissipativity w.r.t. a frequency-weighted
combination of the two corresponding NPC supply rates. We
conclude the paper with an algorithm to find these frequency
dependent weighting functions. A noteworthy point here is
that such mixing of two supply rates is not new; it has
been done in [2], [3] for small-gain and passivity, and in
[10] for small-gain and negative-imaginary. Our result here
differs from those in the references mentioned on at least
two counts. First, our result is not specific to special supply
rates, it holds for any two NPC supply rates. Secondly, the
weighting functions in our case are polynomials (unlike the
ones in the aforementioned references). The crucial benefit
of polynomials is that they have a functional meaning as

1The fact that Nyquist plots are used in order to define the supply rates
is not surprising, for dissipativity can be defined using a frequency domain
inequality (see Proposition 2.1). However, what singles out NPC supply rates
is that each of them has a designated region in the complex plane where a
system’s Nyquist plot must lie in order to be dissipative. See section III for
details.

2Note that, in many cases, the Nyquist plot may be contained in the right-
half (or left-half) of a vertical line chosen sufficiently away on the left (or
right) of the imaginary axis. And hence, an NPC supply rate can be obtained
for such a system easily. However, this will result in supply rates with very
large coefficients, which might cause problem for controller design.



differential operators. This fact is advantageous when it
comes to designing a controller using the mixed supply rate.

II. NOTATION AND PRELIMINARIES

A. Notation

The fields of real and complex numbers are denoted by
R and C respectively. The ring of real polynomials in ξ is
denoted by R[ξ]. The set of matrices with m rows and p

columns having real polynomials for their entries is denoted
by Rm×p[ξ]. Rw×•, Rw×•[ξ] denotes the set of (real constant
or real polynomial) matrices having w rows, where the no.
of columns is unspecified. Likewise, R•×p and R•×p[ξ]
denote the set (real constant or real polynomial) of matrices
with p columns. C∞(R,R•) denotes the space of smooth
(infinite times differentiable) functions from R to R•. The
subset of C∞(R,Rw) with functions having compact supports
is denoted by D(R,Rw). The set of all w × w bivariate
polynomial matrices in ζ, η with real coefficients will be
denoted by Rw×w[ζ, η].

B. Behavior

In this paper, we follow the definition of dissipativity3

given in [19]. For this purpose, we need to define what is
known as the behavior of an LTI differential system [16]. For
a SISO system with u as input and y as output the behavior
is defined as

B =

{(
u
y

)
∈ C∞(R,R2) such that u, y satisfy the

system’s differential equations} .

As shown in [16], if B is controllable then

B =

{[
D( ddt )
N( ddt )

]
` ` ∈ C∞(R,R)

}
, (1)

where N(ξ), D(ξ) ∈ R[ξ] are coprime. Equation (1) is called
an image representation of B. In this paper, only SISO
systems are taken into account and we also assume that the
system is controllable.

C. Quadratic differential forms

Dissipativity analysis of linear differential behaviors is
done using quadratic differential forms (QDF) as shown in
[19]. In this subsection, we provide the rudimentary details
of QDFs and their use in dissipativity analysis that will be
important for this paper. Details can be found in [19].

Quadratic forms are special polynomial functions on real
or complex Euclidean vector spaces. Quadratic forms that
involve system variables as well as their derivatives can be
defined using QDFs. A QDF QΦ is induced by a two-variable
polynomial matrix with real constant coefficients, Φ(ζ, η).
This is done as follows: let Φ(ζ, η) be given by

Φ(ζ, η) :=
∑
i,k

Φikζ
iηk ∈ Rw×w[ζ, η],

3It may be noted that many other definitions of dissipativity are prevalent
in the literature; see for example [4], [19]. However, perhaps the one in [19]
suits the purpose of this paper the best.

where Φik ∈ Rw×w. Then QΦ is a map QΦ : C∞(R,Rw) →
C∞(R,R) defined as

QΦ(w) =
∑
i,k

(
diw

dti

)T
Φik

(
dkw

dtk

)
. (2)

While dealing with quadratic forms in w and its derivatives,
we can assume without loss of generality, that Φ(ζ, η) =
ΦT (η, ζ) where (•)T denotes the usual matrix transposition.
Such a Φ(ζ, η) is called symmetric.

Following [19], we call a controllable behavior B dissi-
pative with respect to a symmetric two-variable polynomial
matrix Φ(ζ, η), or simply Φ-dissipative if∫

R
QΦ(w)dt > 0 ∀w ∈ B ∩D. (3)

The behavior B is said to be strictly Φ-dissipative if
the above-mentioned inequality (3) is satisfied with a strict
inequality.

The QDF QΦ, corresponding to which dissipativity of
a behavior is sought, is often called a supply rate, for it
generalizes the idea of a power supply (see [19]). With
a slight abuse of terminology we often call Φ(ζ, η) also
a supply rate since there is no risk of ambiguity. The
following result, Proposition 2.1, from [19] is our main tool
for dissipativity analysis throughout this paper.

Proposition 2.1: Consider the system G(s) = N(s)
D(s) and

Φ ∈ R2×2[ζ, η]. Then, the behavior corresponding to G is
dissipative with respect to Φ(ζ, η) if and only if

MT (−jω)∂Φ(jω)M(jω) > 0 ∀ω ∈ R (4)

where M(jω) = [D(jω) N(jω)]T . Further, the system is
strictly dissipative if and only if the above inequality is strict
for almost all ω ∈ R.

D. Factorization of Para-Hermitian matrices

We frequently need the one-variable polynomial matrix
Φ(−ξ, ξ) obtained from Φ(ζ, η); for notational convenience,
we denote this matrix by ∂Φ(ξ). The matrix ∂Φ(ξ) has a
special property: it is para-Hermitian. A polynomial matrix
P (ξ) ∈ Rw×w[ξ] is called para-Hermitian if P (ξ) = PT (−ξ).
The significance of P being para-Hermitian is that P (jω)
is Hermitian for all ω ∈ R. We now define two important
parameters associated with para-Hermitian matrices: the “in-
ertia” and the “worst inertia” of a para-Hermitian matrix.

Definition 2.2: [11], [12] Suppose P (ξ) ∈ Rw×w[ξ]
is para-Hermitian and assume P (ξ) is nonsingular as a
polynomial matrix, i.e., det(P (ξ)) 6≡ 0. Let ω0 ∈ R be
such that jω0 is not a zero of P (ξ), i.e., det(P (jω0)) 6=
0. Then the inertia of P (jω0) is defined as the 2-
tuple: (σ−(P (jω0)), σ+(P (jω0))) where σ−(P (jω0)) and
σ+(P (jω0)) are the numbers of negative and positive eigen-
values of P (jω0), respectively. If P (jω0) is singular, then
the inertia is undefined at that point.

Let νmax be the maximum number of negative eigen-
values of P (jω) as ω varies over R, i.e., νmax :=
maxω∈R{σ−(P (jω))}. The worst inertia of P (ξ) is de-
fined as (νmax, w − νmax), and correspondingly, the



worst inertia matrix (see [11]) is defined as Jworst :=[
Iw−νmax 0

0 −Iνmax

]
.

The following result from [11, Theorem 3.6.5] (see also
[12]) concerns factorization of para-Hermitian polynomial
matrices that might not have constant inertia almost every-
where on the imaginary axis. This result will be crucial
importance for us in the sequel.

Proposition 2.3: Let P (ξ) ∈ Rw×w[ζ, η] be para-
Hermitian and nonsingular and let Jworst ∈ Rw×w[ξ] be its
worst inertia matrix. Then there exist polynomial matrices
K ∈ Rw×w[ξ] and L ∈ R•×w[ξ], with K square and
nonsingular, such that

P (ξ) = KT (−ξ)JworstK(ξ) + LT (−ξ)L(ξ). (5)

III. NPC SUPPLY RATES AND SOME STANDARD
EXAMPLES

A. Nyquist-plot-compatible (NPC) supply rates

The main object of study in this paper is a special type
of supply rates, dissipativity with respect to which can be
read off from the systems’ Nyquist plots. We call such
supply rates Nyquist-plot-compatible (NPC) supply rates. As
mentioned earlier, in various situations, given a plant we are
required to know whether that system is dissipative with
respect to some supply rate. The NPC supply rates come
very handy in these situations. For example, dissipativity
with respect to

∑
br =

[
1 0
0 −1

]
is equivalent to the system’s

Nyquist plot being contained in the unit disk. This property is
the key behind the well-known small-gain theorem. Another
equally important result, the passivity theorem, is likewise
related to dissipativity with respect to

∑
pr = [ 0 1

1 0 ]. Both
these supply rates and many other come under the class of
NPC supply rates. We formally define NPC supply rates now.

Let G(s) = N(s)
D(s) be the transfer function of a SISO

system. As mentioned earlier, the behavior BG of this system
is described as

BG :=

{[
D( ddt )
N( ddt )

]
` ` ∈ C∞(R,R)

}
. (6)

We denote by M(ξ) the column vector [D(ξ), N(ξ)]T in the
sequel.

Definition 3.1: [8] A supply rate Φ(ζ, η) ∈ R2×2[ζ, η]
is said to induce a trichotomy of the complex plane C if
corresponding to Φ(ζ, η) there exists a 3-tuple of disjoint
sets {A+

Φ ,A0
Φ,A

−
Φ}, whose union is C, such that for every

BG, we have the following:
1) The Nyquist plot of G at a frequency ω > 0 is

contained inA+
Φ ⇐⇒ MT (−jω)∂Φ(jω)M(jω) > 0.

2) The Nyquist plot of G at a frequency ω > 0 is
contained in A0

Φ ⇐⇒ MT (−jω)∂Φ(jω)M(jω) = 0.
3) The Nyquist plot of G at a frequency ω > 0 is

contained inA−Φ ⇐⇒ MT (−jω)∂Φ(jω)M(jω) < 0.
If a supply rate satisfies all these properties, then it is called
a Nyquist-plot-compatible (NPC) supply rate.

Note that under Definition 3.1 strict dissipativity is equiv-
alent to the Nyquist plot of G being contained in A+

Φ for

almost all positive frequencies. From now on we refer to
A+

Φ as NPC-region, and A0
Φ as NPC-boundary associated

with the NPC supply rate Φ. We denote by Ω the collection
of all NPC supply rates. There are many supply rates present
in the set of Ω. Some standard and basic NPC supply rates
are discussed below.

The small-gain supply rate:
∑
br =

[
r2 0
0 −1

]
is the small-

gain supply rate (arising out of QΦ(u, y) = r2u2 − y2).
This supply rate arises in Bounded Real Lemma. 0.6s−0.6

s2+s+1

and 5s+5
s3+s2−s+2 are two transfer functions which are strictly

dissipative w.r.t.
∑
br (r = 3.6) according to Proposition 2.1.

The NPC-region is shown in Figure 1.

Fig. 1. Associated region of small-gain supply rate.

The passivity supply rate: Another example of Φ that
is within the set of Ω is

∑
pr = [ 0 1

1 0 ] (arising out of
QΦ(u, y) = 2uy).

∑
pr is related to Positive Real Lemma.

Based on Proposition 2.1, 2s−2
s2−s−1 and s−3

s4−4s3+2s2−3s−3 are
two transfer functions which are strictly dissipative w.r.t.∑
pr. Figure 2 depicts the corresponding NPC region.

Fig. 2. Associated region of passivity supply rate

The negative imaginary supply rate [15]: One more
example of Φ that is in Ω is

∑
ni =

[
0 η
ζ 0

]
(arising out

of QΦ(u, y) = 2udydt ). In accordance with Proposition 2.1
−1

s2−2s+0.5 and 5s−5
s3−s2−2 are two transfer functions which are

strictly dissipative w.r.t.
∑
ni. The NPC-region is displayed

in Figure 3.

B. Congruence transformations on supply rates

The following result from [8] shows closure of Ω under
congruence transformations.

Proposition 3.2: Consider the set Ω ⊂ R2×2[ζ, η] of
Nyquist-Plot-Compatible supply rates, and let Φ ∈ Ω. Then
for any nonsingular T ∈ R2×2, the supply rate TTΦT also
belongs to Ω.



Fig. 3. Associated region of negative imaginary supply rate

The above result is based on Möbius transformations. We
show now that by suitable congruence transformations on
Σbr one can get the NPC supply rates with NPC-regions as
interiors or exteriors of circles with various radii and centers
on the real axis, and, also, RHS or LHS of lines parallel to
the imaginary axis.

Lemma 3.3: Let T =
[
a b
c d

]
∈ R2×2 be a non-singular

matrix and
∑
br =

[
1 0
0 −1

]
be the small-gain supply rate.

Then the new supply rate Φ = TT
∑
br T is an NPC supply

rate, and its corresponding A+
Φ is one of the following:

1) If b = d, then the the boundary, A0
Φ, is a line parallel

to the imaginary axis. Further, if ab − cd > 0 (or, if
ab − cd < 0) then A+

Φ is the RHS (LHS) of the line
A0

Φ.
2) If b 6= d then the boundary, A0

Φ, is a circle with center
on the real axis. Further, the corresponding A+

Φ is the
interior (or the exterior) of the circle if b2 − d2 < 0
(b2 − d2 > 0).

Proof. The proof is omitted due to page limit constraints;
it can be found in the appendix to this paper kept at www.
ee.iitb.ac.in/˜debasattam. �

Remark 3.4: Note that,
∑
br in Lemma 3.3 can be re-

placed by
∑
pr. Indeed, since

∑
br and

∑
pr are themselves

related with each other by a congruence transformation, any
Φ obtained from

∑
br by a congruence transformation can

also be obtained from
∑
pr, albeit, by a different congruence

transformation.

IV. MIXING TWO NPC SUPPLY RATES

As mentioned previously, in many situations, we are faced
with this converse question: given a plant, is there a suitable
supply rate with respect to which the plant is dissipative?
We have seen that NPC supply rates help in answering
this question for a number of transfer functions. However,
there are still many transfer functions, which may not be
dissipative with respect to any obvious NPC supply rates. In
this section, we deal with a special case of this situation:
we assume that the plant’s Nyquist plot is contained in the
union of two known NPC regions of the complex plane (that
is, A+

Φ1
∪ A+

Φ2
, where Φ1 and Φ2 are known). We show

that in this situation, the plant turns out to be dissipative
with respect to a frequency-weighted combination of the
two NPC supply rates. This issue of ‘mixing’ two supply
rates in the frequency domain is not new. In [2], [3], [8],

this issue has been looked at considering the small gain and
the passivity supply rates, while, in [10], the same has been
done for small-gain and negative imaginary (that is, Σni in
the notation of this paper) supply rates. We do not restrict
ourselves to special NPC supply rates. Theorem 4.1 below
shows that any two NPC supply rates can be mixed provided
the plant’s Nyquist plot is contained in the union.

Theorem 4.1: Consider a SISO LTI system given by the
transfer function G(s) and let BG = imM( ddt ) be its image
representation. Let Φ1 and Φ2 be NPC supply rates. Then
the following two statements are equivalent:

1) G has Nyquist plot contained in A+
Φ1
∪A+

Φ2
for almost

all ω > 0.
2) There exist p, q ∈ R[ξ] such that BG is strictly

dissipative with respect to

Φ(ζ, η) := p(ζ)Φ1(ζ, η)p(η) + q(ζ)Φ2(ζ, η)q(η) (7)
Proof. We give only a sketch of the proof due to page

limit constraints; the complete proof can be found in the
appendix to this paper kept at www.ee.iitb.ac.in/

˜debasattam. To get an idea of the proof, note that BG

is strictly dissipative with respect to the Φ(ζ, η) defined in
equation (7) if and only if p(ξ), q(ξ) satisfy[

p(−jω)
q(−jω)

] [
Γ(−jω,jω) 0

0 Π(−jω,jω)

] [
p(jω)
q(jω)

]
> 0 (8)

for almost all ω ∈ R, where Γ and Π are defined as

Γ(−jω, jω) := MT (−jω)∂Φ1(jω)M(jω)
Π(−jω, jω) := MT (−jω)∂Φ2(jω)M(jω)

}
. (9)

Now note that equation (9) is true if and only if the
auxiliary behavior, Baux := im

[
p( ddt )

q( ddt )

]
is strictly dissipative

with respect to the auxiliary supply rate, Φaux(ζ, η) =[
Γ(ζ,η) 0

0 Π(ζ,η)

]
. It has been shown in [11], [12] that it is

possible to find a Baux if and only if the worst inertia of
Φaux is not (2, 0). This fact, again, is equivalent to Statement
1) of the theorem. �

Example 4.2: (Mixing of small-gain and passivity) The
transfer function G = 3

s2+3s+2 has Nyquist plot (for positive
frequencies) contained in the union of the unit circle region
(r = 1 in

∑
br) and the right half plane region as shown

in the Figure 6. So according to the theorem there exists
p, q ∈ R[ξ] such that BG is strictly dissipative with respect
to

Φ(ζ, η) = p(ζ)
∑
br

p(η) + q(ζ)
∑
pr

q(η) (10)

So the required p, q found using the steps presented in the
algorithm in Section V are

p(ξ) = 2.449ξ3 + 2.449ξ2 + 0.3709ξ + 2.0781

q(ξ) = 1.3163ξ3 − 2.65256ξ2 − 0.36314ξ − 2.236.

Example 4.3: (Mixing of passivity and negative imagi-
nary) The transfer function G = 2s−1

s3+2s2+2s has Nyquist plot
(only positive frequencies shown) contained in the union of
the right half plane region and the lower half plane region as



Fig. 4. Mixing of small-gain and passivity

shown in the following Figure 7. According to the theorem
there exists p, q ∈ R[ξ] such that BG is strictly dissipative
with respect to

Φ(ζ, η) = p(ζ)
∑
pr

p(η) + q(ζ)
∑
ni

q(η) (11)

The required p, q found using the steps presented in algo-
rithm of Section V are

p(ξ) = −2.69282ξ3 − 1.30718ξ2 − 2.0ξ

q(ξ) = −2.0ξ4 − 2.0ξ3 + 0.0784ξ2 − 2.0784ξ.

Fig. 5. Mixing of passivity and negative imaginary

V. ALGORITHM FOR FINDING p(ξ), q(ξ) POLYNOMIALS

It is possible to give an explicit algorithm for the compu-
tation of the polynomial weighting functions p, q of Theorem
4.1 . The crucial step in this computation is that of factorizing
a para-Hermitian matrix following Proposition 2.3. There
are many methods available for such factorizations of para-
Hermitian polynomial matrices (see [1], [17]). In this section,
we adapt the existing methods to provide a simplified one
that suits our requirement of factorizing the matrix

S(ξ) :=
[

Γ(−ξ,ξ) 0
0 Π(−ξ,ξ)

]
. (12)

Our adapted procedure is much simplified owing to the fact
that S(ξ) is diagonal. However, the problematic part is S(ξ)
has non-constant inertia on the imaginary axis. In order to
make the description of our procedure to factorize S(ξ) easy
to follow, we make two simplifying assumptions:
1) The number of crossover frequencies, i.e., frequencies
at which the system’s Nyquist plot crosses from one NPC-
region to another, is only two. 2) The roots of the polyno-
mials Γ(−jω, jω) and Π(−jω, jω) are known precisely4.

4Note that these polynomials are polynomials in ω with real coefficients.

Under these two assumptions we describe below an algo-
rithm for finding p, q ∈ R[ξ] to meet the requirements of
Theorem 4.1.
Step 1: Input: the transfer function G(s) and the two NPC
supply rate matrices Φ1(ζ, η) and Φ2(ζ, η).
Step 2: Find the S(ξ) matrix, as defined in equation (12),
using equation (9).
Step 3: Compute the worst inertia of the matrix S(ξ).
Step 4: If the worst inertia is (2, 0) then statement 1) of
Theorem 4.1 does not hold. So, by Theorem 4.1, p, q cannot
be found.
Step 5: If the worst inertia is (0, 2) then, as shown in the
proof of Theorem 4.1, any pair of polynomials p, q satisfying
coprimeness will ensure that BG is dissipative with respect
to Φ(ζ, η) = p(ζ)Φ1(ζ, η)p(η) + q(ζ)Φ2(ζ, η)q(η).
Step 6: If the worst inertia is (1, 1) then, by Proposition 2.3
S(jω) admits a factorization as

KT (−jω)JworstK(jω) + LT (−jω)L(jω)

where Jworst = diag(1,−1) and matrices K(ξ) ∈ R2×2[ξ]
and L(ξ) ∈ R•×2[ξ], with K non-singular.
Step 7: To achieve the above factorization we must first
decompose the para-Hermitian matrix S(ξ) as

KT (−ξ)JworstK(ξ) + LT (−ξ)L(ξ)

Step 8: First factorize the matrix S(ξ) as S(ξ) =
Y T (−ξ)S2(ξ)Y (ξ), where Y (ξ) is called the symmetric
factor of S(ξ). This factor consists of the following:

1) Zeros of S(ξ) having nonzero real parts (which always
come in reflection symmetry about the imaginary axis
because S(ξ) is para-Hermitian; see [17]).

2) Purely imaginary zeros of S(ξ) that have even multi-
plicities.

Assumption 2), that is, precise knowledge of the roots of
Γ(ω) and Π(ω) makes it possible to extract the symmetric
factor Y (ξ) easily. Note that, S(ξ) and S2(ξ) both have the
same worst inertia of (1, 1).
Step 9: Now S2(ξ) will be in the form as shown below
because of assumption 1), i.e., there are only two crossover
frequencies

S2(ξ) =
[
ξ2+α2 0

0 −(ξ2+β2)

]
,

where we may assume that α > β > 0 and α 6= 0 without
loss of generality5.
Step 10: Extracting the symmetric factor out reduces the
problem of factorizing S(ξ) to factorizing S2(ξ) in the form
of

KT (−ξ)JworstK(ξ) + LT (−ξ)L(ξ)

The S2(ξ) matrix is a real regular 2× 2 matrix polynomial
satisfying S2(ξ) = [S2(−ξ)]T having variable inertia on the

5Indeed, if α < β then S2(ξ) (correspondingly S(ξ)) will have worst
inertia of (2, 0). Then as said in Step 4 of the algorithm p, q cannot be
found. Further, if α = 0 then the worst inertia being (1, 1) forces β = 0.
In that case, S2(ξ) =

[
ξ2 0

0 −ξ2

]
can be readily factorized as S2(ξ) =[

0 −ξ
−ξ 0

]
Jworst

[
0 ξ
ξ 0

]
.



imaginary axis. Following a crucial step as done in [17]
we modify S2(ξ) into a matrix that has constant inertia for
almost all points on the imaginary axis. This can be done
by adding the diagonal element (ξ2 +α2)(ξ2 +β2) to S2(ξ)
obtaining a 3× 3 diagonal polynomial matrix. So we define
Snew(ξ) as

Snew(ξ) =

[
ξ2+α2 0 0

0 −(ξ2+β2) 0

0 0 (ξ2+α2)(ξ2+β2)

]
.

Note that Snew(ξ) has constant inertia (2, 1) on the imagi-
nary axis for almost all points ξ ∈ iR. After doing suitable
row, column transformations and manipulations on Snew(ξ)
we can arrive at a very easy formula for S2(ξ)

S2(ξ) =
[
ξ2+α2 0

0 −(ξ2+β2)

]
=
[

α −ξ
− βξα −β

] [
1 0
0 −1

] [
α βξ

α

ξ −β

]
+[

0
−ξ√γ
α

]
[ 0

ξ
√
γ

α ] ,

where γ = α2 − β2, α 6= 0 and α > β.
Step 11: Now we will get the exact K(ξ) and L(ξ) after
right multiplying the symmetric factor matrix to the above
formula. So

S(ξ) = Y T (−ξ)
{[

α −ξ
− βξα −β

] [
1 0
0 −1

][
α βξ

α

ξ −β

]
+
[

0
−ξ√γ
α

]
[ 0

ξ
√
γ

α ]
}
Y (ξ)

Step 12: Hence final K(ξ) used to find p, q is as follows:

K(ξ) =
[
α βξ

α

ξ −β

]
Y (ξ)

Step 13: As done in the proof of Theorem 4.1, this K(ξ) is
used to find p(ξ), q(ξ) polynomials.

VI. CONCLUSION

We summarize here the key results of this paper and
future scope of the presented work. We started with a
special type of supply rates called NPC supply rates. Using
congruence transformations on standard NPC supply rates
we created new ones. For example, NPC supply rates with
NPC-boundaries like circles of any radius and with centers
anywhere on the real axis can be synthesized by this method.
Similarly a supply rate with NPC-boundary as any line
parallel to imaginary axis can be found using a suitable
congruence transformation. The result regarding the union
of NPC-regions has been theoretically proved and supported
with examples for the case of two distinct NPC supply rates.
Perhaps this result can be extended to the case of three or
more finite NPC supply rates by an induction argument6.
If this is possible, then stabilization by interconnection of
many complex (interconnected) systems can be established.
Till now our results are applicable to linear differential
systems only. It is our hope that similar results might be
applicable to time-varying, nonlinear cases. These issues
have to be examined in more depth. The issue of spectral
factorization plays an important role in the main Theorem
4.1 and can be handled using the steps mentioned in the
algorithm of Section V. The described algorithm has to be

6We thank an anonymous reviewer for this suggestion

modified accordingly to include multi-crossover (more than
two crossovers) frequency type Nyquist plots. The drawback
of the algorithm is that the exact roots of the polynomials
Γ(ω) and Π(ω) have to be known. More work is required to
rectify this drawback.
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