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Abstract—Lossless and all-pass systems are energy-
conservative in the sense that the energy that is extracted
from the system always equals that supplied to the system.
This stored energy turns out to be independent of the system
realization/description. For example, there are different LC
realizations of a lossless transfer function, but the energy
stored can be uniquely expressed in terms of the port variables
and their derivatives. This paper proposes new results and
algorithms to compute the stored energy in lossless systems. We
present four different techniques to compute the stored energy
of lossless/all-pass systems. The first method is LC realization
based (Foster, Cauer and their combinations) and the second
is based on the Bezoutian of two polynomials. The notion of
“balancing controllability/observability Gramians” is used for
the third, while the last method is based on adjoint networks.
A comparative study among the four methods shows that the
first three methods are comparable with respect to computation
time, while for numerical accuracy, the Bezoutian method is the
best. Three different methods to compute the Bezoutian is also
reported here: Euclidean long division, Pseudo-inverse method
and the two dimensional discrete Fourier transform.

Keywords: Foster-Cauer realizations, Bezoutian, Adjoint net-
work, Gramian balancing.

1. INTRODUCTION

This paper deals with lossless systems (and more gener-
ally conservative systems), i.e. systems for which the energy
extracted from the system equals the energy supplied to
the system. Traditionally, LC realizations of lossless transfer
functions are non-unique; Foster 1 & 2, Cauer 1 & 2 and their
combinations, for example. The values of the capacitances and
inductances would be highly varied across these realizations,
due to which, for a given amount of stored energy, the
capacitor-voltages and inductor-currents would be different
across the realizations. Further, for a given lossless transfer
function there are many state-space realizations that need not
correspond to an LC realization, this also adds to the non-
uniqueness in the values of states for a given stored energy.
In spite of this non-uniqueness, it is known (and elaborated
in Section 2-D below) that the energy stored, when expressed
in terms of the external variables (port-variables) and their
derivatives, is exactly the same function (henceforth called the
storage function) and is independent of both the LC realization
and the state-space realization. This property can be exploited
in the sense that the LC realization or state-space realization
can be chosen in a form so that new methods (possibly with
better numerical/flop-count properties) to compute the stored
energy are revealed by the chosen realization. This paper
proposes four different approaches to characterize the stored
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energy; each approach unfolds new results and algorithms to
compute the storage function. Note that when the system is
not lossless but strictly passive, then the computation of the
stored energy is linked to solutions of the so-called Alge-
braic Riccati Inequality/Equality (ARI/ARE). However, such
an inequality/equation cannot be formulated for conservative
systems, since certain “regularity conditions” are not satisfied
by such systems. Hence methods described in this paper not
only provide new ways to compute the storage function but
also to solve control problems where the ARE does not exist
due to failure of the regularity condition on D. In this paper we
develop new results which yield procedures to compute storage
function of conservative systems. We propose following four
approaches:

1) LC realizations: Foster/Cauer and their combinations,
2) Bezoutian of two polynomials

a) Euclidean long division,
b) Pseudo-inverse/Left-inverse,
c) Two dimensional discrete Fourier transform,

3) balancing of controllability/observability Gramians and
4) dual/adjoint network.

The rest of the paper is organized as follows: Section 2
summarizes the notation and preliminaries required in the
paper. In Section 3 we present results based on LC realizations.
Section 4 contains results based on the Bezoutian of two
polynomials. Three methods for Bezoutian are proposed in
the section. It also contains a comparison of these three
methods with respect to time and accuracy. Section 5 has
results to compute the storage function of all-pass systems
using the concept of balanced states. Methods to compute
storage function of lossless systems based on adjoint networks
is reported in Section 6. In Section 7, we report algorithms
for storage function computation of lossless systems. Section
8 has a comparison of the algorithms based on their compu-
tational time and numerical accuracy. Concluding remarks are
presented in Section 9.

2. NOTATION AND PRELIMINARIES

A. Notation

We use standard notation: R and C stand for the fields of
real and complex numbers respectively. R[ξ ] denotes the ring
of polynomials in one indeterminate ξ with real coefficients.
The set Rw×p[ξ ] denotes all w×p matrices with entries from
R[ξ ]. We use • when a dimension need not be specified:
for example, Rw×• denotes the set of real constant matrices
having w rows. Rn×m[ζ ,η ] denotes the set of polynomial
matrices in two indeterminates: ζ and η , having n rows
and m columns. C∞(R,Rw) denotes the set of all infinitely
often differentiable functions from R to Rw, and D(R,Rw)



denotes the subspace of all compactly supported trajectories
in C∞(R,Rw). A block diagonal matrix A is represented as
diag(A1, A2, . . . , Am) where A1, A2, . . . , Am are square matrices
of possibly different sizes. While vectors are usually column
vectors in this paper, sometimes, depending on the context ei
either denotes the i-th row or the i-th column of the identity
matrix. 1m ∈Rm denotes a column vector of all ones. A = [ai j]
represents a matrix A with elements ai j where i and j represent
the row and column indices of the matrix. The symbol A

⊗
B

represents Kronecker product of matrices A and B. A matrix

of the form
[

B1
B2

]
is represented as col(B1,B2).

B. Behavior

This section contains some essential preliminaries of the
behavioral approach to systems theory: an elaborate exposition
can be found in [22, Section 2]. A linear differential behavior,
denoted by B, is defined as the set of all infinitely often
differentiable trajectories that satisfy a system of ordinary
linear differential equations with constant coefficients, i.e.,

B:=
{

w ∈ C∞(R,Rw) | R
(

d
dt

)
w=0

}
,where R(ξ)∈R•×w[ξ ].

We denote the set of all linear differential behaviors with
w number of variables by Lw. The behavior B ∈ Lw can be
represented as B= ker R

( d
dt

)
called the kernel representation

of B. Without loss of generality, we assume R(ξ ) is of
full row rank (see [18, Theorem 2.5.23]). Since R(ξ ) is of
full row rank, there exists a possibly non-unique partition of
R(ξ ) = [Q(ξ ) P(ξ )] (after permutation of columns of R(ξ ) if
necessary) where P(ξ ) is square and nonsingular. Conforming
to this partition of R(ξ ), the variable w is partitioned as
(u,y) with u as the input and y as the output. The trans-
fer matrix from input u to output y is −P−1Q. When this
matrix of rational functions is proper, then there exists an
input/state/output (i/s/o) representation of the form ẋ=Ax+Bu
and y=Cx+Du such that A∈Rn×n and with n defined as n :=
deg det P. For the purpose of this paper, we call a behavior
B controllable, when an i/s/o representation of the system is
both controllable and observable; see [18, Chapter 5] for other
equivalent definitions. We represent the set of all controllable
behaviors with w variables as Lw

cont. The minimum number
of states required for an i/s/o representation of a controllable
behavior is called the McMillan degree of the system. It is
known that the state-space representation of a controllable
and observable system is minimal and the number of states
of such a system is equal to the McMillan degree. One of the
various ways of representing a controllable linear differential
behavior B ∈ Lw

cont is the image representation: there exists
M(ξ ) ∈ Rw×m[ξ ] such that

B:=
{

w∈C∞(R,Rw) |∃` ∈ C∞(R,Rm) such that w=M
(

d
dt

)̀}
.

In fact, there exists an M such that M(λ ) has full column rank
for all λ ∈ C; it is called an observable image representation
(see [22, Section 2]). For the rest of the paper we consider
controllable behaviors B only and also use the term system
and behavior interchangeably.

C. Quadratic Differential Forms and Dissipativity

In this subsection, we provide basic details about quadratic
differential forms (QDF): for a detailed study see [22]. Con-
sider a two-variable polynomial matrix

φ(ζ ,η) := ∑
j,k

φ jkζ
j
η

k ∈ Rw×w[ζ ,η ], where φ jk ∈ Rw×w.

φ(ζ ,η) is called symmetric if φ(ζ ,η) = φ(η ,ζ )T . For the rest
of the paper, we deal with symmetric two-variable polynomial
matrices only. The QDF Qφ induced by φ(ζ ,η) is a map
Qφ : C∞(R,Rw)→ C∞(R,R) defined as

Qφ (w) := ∑
j,k

(
d jw
dt j )

T
φ jk (

dkw
dtk ).

A quadratic form induced by a real symmetric constant matrix
is a special case and is often needed in this paper: we denote
it by QΣ(w) = wT Σw, where Σ ∈ Rw×w.

We call a controllable behavior B Σ-dissipative if∫
R

wT
Σwdt > 0 for every w ∈B∩D. (1)

QΣ is called the supply rate or power. The variable w, in
terms of which the power is specified, is called the manifest
variable. For this paper, the manifest variable w contains the
port variables like voltage and current. The supplied power
and the energy stored may also be expressed in terms of other
variables, like the latent variable ` and the state x: this is dealt
below when dealing with the stored energy.

For a Σ-dissipative controllable behavior B, the two variable
polynomial matrix ψ ∈Rw×w[ζ ,η ] is said to induce a storage
function Qψ with respect to the supply rate QΣ if

d
dt

Qψ(w)6 wT
Σw for all w ∈B. (2)

The notion of storage function captures the intuition that
the rate of increase of stored energy in a dissipative system is
at most the power supplied. The storage function with respect
to a supply rate is not unique in general for a given system.
However, lossless systems are a special case for which storage
function is unique (see [22, Remark 5.13]). Such a system
also satisfies the inequality (2) as an equality: these systems
are the focus of this paper and is elaborated in the following
subsection.

D. Conservative systems and their storage functions

Conservative systems are a special class of dissipative
systems. A controllable behavior B is said to be conservative
with respect to Σ ∈ Rw×w if the inequality in equation (1) is
satisfied with equality, i.e.∫

R
wT

Σwdt = 0 for all w ∈B∩D.

Thus conservative systems satisfy equation (2) with equality:

d
dt

Qψ(w) = wT
Σw for all w ∈B. (3)

Noting that
d
dt

QΨ(`) = QΦ(`) (4)



whenever (ζ + η)Ψ(ζ ,η) = Φ(ζ ,η) and using the image
representation of the controllable behavior w = M

( d
dt

)
`, one

can obtain the two-variable polynomial matrix Ψ∈Rm×m[ζ ,η ]
associated with the storage functions (expressed in variable `)
using

Ψ(ζ ,η) =
Φ(ζ ,η)

ζ +η
=

M(ζ )T ΣM(η)

ζ +η
=

∑i, j Φ̃i jζ
iη j

ζ +η
(5)

with Φ̃i, j ∈Rm×m. Given an image representation, equation (5)
gives us the unique storage function of the conservative system
in the latent variables: refer [22, Section 5] for a discussion on
conservative systems. Further, since the image representation
w = M

( d
dt

)
` can be assumed to be observable without loss of

generality, the stored energy can be expressed in terms of the
manifest variable w using a polynomial left-inverse of M(ξ ) as
follows. Let M†(ξ ) ∈ Rm×w[ξ ] be such that M†(ξ )M(ξ ) = Im.
Then, the stored energy

QΨ(`) = Q
Ψ̂
(w) with Ψ̂(ζ ,η) := M†(ζ )T

Ψ(ζ ,η)M†(η). (6)

The special case when the stored energy is to be expressed in
terms of the states is central to this paper. It is known that for
controllable systems, the energy stored can be expressed in the
form xT Kx, where K ∈Rn×n is symmetric: see [22, Section 5].
Think of x as the capacitor voltages and inductor currents in an
LC realization, but this paper considers other minimal state-
space realizations also. Note that ability to express energy in
terms of w, instead of ` (or x), requires that the variable `
(or x) is observable from w: this is true for the controllable
case. See [12] for significance of observability in storage
functions. Since we deal with storage functions expressed in
the observable state variable, i.e. xT Kx, for the rest of this
paper we use equation (6) to express xT Kx in terms of w
and its derivatives. Hence hereafter we consider specific state-
space realizations and then focus only on the computation of
the matrix K.

In this paper, we use power := 2 input × output as the supply
rate and call it the passivity supply rate i.e. for w = (u,y)

QΣ(w) =
[

u
y

]T

Σ

[
u
y

]
induced by Σ =

[
0 1
1 0

]
(7)

where u, y are the input/output of the system. A system
dissipative with respect to the passivity supply rate is called a
passive system. In this paper, as in the literature, conservative
systems with respect to the passivity supply rate are called
lossless systems1. From the above discussion, it is clear that
equation (4) written in terms of state variables x and adapted
to passivity supply rate takes the form

d
dt

xT Kx = 2uT y . (8)

Electrical circuits consisting of ideal inductors and/or ca-
pacitors have a lossless behavior. For example, consider the

1Lossless systems, with u input and y output, are conservative with respect
to the “passivity supply rate” uT y and have D+DT = 0. Similarly, all-pass
systems are conservative with respect to the “bounded real supply rate” uT u−
yT y. For all-pass systems the feedthrough term D satisfies I−DT D= 0. Hence,
it can be shown that all arguments made for lossless systems are applicable
to all-pass systems as well.

lossless system with transfer function G(s) = 2s
s2+1 . This cor-

responds to an LC tank circuit (or a mass-spring system) with
C = 1

2 F and L = 2H. Note that G(s) + G(−s) = 0. Let vC
and iL be the capacitor voltage and inductor current respec-
tively. The kernel and image representation of the system (as

discussed in Section 2-B) is
[

d2

dt2 +1 −2 d
dt

][vC
iL

]
= 0 and[

vC
iL

]
=

[
2 d

dt
d2

dt2 +1

]
` respectively. The stored energy is given

by 1
2 v2

C +2i2L.
In order to simplify the exposition in this paper, we shall

be using the passivity supply rate and deal with lossless
systems only. However, all the methods reported in this paper
can be applied to systems conservative with respect to other
supply rates too.

E. Adjoint systems and duality

In this section, we give a brief introduction to adjoint sys-
tems and duality. We first define the Σ-orthogonal complement
behavior B⊥Σ of a behavior B.

Definition 2.1. Consider B ∈ Lw
cont and a nonsingular, sym-

metric Σ ∈Rw×w. The Σ-orthogonal complement B⊥Σ of B is
defined as

B⊥Σ :={v ∈ C∞(R,Rw) |
∫

∞

−∞

vT
Σw dt = 0 for all w ∈B∩D}.

The behavior B⊥Σ is also known in the literature as
the adjoint system of B: see details in [22, Section 10].
If (A,B,C,D) is a minimal state-space representation of a
system B then, with respect to passivity supply rate, the
system B⊥Σ , with manifest variables (e, f ), admits a minimal
state-space representation of the form ż = −AT z + CT e,
f = BT z−DT e. The variable z is called the dual-state and

satisfies d
dt xT z = uT f + yT e for

[
u
y

]
∈B and

[
f
e

]
∈B⊥Σ .

F. Controller canonical form

Though the controller canonical form is standard,
we include it for completeness. Consider a system
with a strictly proper transfer function G(s) = n(s)

d(s)
where n(s) = bn−1sn−1 + bn−2sn−2 + · · · + b0 and
d(s) = sn + an−1sn−1 + · · ·+ a1s + a0. Define the controller
canonical form state-space representation of the system

ẋ = Ax+Bu and y =Cx (9)

where A ∈ Rn×n and B,CT ∈ Rn with A,B,C as

A:=


0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
−a0 −a1 · · · −an−2−an−1

, B :=


0
...
0
1

 , C :=


b0
...

bn−2
bn−1


T

.

For n(s) and d(s) defined above, the states of the system cor-
responding to this controller canonical representation satisfy

x := (`,
•
`, · · · , `(n−1)) and

[
u
y

]
=

[
d( d

dt )

n( d
dt )

]
`. (10)



G. LMI and Algebraic Riccati equation
As explained in Subsection 2-D, consider a passive system

with minimal i/s/o representation (A,B,C,D) and McMillan
degree n. Suppose xT Kx is the stored energy. Using Q

Ψ̂
(w) =

xT Kx, the i/s/o representation of the passive system and the
dissipation inequality (2), we get an LMI of the form[

AT K +KA KB−CT

BT K−C −(D+DT )

]
6 0. (11)

Contrary to the condition D+DT = 0, which happens when a
system is lossless, for strictly passive case we have D+DT >
0. For such systems, the Schur complement with respect to
D+DT in LMI (11) gives the well known algebraic Riccati
inequality. The algebraic Riccati equation (ARE)2 associated
with such a system with respect to the passivity supply rate is

AT K +KA+(KB−CT )(D+DT )−1(BT K−C) = 0. (12)

Equation (12) indicates that existence of the ARE depends on
the nonsingularity of D+DT . For lossless systems, D+DT

is identically zero and the ARE does not exist. However, for
lossless systems the LMI (11) holds with equality3, i.e.

AT K +KA = 0 and BT K−C = 0. (13)

H. Minimal Polynomial Basis (MPB)
The degree of a polynomial vector r(s)∈Rn[s] is defined as

the maximum degree amongst the n components of the vector.
Degree of the zero polynomial and the zero vector Rn[s] is
defined as −∞.

Consider the polynomial matrix R(s) ∈ Rn×m[s] of rank
n. Suppose P(s) ∈ Rm×(n−m)[s] is of rank n−m and satisfies
R(s)P(s) = 0. Then the columns of P(s) are said to form a
basis of the nullspace of R(s). Suppose the columns of P(s)
are {p1(s), p2(s), . . . , pm−n(s)} ordered with degrees d1 6 d2 6
. . .6 dm−n. The set {p1(s), p2(s), . . . , pm−n(s)} is said to be a
minimal polynomial basis of R(s) if every other nullspace basis
{q1(s),q2(s), . . . ,qm−n(s)} with degree c1 6 c2 6 . . .6 cm−n is
such that di 6 ci, for i = 1,2, . . . ,m− n. The degrees of the
vectors of minimal polynomial basis of R(s) are called the
Forney invariant minimal indices or Kronecker indices (more
details in [11, Section 6.5.4]).

2There are different forms of ARE depending on the notion of power being
used. For example, consider a system with input/state/output (i/s/o) representa-
tion ẋ=Ax+Bu and y=Cx+Du, then for passivity studies (power = 2uT y) we
consider ARE of the form AT K+KA+(KB−CT )(D+DT )−1(BT K−C) = 0 .
On the other hand, for small gain system (power = uT u−yT y), the ARE takes
the form AT K+KA+CTC+(KB+CT D)(I−DT D)−1(BT K+DTC) = 0. Note
that the existence of ARE crucially depends on the nonsingularity of D+DT

and I−DT D respectively. We call such conditions on the feedthrough term D
as “regularity condition”. For dissipative systems, ARE exists if and only if
this regularity conditions on feedthrough term D is satisfied. When the ARE
exists, it finds many applications: for example, see [1], [8], [20], amongst
many others.

3One way of computing solutions of an ARE is to solve for the LME
linked with it. Conservative systems do not admit an ARE but they do admit
an LME. However, solving such LME corresponding to a conservative system
is not possible with standard procedures like interior point methods due to
absence of interior points to work with. Further conservative systems also
admit linear matrix equations of the Sylvester form PX +XT Q = R where
P,Q,R,X are matrices of suitable dimensions. Methods to solve the Sylvester
equation are known in the literature. However, most of these methods require
matrices P and Q to be square, while the matrix equations encountered in the
conservative case have P and Q nonsquare.

3. LC REALIZATION BASED METHOD

The rest of this paper contains results for computation of
stored energy and algorithms based on these results (see [14]
also). This section uses the partial fraction/continued fraction
expansion based method. The capacitor voltages and inductor
currents in the electrical network are taken as the states while
computing the storage function in this section.

A. Foster/Cauer based methods: SISO case
This method is based on viewing the lossless transfer

function G(s) as the driving point impedance/admittance of
an LC network. Since the system is lossless, the poles and
zeros of the system are all on the imaginary axis. Expansion
of the proper transfer function G(s) into its partial fractions
using the Foster form gives

G(s) =
r0

s
+

m

∑
q=1

rqs
s2 +ω2

q
(14)

where4 r0 > 0,r1,r2, . . . ,rm > 0 and each ωq > 0. For a system
with proper transfer function G(s) as in equation (14), a
minimal i/s/o representation

ẋ f = A f x f +B f u f and y f =C f x f (15)

is given by

A f := diag (A0,A1, · · · ,Am) where Aq :=

 0 −rq
ω2

q

rq
0

, A0 := 0,

B f :=
[
r0 r1 0 r2 0 · · · rm 0

]T ∈ R2m+1

C f :=
[
1 1 0 1 0 · · · 1 0

]
∈ R2m+1,q = 1,2, · · · ,m.

On the other hand, expansion of a proper transfer function
G(s) = gq(s) in continued fraction using Cauer-II methods
involves the following iteration:

gq(s) =
hq

s
+

1
gq+1(s)

, gn(s) :=
hn
s

(16)

where q = 1,2, · · · ,n and n is the McMillan degree of the
system. For the sake of simplicity, we assume that the
McMillan degree n of the system is odd. Consider the
vectors V :=

[
v1 v2 · · · vm

]T , I :=
[
i1 i2 · · · im−1

]T
and B2 :=

[
h1 h3 · · · hn

]T ∈ Rm where m := n+1
2 . For

p = 1,2, · · · ,m−1, define Hu,H l ∈ R(m−1)×(m−1) such that

Hu
p j :=

{
0 for p > j
h2p for p 6 j & H`

p j :=
{

h2p+1 for p > j
0 for p < j

A minimal representation of the system G(s),

ẋc = Acxc +Bcuc and yc =Ccxc (17)

is given by the following matrices:

Ac :=

 Hu

0
−H`

 , B :=
[

0
B2

]
and C :=

[
0
1m

]T

where xc :=
[

I
V

]
.

4The residues in this expansion are assumed non-negative primarily to make
contact with LC realization studies, where the residues affect the inductance
and capacitance parameters. This is closely linked to positive definiteness of
the obtained storage function and plays no further role in the algorithm. We
do not dwell further on this: see [22, Section 6].
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The physical realization of transfer function in equation (14)
in an LC network can be done using the Foster method (as
shown in Figure 1) and the Cauer method (as in Figure 2).

Theorem 3.1. Consider a controllable, lossless system with
a strictly proper transfer function G(s) of the form given
in equations (14) and (16). Assume the McMillan degree of
G(s) is odd. For each of the two cases (a) & (b) below
corresponding to Foster and Cauer realizations, consider the
state-space realizations in which the states are the capacitor
voltages and inductor currents. Then, the stored energy

xT Kx = ∑
L j

L ji2j +∑
Cq

Cqv2
q.

More precisely,
(a) For systems with proper impedance function as in equa-

tion (14) and a minimal i/s/o representation as in (15),
the unique storage function is xT

f K f x f , with the diagonal
matrix K f ∈ Rn×n defined by

K f :=diag
(

1
r0
,K1,K2, . . . ,Km

)
where Kq :=

[
r−1

q 0
0 riω

−2
i

]
for q = 1,2, · · · ,m.

(b) For systems with proper admittance function as in equa-
tion (16) and a minimal i/s/o representation as in (17),
the unique storage function is xT

c Kcxc, with the diagonal
matrix Kc ∈ Rn×n defined by

Kc := diag
(

1
h2

,
1
h4

, · · · , 1
hn−1

,
1
h1

,
1
h3

, · · · , 1
hn

)
.

Proof. a) Note that ωq 6= ω j for q 6= j guarantees controllabil-
ity and observability5 of the system. We prove the theorem
for n = 5, the general case follows from it. The transfer
function in partial fraction form is G(s) = r0

s + r1s
s2+ω2

1
+

r2s
s2+ω2

2
. Hence A = diag

{
0,

[
0 −r1
r1
ω2

1
0

]
,

[
0 −r2
r2
ω2

2
0

]}
, B =[

r0 r1 0 r2 0
]T

,C =
[
1 1 0 1 0

]
.

Consider K f = KT
f = [kxy] ∈ R5×5 where x,y = 0,1, · · · ,4.

Since ω1 6= ω2 and K f satisfies AT
f K f +K f A f = 0, we have

5It can be verified that the controllability matrix [B f A f B f · · · An−1
f B f ]

and observability matrix [CT
f AT

f CT
f · · · An−1T

f CT
f ] has full rank if and only if

ωq 6= ω j for q 6= j.

K f = diag {k00,k11, · · · ,k44}, k22
k11

= r1
r2
, and k44

k33
= r3

r4
. Further

use of the equation BT
f K f −C f = 0, we get a unique K f of the

form K f = diag
{

1
r0
, 1

r1
, r1

ω2
1
, 1

r2
, r2

ω2
2

}
. This completes the proof

Statement a) of Theorem 3.1.
b) We give a brief outline of the proof here due to paucity of
space. We show it for a system with McMillan degree n= 5.
The proof for the general case follows from it. Using equation
(17), we have

Ac =


h2 h2
0 h4

0
−h3 0
−h5 −h5

 , Bc =


0
0
h1
h3
h5

 ,Cc =


0
0
1
1
1


T

Solving the matrix equations AT
c Kc +KcAc = 0 and BT

c Kc−
Cc = 0, we get the unique diagonal matrix Kc :=
diag

(
1
h2
, 1

h4
, 1

h1
, 1

h3
, 1

h5

)
. Hence Kc induces the storage func-

tion xT
c Kcxc of the system. This completes the proof Statement

b) of Theorem 3.1.

Based on the above result, we report an algorithm referred
to as the ‘LC realization based’ algorithm in Section 7.1
to compute storage function of lossless systems. Results in
Theorem 3.1 is easily extendable to lossless systems with even
McMillan degree. We present an example next to demonstrate
Theorem 3.1.

Example 3.2. Consider a lossless behavior B with transfer
function G(s) = 8s2+1

6s3+s .

LC realization based method:

G(s) =
1
s
+

s/3
s2 +1/6

=
1
s
+

1
1
2s +

1
1/3s

Clearly, r0 = 1,r1 =
1
3 ,ω

2
1 = 1

6 and h1 = 1,h2 =
1
2 ,h3 =

1
3 .

Foster realization (Theorem 3.1(a)): x=(vC1,vC2, iL)

A f =

0
0 − 1

3
1
2 0

 ,B f =

1
1
1
3

 ,C f =

1
1
0

T

,K f =

1
3

2


Cauer realization (Theorem 3.1(b)):x=(iL,vC1,vC2)

Ac =

 0 0 1
2

0 0 0
− 1

3 0 0

 ,Bc =

0
1
1
3

 ,Cc =

0
1
1

T

,Kc =

2
1

3



B. Partial fraction based method – MIMO case

In this section we generalize the SISO result based on Foster
LC realization to MIMO lossless systems. Gilbert’s realization
is a well known method to find the i/s/o representation of
MIMO systems [11, Section 6.1]. However, such a method
does not guarantee an i/s/o representation with the inductor
currents and capacitor voltages as the states in an LC realiza-
tion. We need such a form of A since the proposed method
uses energy stored in inductor and capacitor as the storage
function. In this section, we present a method to find the
i/s/o representation of a lossless system such that the inductor



current and capacitor voltage are the states of the system. We
then proceed to compute the storage function matrix K with
respect to these states.

1) Gilbert’s realization: Before we present the main results
of the section, we revisit Gilbert’s theorem as given in [6,
Theorem 7]. This proposition gives a method to compute the
McMillan degree of a MIMO system.

Proposition 3.3. Consider a proper rational transfer-function
matrix G(s) whose elements have semi-simple poles at s =
λi, i = 1, · · · ,q in the s-plane. Let the partial fraction ex-
pansion of G(s) be ∑

q
i=1

Ri
s−λi

+ D where Ri = lims→λi(s−
λi)G(s) and D = lims→∞ G(s). Corresponding to each λi, let
the rank of the Ri matrix be ri. Then McMillan degree
corresponding to the system is given by n= ∑

q
i=1 ri.

For systems with imaginary axis poles, Proposition 3.3 is
adapted and presented as Lemma 3.5 in the next subsection.

2) Adapted Gilbert’s MIMO realization for lossless case:
We first review necessary and sufficient condition for a real
rational matrix to be positive real6 and/or lossless (see [20]).

Proposition 3.4. A transfer matrix G(s) ∈R(s)p×p is positive
real if and only if

1) Each element of G(s) is analytic in the open right half
s-plane.

2) G( jω)+G(− jω)T > 0 for all ω ∈R such that jω is not
a pole of any element of G(s).

Further, a positive real rational transfer matrix G(s) is lossless
if and only if G(s)+G(−s)T = 0.

Let G(s) = [gi j] and poles of gi j be represented as P(gi j).
Using Proposition 3.4, we conclude that a necessary condition
for a positive real transfer matrix to be lossless is P(gi j)i6= j ⊆
P(gi j)i= j i.e. the poles of the off-diagonal entries of G(s) are
also poles of the diagonal entries. This means that the residue
matrix corresponding to the poles of the diagonal entries of
G(s) that are not poles of the off-diagonal entries of G(s) will
be diagonal. Therefore a more generalized case would be when
the poles of the off-diagonal and diagonal entries of G(s) are
the same: thus ensuring non-diagonal residue matrix. We deal
with such systems. Suppose the poles of G(s) are P(G(s)) =
{± jω1,± jω2, · · · ,± jωq}. Using partial fraction method, we
write G(s) = Σ

q

`=1G`(s) where G`(s) =
R`(s)

s2+ω2
`

, R`(s)∈R[s]p×p.
Next we adapt Proposition 3.3 for the case of imaginary axis

poles and present it as a lemma. We will use the lemma to
construct the minimal i/s/o representation of a MIMO lossless
system.

Lemma 3.5. Consider a rational transfer matrix G(s) whose
elements have simple poles at s = 0 and/or s = ± jωi, i =
1,2, · · ·q. Let the partial expansion of G(s) be

R0

s
+

q

∑
l=1

R`(s)
s2 +ω2

`

+D =
R0

s
+

q

∑
l=1

(
Z`

s+ jω`
+

Z∗`
s− jω`

)
+D

where R0 = lims→0 sG(s) ∈ Rp×p,D = lims→∞ G(s) ∈ Rp×p

are the residual matrices and R`(s) is the residue matrix

6We focus on lossless systems in this paper. Proposition 3.4 can hence be
taken as definition of positive real.

corresponding to the conjugate pair of poles on the imaginary
axis. Let r0 = rank of R0 and r` = rank of Z`. Then the
minimal order of the i/s/o representation of the system is
n= r0 +∑

q

`=1 2×r`.

Proof. Note that rank(Z`) = rank(Z∗` ) = r`. Hence using
Proposition 3.3, minimum number of states for the system is
n = r0 +∑

q

`=1 rank(Z`)+∑
q

`=1 rank(Z∗` ) = r0 +∑
q

`=1 2× r`.
This proves the lemma.

From Proposition 3.4, we know that for a lossless system
G(s) = −G(−s)T . Hence the partial fractions corresponding
to each of the poles ω` have a skew symmetric structure.
Consider G` = [g`i j]. The general structure7 of G`(s) is given
by

g`i j(s) =
α`

i js−β `
i j

s2 +ω2
i

where β
`
i j =−β

`
ji. (18)

We state and prove a theorem next which gives a procedure
for construction of the (A,B,C) matrices for lossless systems.
For simplicity, we consider that the transfer matrix has only
one pair of conjugate poles on the imaginary axis i.e. we
consider q= 1 in G(s) = Σ

q

`=1G`(s). (For the general case i.e.
q> 1 we just have to apply the method described in Theorem
3.6 (for q= 1) on each partial fraction.)

Theorem 3.6. Consider a lossless transfer matrix G(s) =
R(s)

s2+ω2 = Z
s+ jω + Z∗

s− jω where R(s) = sX −Y ∈ Rp×p[s] and
Z,X ,Y ∈ Rp×p. Elements of G(s) are of the form given in
equation (18). Let the rank of Z be r. The i-th rows of R(s),
X and Y are represented as zi, xi and yi respectively. Then the
following state-space realization is minimal.

1) A := diag (Jω ,Jω , . . . ,Jω) ∈ Rn×n where n := 2×r and

Jω =

[
0 −ω

ω 0

]
.

2) Construct B j :=
[

x j
y j
ω

]
for each j = 1,2, . . . ,p such that

B j 6= 0 and define

B := col (B1,B2, · · · ,Br) ∈ Rn×p.

3) There exist row vectors c1,c2, · · · ,c j ∈ Rn such that C
:= col (e1,e3, · · · ,e2r−1,c1,c2, · · ·c j) ∈ Rp×n where c j ∈
span of {e1,e2, · · · ,e2r−1} and ei is the i-th row of the
identity matrix.

Proof. The proof for the general case follows from the proofs
of the following two special cases:

1) G(s) is nonsingular and p= 2.
2) G(s) is singular and p= 3.

Case 1: GGG(s) is nonsingular: For p= 2. Using equation (18),

R(s) = s
[

α1 α12
α12 α2

]
−
[

0 β12
−β12 0

]
= sX−Y.

Since G(s) is nonsingular, r= 2 and n= 4 (By Lemma 3.5).

Here A = diag
{[

0 −ω

ω 0

]
,

[
0 −ω

ω 0

]}
∈ R4×4.

7In general the elements of the transfer matrix G(s) may not be proper.
However, there always exists an input-output partition such that the transfer
matrix is proper [22, Section 2]. Hence without loss of generality, we assume
the transfer matrix to be proper.



BT=

[
α1 0 α12 −β12

ω

α12
β12
ω

α2 0

]
, C =

[
1 0 0 0
0 0 1 0

]
.

Using (A,B,C), it is easy to verify that C(sI−A)−1B = G(s).
Applying the same construction procedure for the matrices
A,B,C, the theorem is proved for any nonsingular G(s) of
arbitrary order n.
Case 2: GGG(s) is singular: For p= 3. Using equation (18),

R(s) = s

α1 α12 α13
α12 α2 α23
α13 α23 α3

−
 0 β12 β13
−β12 0 β23
−β13 −β23 0

= sX−Y.

Since G(s) is singular, consider the case when the rows of
R(s) are related by the following relation a× z1+b× z2 =: z3.
Here r= 2 and hence n= 4 (By Lemma 3.5).

Therefore consider A = diag
{[

0 −ω

ω 0

]
,

[
0 −ω

ω 0

]}
∈

R4×4.

BT=

α1 0 α12 −β12
ω

α12
β12
ω

α2 0
α13

β13
ω

α23
β23
ω

 and C =

1 0 0 0
0 0 1 0
a 0 b 0

.

With the constructed triplet (A,B,C), we have C(sI −
A)−1B = G(s). This completes the proof.

Given the above minimal state-space realization of G(s),
we compute the storage function associated with the system.
The storage function associated to a lossless transfer function
G(s) must satisfy the matrix equations (13) where the storage
function is induced by the symmetric matrix K. Let K = [ki j]
and K = KT . Since K satisfies the first matrix equation in
equation (13), K has to have the form

K =



k11 0 k13 k14 ··· k1(n−1) k1n
0 k11 −k14 k13 ··· −k1n k1(n−1)

k13 −k14 k33 0 ··· k3(n−1) k3n
k14 k13 0 k33 ··· −k3n k3(n−1)
...

...
...

...
. . .

...
...

k1(n−1) −k1n k3(n−1) −k3n ... knn 0
k1n k1(n−1) k3n k3(n−1) ... 0 knn

 .

Writing the n2

4 unknown elements in K as a vector yk, we
define

yT
k :=
[
k11 k13 · · · k1n k33 k35 · · · k3n · · · knn

]
∈ R

n2

4 .
(19)

The matrix K has to further satisfy the second matrix equation
in (13). Hence we have p× n linear equations of the form
Pyk = q where q ∈ Rpn. Solution to these set of linear
equations8 gives us the desired storage function K.

Note that Theorem 3.6 gives a minimal realization of G(s).
With the same A obtained as in Statement 1 of Theorem 3.6,
we can have different (B,C) pairs. Depending on the specific
(B,C), we get different sets of linear equations. We compute
the storage function of the system using the triplet (A,B,C)
obtained in Theorem 3.6. The unknown elements of K are
hence given by yk = P†q where P† is the pseudo-inverse of P.

8Note that for a controllable conservative system there exists a unique
symmetric matrix K that induces the storage function xT Kx. Hence for such
a system the vector yk defined in equation (19) is unique as well. Further,
the facts that every conservative system admits a storage function and the
unique K satisfies matrix equations (25) together guarantee that q ∈ img P in
equation Pyk = q.

The special structure of the triplet (A,B,C) is used to
create P and q in the set of linear equations Pyk = q. For
simplicity, we show the construction of P and q for a lossless
nonsingular G(s) ∈ R2×2(s). Since G(s) is nonsingular, the
minimum number of states of G(s) is 4.
Construction of P ∈ R8×4 and q ∈ R8:
Let BT:=

[
b1 b2 b3 b4

]
∈R2×4 and C:=

[
c1 c2 c3 c4

]
∈R2×4.

1) Construction of matrix P:
Partition PT =

[
PT

1 PT
2 · · · PT

n
2

]
where Pi ∈ R2p×p2

.
Further, each Pi is partitioned as

[
Pi1 Pi2 · · · Pip

]
where Pi j ∈ R2p×(2p−2 j+1). Therefore

P :=
[

P11 P12
P21 P22

]
=


b1 b3 b4 0
b2 b4 −b3 0
0 b1 −b2 b3
0 b2 b1 b4

 .
2) Construction of vector q:

q = col
(
c1, c2, c3, c4

)
.

This construction is to be used for any lossless system with
nonsingular G(s). For a singular G(s), a slightly modified
construction procedure is to be used after appropriate zero
padding in B and C: this is skipped since the procedure is
straightforward.

4. BEZOUTIAN BASED METHOD

This section contains results to compute storage function of
lossless system using the idea of Bezoutian. We deal with the
SISO case first and then move on to the MIMO case.

A. Bezoutian based method – SISO case
Consider a lossless SISO system G(s) = n(s)

d(s) with an

observable image representation w = M( d
dt )` where w =

[
u
y

]
,

M(ξ ) :=
[

d(ξ )
n(ξ )

]
. Here Σ =

[
0 1
1 0

]
and d(s) is a monic

polynomial. From equation (5),

Ψ(ζ ,η) =
d(ζ )n(η)+d(η)n(ζ )

ζ +η
=

∑i, j Φ̃i, jζ
iη j

ζ +η
. (20)

Here Φ̃i, j ∈R. The storage function can be calculated by what
may be called, “polynomial long division technique” which is
based on Euclidean long division of polynomials. We state this
as a result below.

Theorem 4.1. Consider a Σ-lossless behavior B with transfer
function G(s) = n(s)

d(s) where d(s) is a monic polynomial and the
controller canonical state-space realization:

ẋ = Ax+Bu and y =Cx. (21)

Construct the two variable polynomial zb(ζ ,η), induced by
the “Bezoutian” of the polynomials n(s) and d(s) by

zb(ζ ,η) :=
n(ζ )d(η)+n(η)d(ζ )

ζ +η
=


1
ζ

...
ζ n−1


T

Zb


1
η

...
ηn−1

 ,
(22)



where Zb ∈Rn×n is the corresponding symmetric matrix. Then,
xT Zbx is the unique storage function for the Σ-lossless system
with state-space description (21), i.e. d

dt xT Zbx = 2uy.

Proof. Consider the image representation of B: w=M( d
dt )`=[

d(s)
n(s)

]
`. Using equations (5) and (7), we have Ψ(ζ ,η) =[

d(ζ )
n(ζ )

]T
Σ

[
d(η)
n(η)

]
ζ +η

=
n(ζ )d(η)+n(η)d(ζ )

ζ +η
= zb(ζ ,η).

Further, Ψ(ζ ,η) is a symmetric 2-variable polynomial in ζ

and η . Hence

Ψ(ζ ,η) =


1
ζ

ζ 2

...
ζn−1


T

Ψ̃


1
η

η2

...
ηn−1

 (Note that Ψ̃ = Zb).

The storage function is QΨ(
d
dt )` = xT Ψ̃x where x =

(`,
•
`, · · · , `(n−1)) as in equation (10), and x corresponds to the

state of the behavior B. Hence xT Ψ̃x = xT Zbx is the storage
function of B.

Remark 4.2. The conventional Bezoutian of two polynomials p(x)
and q(x) is defined as Bz(x,y) := p(x)q(y)−p(y)q(x)

x−y . Notice the change
in sign between this conventional Bezoutian definition and the one
defined in equation (22): inspite of the sign change, we call zb
the Bezoutian due to the following reasons. In any lossless transfer
function n(s)

d(s) , when the order of the system is even then n(s) is an
odd polynomial i.e. n(−s) =−n(s) and d(s) is even polynomial i.e.
d(−s) = d(s). Thus our definition is same as the conventional one if
we substitute x = −ζ ; y = η when the order of the system is even
and x = ζ ; y =−η when the order of the system is odd. Hence for
lossless case Bz(x,y) = zb(ζ ,η) where x =−ζ , y = η for even order
systems and x = ζ , y = −η for odd order systems. In fact Zb of
eq. (22) is nonsingular if and only if n(s) and d(s) are coprime. This
justifies the use of ‘Bezoutian’ for zb(ζ ,η) defined in equation (22).

Methods to compute the Bezoutian: There are various meth-
ods of finding the Bezoutian zb of two polynomials. In this
paper we propose three different methods to compute zb:
(a) Euclidean long division method,
(b) Pseudo-inverse method, and
(c) 2 dimensional discrete Fourier transform method.

Euclidean long division method: Though Theorem 4.1
involves bivariate polynomial manipulation, Algorithm 7.3
below uses only univariate polynomial operations. The algo-
rithm is similar to Euclidean long division. As in [3], write
Φ(ζ ,η) = φ0(η)+ ζ φ1(η)+ · · ·+ ζ nφn(η). Then the storage
function Ψ(ζ ,η) = ψ0(η)+ζ ψ1(η)+ · · ·+ζ n−1ψn−1(η) can
be computed by the following recursion (see [3, Section 6.5])
with k = 1, . . . ,n−1:

ψ0(ξ ) :=
φ0(ξ )

ξ
, ψk(ξ ) :=

φk(ξ )−ψk−1(ξ )

ξ
. (23)

Pseudo-inverse method: Consider

Ψ(ζ ,η) = ∑
i, j

Ψ̃i jζ
i
η

j where [Ψ̃i j] =: Ψ̃ ∈ Rn×n.

Φ(ζ ,η) = ∑
i, j

Φ̃i jζ
i
η

j where [Φ̃i j] =: Φ̃ ∈ R(n+1)×(n+1).

From equation (5), we have

(ζ +η)Ψ(ζ ,η) = M(ζ )T
ΣM(η) = Φ(ζ ,η). (24)

Using equation (24), we have

σR(Ψ̃)+σD(Ψ̃) = Φ̃ (25)

where σR(Ψ̃) :=
[

0T
Ψ̃

0 0

]
, σD(Ψ̃) :=

[
0 0
Ψ̃ 0T

]
and 0 =[

0 0 · · · 0
]
: see also [21]. Due to the symmetry of

Ψ(ζ ,η) and Φ(ζ ,η) the number of unknowns in Ψ̃ is n(n+1)
2

and the number of distinct elements in Φ̃ is (n+1)(n+2)
2 . Hence

the matrix equation (25) can be rewritten as linear equations
of the form

Pby = qb where Pb ∈ R
(n+1)(n+2)

2 × n(n+1)
2 ,qb ∈ R

(n+1)(n+2)
2 (26)

and y := [Ψ11 Ψ12 ·· Ψ1n Ψ22 ·· Ψ2n ··· Ψnn ]
T .

For a dissipative system, a storage function exists and this
guarantees qb ∈ im Pb. We compute the pseudo-inverse9 of the
matrix Pb i.e. P†

b and obtain y := P†
b qb. This gives the storage

function. The above discussion is a proof of the following
corollary.

Corollary 4.3. Consider a behavior B ∈ Lw
cont with transfer

matrix G(s) = n(s)
d(s) where d(s) is a monic polynomial and

construct Φ̃ = [Φ̃i, j] as in equation (20). Let the matrix
equation (25) be written in the linear equation form Pby = qb.
Then the following are equivalent

1) B is lossless.
2) There exists a unique symmetric K such that xT Kx =

2uT y.
3) Pb is full column rank and qb ∈ img Pb.

2 dimensional discrete Fourier transform method (2D-
DFT): Another technique we propose to compute the Be-
zoutian of equation (22) is the 2D-DFT method. Consider the

matrix Ĩ :=
[

0 1
1 0

]
. Note that for a system with McMillan

degree n, the term ζ +η in equation (24) can be written as

ζ +η =∑
i, j

Q̃i jζ
i
η

j where [Q̃i j] = Q̃=

[
Ĩ 0
0 0

]
∈R(n+1)×(n+1).

Here 0 is the zero matrix of dimension (n− 1)× (n− 1).
Appending a row and column in Zb (from Theorem 4.1), we
rewrite the Bezoutian as

zb(ζ ,η)=∑
i, j

Z̃bi j ζ
i
η

j where [Z̃bi j ]=Z̃b=

[
Zb 0
0 0

]
∈R(n+1)×(n+1).

We compute Zb using the formula

Zb = Z̃b(1 : n,1 : n) where Z̃b = F−1[F (Φ̃)./F (Q̃)]

where 2D-DFT and its inverse operation are represented as F
and F−1 respectively and the symbol ./ represents element-
wise division. Note that for the element-wise division to be

9The solution of Pby = qb can also be found using Scilab’s so-called
‘backslash’ implementation (i.e. Pb\qb). Technically, using the backslash
method is faster. However, in the case of Scilab and for the orders we
considered, both the backslash and the pseudo-inverse methods require the
same computational time. Hence we proceed with pseudo-inverse method only.



possible, F (Q̃) must have every element nonzero. Using the
definition/formula of two dimensional DFT, it can be shown
that F (Q̃) has all entries nonzero if n is even. Hence the
procedure described here is directly applicable for even order
systems. With a straightforward and meticulous modification,
one deals with the odd order case also: we hence skip this.
We summarize the above 3 methods in the following theorem
for easy reference. The description of the methods contains
the proof.

Theorem 4.4. Consider the problem of finding K = [Ki j] ∈
Rn×n such that ∑i, j Ki jζ

iη j = Φ(ζ ,η)
ζ+η

. Then each of the fol-
lowing algorithms gives K

1) Euclidean long division using equation (equation (23)),
2) Pseudo-inverse of P in the linear equation Py = q (using

Corollary 4.3),
3) Two dimensional Fourier transform followed by element

wise division and inverse Fourier transform.

After having described these procedures to compute the
Bezoutian, we next compare them for accuracy and time.

B. Experimental setup and procedure

Experimental setup: The experiments were carried out on an
Intel Core i3 computer at 3.30 GHz with 4 GB RAM using
Ubuntu 14.04 LTS operating system. The relative machine
precision is ε ≈ 2.22×10−16. Numerical computational pack-
age Scilab 5.5 (which, like Matlab and Python-SciPy, NumPy,
relies on LAPACK for core numerical computations) has been
used to implement the algorithms.
Experimental procedure: Randomly generated transfer func-
tions of lossless systems are used to test the algorithms.
Computation time and error for each transfer function order
has been averaged over three different randomly generated
transfer functions. To nullify the effect of CPU delays the
computation time to calculate K for each transfer function is
further averaged over hundred iterations.

C. Experimental results

1) Computation Time: Figure 3 shows a comparison of
the time taken by each of the Bezoutian based methods viz.
Euclidean long division, Pseudo-inverse and 2D-DFT. From
the plot it is clear that the Euclidean long division based
method and pseudo-inverse methods are comparable to each
other and are much faster than 2D-DFT.

2) Computation error: As discussed in Section 2-G, loss-
less systems satisfy LMI (11) with equality. In view of this,
define the error associated with the computation of K as

Err(K) :=
∥∥∥∥[AT K +KA KB−CT

BT K−C 0

]∥∥∥∥
2
. (27)

The matrix K obtained from the above procedures must ideally
yield Err(K) = 0. Figure 4 shows the error in computation
of storage function using the three Bezoutian based methods
discussed above. All the three methods have comparable
errors. From the comparison it is clear that Euclidean long
division performs better that the other two methods. Hence
we present an example next to show how the algorithm for
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Fig. 4. Plot of error (see equation (27)) versus system’s order.

computation of the Bezoutian based on the Euclidean long
division method is constructed.

Example 4.5. Bezoutian based method : Consider the system
G(s) = 8s2+1

6s3+s =
8
6 s2+ 1

6
s3+ 1

6 s
. Here N = [0 8

6 0 1
6 ], D = [1 0 1

6 0]
and n= 3.
The i/s/o representation of the system is

A =

0 1 0
0 0 1
0 − 1

6 0

 ,B =

0
0
1

 ,C =
1
6

1
0
8

T

Hence Φ(ζ ,η) = n(ζ )d(η)+n(η)d(ζ ) =

1
36

(η+6η
3)︸ ︷︷ ︸

φ0(η)

+(1+8η
2)︸ ︷︷ ︸

φ1(η)

ζ+(8η+48η
3)︸ ︷︷ ︸

φ2(η)

ζ 2+(6+48η
2)︸ ︷︷ ︸

φ3(η)

ζ 3


= 1

36


1
ζ

ζ 2

ζ 3


T 

0 1 0 6
1 0 8 0
0 8 0 48
6 0 48 0


︸ ︷︷ ︸

NT D+DT N=Kb


1
η

η2

η3


This corresponds to step (3) of Algorithm 7.3. Using the



equations (23), we have

ψ0(ξ ) =
φ0(ξ )

ξ
=

1+6ξ 2

36
, ψ1(ξ ) =

φ1(ξ )−ψ0(ξ )

ξ
=

2ξ

36

ψ2(ξ ) =
φ2(ξ )−ψ1(ξ )

ξ
=

6+48ξ 2

36
Note that the polynomial subtraction and division shown in
these steps can also be done using corresponding vector shift
and subtraction operations. This is implemented with Step (4)
to Step (10) of Algorithm 7.3. Hence the storage function is

Ψ(ζ ,η) =
1

36
{
(1+6η

2)+2ηζ +(6+48η
2)ζ 2}

=
1

36

 1
ζ

ζ 2

1 0 6
0 2 0
6 0 48


︸ ︷︷ ︸

K

 1
η

η2


D. Bezoutian based method – MIMO case

In this section we propose an extension of the Bezoutian
based method for the SISO case to MIMO case when each
of the elements in G(s) are considered to be lossless i.e. we
consider each element of G(s) to have poles on the imaginary
axis. In general the elements of G(s) have the form given in
equation (18). However, since we consider each element of
G(s) to be lossless therefore βi j = 0. For such systems, we
consider each of the elements in G(s) as lossless systems and
use the procedure described in Section 4-A to compute the
storage function of the system. We present a theorem next
to compute the storage function of MIMO systems with the
Bezoutian method.

Theorem 4.6. Consider a lossless transfer matrix G(s) with
the (i, j)-th element represented as gi j. Recall again that gi j
has the form of equation (18) with βi j = 0. The controller
canonical form of each element gi j is represented by the triplet
(Ai j,bi j,ci j). Construct matrices Bi j ∈ R2×p such that j-th
column of Bi j := bi j and rest entries zero. Let Ci j ∈ Rp×2

be matrices with i-th row of Ci j := ci j and rest entries zero.
Suppose Ki j represents the storage function corresponding to
each gi j given by Theorem 4.1. Then (possibly nonminimal)
state-space representation of the system G(s) is given by the
following (A,B,C) matrices.

1) A = diag
(
A11,A12, . . . ,A1p,A21, . . . ,App

)
∈ R2p2×2p2

.
2) B = col

(
B11,B12, . . . ,B1p,B21, . . . ,Bpp

)
∈ R2p2×p.

3) C =
[
C11 C12 . . . C1p C21 . . . Cpp

]
∈ Rp×2p2

.
The K matrix that induces the storage function of the lossless
system G(s) with respect to the triplet (A,B,C) is given by
K = diag

(
K11,K12, · · · ,K1p,K21, · · · ,Kpp

)
∈ R2p2×2p2

.

Proof. We present the proof for a specific case. The
general proof is essentially a book-keeping version of
this simplified case. Consider the transfer matrix of the

form G(s) =

[
g11(s) g12(s)
g21(s) g22(s)

]
:=
[ α11s

s2+ω2
α12s

s2+ω2
α21s

s2+ω2
α22s

s2+ω2

]
. Con-

sider ci j(sI − Ai j)
−1bi j = gi j where i, j = 1,2. Construct

A = diag {A11,A12,A21,A22}, B =


b11 0
0 b12

b21 0
0 b22

 and C =

[
c11 c12 0 0
0 0 c21 c22

]
. It can be verified that C(sI−A)−1B =

G(s).
The storage function corresponding to each gi j is Ki j. Hence
AT

i jKi j +Ki jAi j = 0 is satisfied. Further, bT
i jKi j− ci j = 0. Con-

struct K = diag {K11,K12,K21,K22}. From the construction of
A and K it follows that AT K +KA = 0. Further it can also
be verified that BT K−C = 0. This proves that K gives the
required storage function.

Note that the K matrix obtained by the method described in
Theorem 4.6 is not minimal in general. This is due the non-
minimal state-space representation obtained for the lossless
transfer matrix G(s). It is not clear whether a minimal state-
space realization is always possible for a lossless MIMO
system with the states of the form given in Section 2-F: for
more on nonminimality of RLC circuits in general see [5], [9].
This requires further investigation and is not dealt here.

5. GRAMIAN BALANCING METHOD

In this subsection we present a method to compute storage
function of all-pass systems. Note that only for the Gramian
balancing method, we shift to all-pass instead of lossless
systems. Both lossless and all-pass systems are conservative
with respect to a suitable supply rate. It is based on the notion
of balancing of controllability and observability Gramian. We
proceed to state the result in the form of a theorem next.

Theorem 5.1. Consider an nth order all-pass and stable
system G(s) ∈ R(s)p×p with a minimal balanced state-space
realization ẋ = Ax + Bu, y = Cx + Du i.e. in this basis,
A+AT +BBT = 0 and AT +A+CTC = 0. Then the storage
function associated is xT x.

Note there always exists a balanced state-space representa-
tion for any stable system. The proof is skipped here since
this paper focuses on algorithms. The algorithm for Gramian
balancing method consists of two main steps. Firstly, for the
given system compute a transformation that yields a balanced
state-space realization. The procedure to find such a balanced
state-space representation involves use of the Cholesky decom-
position and SVD: for the detailed algorithm refer [1, Section
7.3]. Let S be the transformation matrix. Secondly, note that
in the balanced state-space realization the storage function is
induced by I ∈Rn×n. Hence the storage function in the original
state space basis is K := ST IS = ST S.

Example 5.2. For the transfer function G(s) in Example 4.5
above, consider the all-pass system 1−G(s)

1+G(s) =
6s3−8s2+s−1
6s3+8s2+s+1 . The

storage function is xT x for

A =

−0.04 −0.36 −0.04
0.36 0 0.01
−0.42 −0.01 −1.29

 ,B =

−0.29
0

−1.61

 ,C =−BT ,
D = 1

Remark 5.3. Obtaining a minimal state-space realization of system
G(s) such that the controllability and observability Gramians (Wr
& Wo) are equal is achieved using the so called simultaneous
diagonalization method: see [1, Section 7.1]. The basis in which
we obtain Wr = Wo is called a balanced basis. Hence we call the
method of obtaining storage function of all-pass systems based on



Theorem 5.1 as the “Gramian balancing method” when comparing
the time and accuracy in Figures 5 and 6. See also [19, Theorem 3]
for related work about balancing, though the development is solely
for the strict dissipative case.

6. ADJOINT NETWORK METHOD

In this section we report new properties of the storage
function of lossless systems based on adjoint network. Using
these new properties we propose an Algorithm in Section 7. As
discussed in Section 2-E, the system B⊥Σ is interpreted as the
adjoint behavior of B: refer [10], [17]. In network theory ter-
minology B⊥Σ represents the adjoint network corresponding
to the given network behavior B. Note that an n-dimensional
minimal i/s/o of B being ẋ = Ax + Bu, y = Cx + Du, the
adjoint system B⊥Σ admits a corresponding n-dimensional
i/s/o representation with respect to the passivity supply rate:

ż =−AT z+CT u and y = BT z−DT u

where A ∈ Rn×n, B,CT ∈ Rn×p and D ∈ Rp×p.
An interconnection of the adjoint system (dual system) with

its primal system gives a new behavior B∩B⊥Σ . Call this
behavior BHam. Though it was shown in the context of strict
passivity, it can be shown along the lines like in [20] that
BHam admits a first order representation of the form

R
(

d
dt

)x
z
y

= 0 with R(ξ ) = ξ E−H (28)

where E :=

In 0 0
0 In 0
0 0 0

 and H :=

A 0 B
0 −AT CT

C −BT D+DT

 .
For reasons elaborated in [10], call R(ξ ) a “Hamiltonian
pencil”. For a lossless behavior B, a first order representation
of BHam isξ In−A 0 −B

0 ξ In +AT −CT

−C BT 0

x
z
y

= 0. (29)

It turns out that when a behavior B is lossless with respect

to Σ =

[
0 I
I 0

]
and input cardinality of B is equal to the

positive signature of Σ, then B∩B⊥Σ =B: see [2, Lemma 11].
Hence the McMillan degree of BHam and B is the same i.e. n.
However, the representation of the behavior BHam in equation
(29) has 2n states and hence x and z satisfy static relations
amongst each other. This is made precise in Proposition 6.1
below, whose proof can be found in [4]. We use this to prove
the main result of this section: Theorem 6.2. The theorem
helps extract the static relations of the first order representation
(29) of behavior BHam and in the process yields the storage
function for the lossless behavior B.

Proposition 6.1. Consider a lossless behavior B ∈ Lw
cont with

minimal i/s/o representation ẋ = Ax+Bu, y = Cx+Du and
define the Hamiltonian pencil R(ξ ) as in equation (28). Then,
there exists a symmetric K ∈ Rn×n such that

d
dt

xT Kx = 2uT y for all
[

u
y

]
∈B. (30)

if and only if

rank

[
sI−A 0 −B

0 sI+AT −CT

−C BT 0
−K I 0

]
= rank

[
sI−A 0 −B

0 sI+AT −CT

−C BT 0

]
. (31)

Next we report one of the main results of this paper.
Algorithm 7.4 to compute the storage function of lossless
systems is based on this result. The definition of minimal
polynomial basis can be found in Section 2-H.

Theorem 6.2. Consider R(ξ ) := ξ E−H ∈ R[ξ ](2n+p)×(2n+p)

as defined in equation (28) constructed for the lossless be-
havior B ∈ L

2p
cont. Let M(ξ ) ∈ R[ξ ](2n+p)×p be any minimal

polynomial nullspace basis (MPB) for R(ξ ). Partition M =[
M1(ξ )
M2(ξ )

]
with M1 ∈ R[ξ ]2n×p. Let N(ξ ) be any MPB for

M1(ξ )
T . Then, the following statements are true.

1) Each of the first n Forney invariant minimal indices of
N(ξ ) are 0, i.e. first n columns of N(ξ ) are constant
vectors.

2) Partition N into
[
N1 N2(ξ )

]
with N1 ∈ R2n×n and fur-

ther partition N1 =

[
N11
N12

]
with N12 ∈ Rn×n. Then N12 is

invertible and K :=−N11N−1
12 is the storage function for

B, i.e. d
dt xT Kx = 2uT y for all system trajectories.

Proof. 1: We first prove that the first n minimal indices
of the Hamiltonian pencil R(ξ ) are 0. For lossless sys-
tems detR(ξ ) = 0. Since rank R(ξ ) = 2n where n is the
McMillan degree of behavior B and R(ξ )∈R(2n+p)×(2n+p)[ξ ],
find M(ξ ) ∈ R(2n+p)×p[ξ ] with rank M(ξ ) = p such that
R(ξ )M(ξ ) = 0.
From Proposition 6.1, we have

[
−K I 0

]
is in the row span

of R(ξ ). Therefore,[
−K I 0

]
M(ξ ) = 0 i.e.

[
−K I 0

][M1(ξ )
M2(ξ )

]
= 0

where M1 ∈ R[ξ ]2n×p. This implies that[
−K I

]
M1(ξ ) = 0 i.e. M1(ξ )

T
[
−K

I

]
= 0.

The nullspace of M1(ξ )
T must have n constant polynomial

vectors. Hence the first n (Forney invariant) minimal indices
are 0. This proves Statement 1 of Theorem 6.2.
2: A minimal polynomial nullspace basis of M1(ξ )

T is
the set of columns of N(ξ ) ∈ R[ξ ]2n×(2n−p). Partition N
into

[
N1 N2(ξ )

]
with N1 ∈ R2n×n and further partition

N1 =

[
N11
N12

]
with N12 ∈ Rn×n. Further

span
[

N11
N12

]
= span

[
−K

I

]
.

Therefore K =−N11N−1
12 . The construction of K ∈Rn×n in the

proof is done such a way that
[
−K I 0

]
is in the row span

of R(ξ ). From Proposition 6.1, the matrix K ∈ Rn×n satisfies
equation (31) and hence d

dt xT Kx = 2uT y for all (u,y) ∈B.
Note that lossless systems satisfies equation (8) for all

(u,y) ∈B. Hence K induces the storage function for B. Thus
Statement 2 of the theorem follows. This completes the proof
of the theorem.



Example 6.3. Consider the system: G(s) = 8s2+1
6s3+s . One of the

state space representation of the system is

d
dt

x =

0 1 0
0 0 1
0 − 1

6 0

x+

0
0
1

u y =
1
6

1
0
8

T

u

The pencil corresponding to B∩B⊥Σ is

R(ξ ) =
1
6



6ξ −6 0 0
0 6ξ −6 0
0 1 6ξ −6

6ξ 0 0 −1
6 6ξ −1 0
0 6 6ξ −8

−1 0 −8 0 0 6 0


The minimal polynomial basis of R(ξ ) is

[36 36ξ 36ξ
2 1+6ξ

2 2ξ 6+48ξ
2︸ ︷︷ ︸

M1(ξ )T

6ξ +36ξ
3]T

This is step 2 of Algorithm 7.4. By Theorem 6.2 the first n=
3 columns of the minimal polynomial basis of the M1(ξ )

T

have Forney indices 0. The first 3 columns of the minimal
polynomial basis of M1(ξ )

T are
−0.0189 0.0025 −0.0987
−0.0002 −0.0554 −0.0013
−0.0960 0.0195 −0.7921

0.9938 −0.0017 −0.0470
0.0028 0.9981 0.0243
−0.0522 −0.0144 0.6000

=:
[

N11
N12

]

This step corresponds to step (3) and step (4) of Algorithm 7.4.

Therefore K =−N11N−1
12 = 1

36

1 0 6
0 2 0
6 0 48

.

7. ALGORITHMS BASED ON THE PROPOSED METHODS

In this section, we present four algorithms based on the
results developed in previous sections. Algorithm 7.1 and
Algorithm 7.2 are based on partial fraction expansion (Foster
method for LC realization) described in Section 3-A and
Section 3-B respectively. The Cauer realization is analogous.
The transfer function of the lossless system is an input to
each of the algorithms and output of the algorithm is a
unique symmetric matrix K that induces the storage function.
Algorithm for lossless systems without pole at the origin is
almost the same and hence is not presented here.
Algorithm 7.1 LC realization based algorithm - SISO.

Input: Strictly proper transfer function of the lossless
system G(s).
Output: K ∈ Rn×n with xT Kx the storage function.

1: Calculate the partial fraction expansion: G(s) = r0
s +

∑
m
i=1 Gi(s) (say) where Gi(s) =

ris
s2+ω2

i
, i = 1, · · · ,m and

ωi > 0.
2: For each Gi(s), obtain (Ai,Bi,Ci) triple, where Ai ∈R2×2,

Bi ∈ R2×1 and Ci ∈ R1×2 using Equation (15).
3: Obtain Ki from each triple (Ai,Bi,Ci) using Theorem 3.1.
4: Define K := diag

(
1
r0
,K1, K2, . . . , Km

)
∈ Rn×n.

Algorithm 7.2 Partial fraction expansion algorithm - MIMO.
Input: Strictly proper transfer function matrix of the loss-
less system G(s).
Output: K ∈ Rn×n with xT Kx the storage function.

1: Find the minimal state-space realization of G(s) using
Theorem 3.6. Result: Triplet (A,B,C).

2: Define a matrix P such that it is partitioned into row blocks
Pi ∈ R2p×p2

.
3: Partition each Pi in column blocks Pi j ∈R2p×(2p−2j+1). Pi j

is the i-th row block and j-th column block of P.
4: if i = j then
5: P̂ii =

[
b2i−1 b2i b2i+2 b2i+3 ··· b2p

b2i −b2i−1 b2i+3 −b2i+2 ··· −b2p−1

]
6: Delete second column of P̂ii. Result: Pii ∈R2p×(2p−2ı+1).
7: else
8: if i < j then
9: Pi j = 0 ∈ R2p×(2p−2i+1)

10: else (i.e. if i > j)
11: Construct

12: L j :=
[

b2 j−1 −b2 j
b2 j b2 j−1

]
, L̂ j =

[
0 L j

⊗
Ip− j

]
13: col (P( j+1) j,P( j+2) j, · · · ,Pp j) := L̂ j
14: where j = 1,2, · · · ,p−1.
15: end if
16: end if
17: q = col (c1,c2, · · · ,c2p)
18: Compute yk = P†q where y is as defined in equation (19).

Algorithm 7.3 is based on the Bezoutian of polynomials
described in Section 4-A. Many methods like long division,
2D-DFT, Linear matrix equation can be used to find the
Bezoutian matrix Zb defined in Theorem 4.1. The algorithm
here is based on long division method.
Algorithm 7.3 Bezoutian based algorithm - SISO.

Input: Transfer function of a lossless system G(s) = n(s)
d(s)

of order n where d(s) is monic and G(s) proper.
Output: K ∈ Rn×n with xT Kx the storage function.

1: Extract coefficients of the polynomials n(s) and d(s) into
arrays N ∈ R1×n and D ∈ R1×(n+1) with constant term
coefficient first.

2: Equate length of N and D by N(n+1) := 0.
3: Compute Bezoutian coefficient matrix using equation (22)

Kb := NT D+DT N ∈ R(n+1)×(n+1).

4: Implement the division in first equation of (23) by con-
structing a row vector from the first row of Kb

Fold :=
[
Kb(1, 2 : n+1) 0

]
∈ R1×(n+1).

5: Set Fnew := Fold.
6: Append new rows to get Fnew ∈Rn×(n+1) by implementing

the division in (23) by the following iteration:
7: for i=2,. . . , n do
8: r := Kb(i, :)−Fnew(i−1, :)

9: Fnew :=
[

Fold
r (2 : n+1) 0

]
10: Fold := Fnew
11: end for
12: Define K := Fnew(1 : n,1 : n).



Algorithm 7.4 is based on extraction of static relations in
first order representation of the behavior BHam described in
Section 6. The algorithm takes as input the Hamiltonian pencil
R(ξ ) and gives a unique symmetric matrix K that induces
storage function of the lossless behavior.

Algorithm 7.4 Adjoint network algorithm.

Input: Recall R(ξ ) := ξ E−H ∈R[ξ ](2n+p)×(2n+p), a rank
2n polynomial matrix.
Output: K ∈ Rn×n with xT Kx the storage function.

1: Compute a minimal polynomial nullspace basis of R(ξ ).
Result: A full column rank polynomial matrix M(ξ ) ∈
R[ξ ](2n+p)×p.

2: Partition M(ξ ) as
[

M1(ξ )
M2(s)

]
where M1(ξ ) ∈ R[ξ ]2n×p.

3: Compute a minimal polynomial nullspace basis of
M1(ξ )

T . Result: A full column rank polynomial matrix
N(ξ ) ∈ R[ξ ]2n×(2n−p).

4: Partition N(ξ ) =

[
N11 N12(ξ )
N21 N22(ξ )

]
with N11, N21 ∈ Rn×n.

(See Theorem 6.2)
5: Define K :=−N11N−1

21 ∈ Rn×n.

Algorithm 7.4 is based on computation of nullspace basis
of polynomial matrices. Efficient and stable computation of
nullspace basis of a polynomial matrix can be done by block
Toeplitz matrix algorithm: more details can be found in [13].
However, instead of dealing with polynomial computations,
we use the Zassenhaus subspace intersection algorithm with a
QR adaptation proposed in [15] for Figure 5. This results in
an improvement of about 8 times in the computation time.

Remark 7.1. Note that different state representations used in the
above algorithms are related to each other by a similarity transform
and the storage function matrix K obtained by these techniques are
correspondingly related by a congruence transform. For example, if K
is the storage function matrix obtained in Method 1, and if S ∈Rn×n

maps the state space representation used in Method 1 to that used in
Method 2, then K̂ = ST KS induces the storage function in Method 2.
This ability to relate the K’s across realizations allows choice of the
computationally best algorithm for a specific instance: this is a key
contribution of this paper.

Remark 7.2. The choice of the storage function computation method
depends on the system description: for example transfer function or
state space. Loosely speaking, a few of the key factors that help in
the choice of the algorithm are
(a) Ability to diagonalize the system matrix A using a well-condi-

tioned matrix (i.e., the so-called ‘departure from normality’)10.
(b) Extents of uncontrollability/unobservability.
(c) McMillan degrees of the elements in the transfer matrix.
A detailed and thorough investigation would be a matter of further
research: we indicate our preliminary observations next.
Partial fraction expansion algorithm is about ‘summing’ over terms,
this algorithm is favourable for a system whose transfer function
is obtained as a ‘sum’-of-parallel blocks (see [11, Section 2.1.3]).
Further, for a system whose system matrix A is normal the similarity
transform matrix S that diagonalizes A is well-conditioned (see [16]
and also [7, P7.2.3]). Hence for such systems, use of partial fraction
based method is suitable. Bezoutian based algorithm is best suited
for systems whose matrix A is non-diagonalizable: this is due to
non-diagonalizability being linked to a chain-of-‘integrators’ type of
interpretation. Hence systems with controller canonical forms and
with A matrices not diagonalizable are candidates for this algorithm.
Gramian balancing method uses inversion of a diagonal matrix for
simultaneous diagonalizability. These diagonal elements represent,

10A matrix A ∈ Rn×n is called normal if AAT = AT A.

in a loose sense, the “distance from simultaneous uncontrollability
and unobservability”: see [1, Section 7.3]. Hence this method is not
favourable for systems which are “nearly uncontrollable” or “nearly
unobservable” as this will result in inversion of an ill-conditioned
matrix. The adjoint network algorithm11 is favourable for systems
where the McMillan degree of the system is much higher than the
degrees of the denominators of the transfer matrix of the system
(this is especially relevant, in general, for MIMO systems). For such
systems, the nullspace of the matrix R(ξ ) in Algorithm 7.4 will have
a smaller degree and this will result in less computational effort and
less error in the computation of K. Hence given a MIMO system
realization which has neither the sum-of-parallel blocks form nor the
controller canonical form, the adjoint network method is favourable.

8. COMPARISON OF THE METHODS FOR COMPUTATIONAL
TIME AND NUMERICAL ERROR

Using the experimental setup and procedure described in
Section 4-B, we compare the three methods described in
Section 3, 4, 5 and 6 in this section.
Computation time: The plot in Figure 5 shows the time
taken by each algorithm to compute the matrix K for
lossless systems of different orders. The Bezoutian long
division method, the LC realization based method and the
Gramian balancing method take relatively less computation
time compared to adjoint network method inspite of the
Zassenhaus algorithm based modification proposed in [15].
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Fig. 5. Plot of computation time versus system’s order.

Computation error: Error in K is computed using equation
(27) and is plotted for comparison. We calculate Err(K) for
test cases used above for computation time. Figure 6 shows
a comparison of the error associated in the computation of K
using the four methods presented in this paper. The error has
been plotted in the logarithmic scale for better comparison of
data. From the plot we infer that Bezoutian based method is
marginally better than LC realization based method, Gramian

11The adjoint network method is based on finding minimal polynomial
basis of the polynomial matrix R(ξ ). The algorithm of finding the minimal
polynomial basis, as reported in [13], is an iterative algorithm and is based on
writing the matrix R(ξ ) as ∑

d
i=0 Riξ

i and then using the co-efficient matrices
Ri to form Toeplitz matrices at each iteration. Consider the matrices Ri have
size N×N, rank col(R0,R1, . . . ,Rd) =: r0 and the iteration step is t then the
Toeplitz matrix will have a size (d+1+t)r0×(r0+rt−1). At each iterations,
SVD of such augmented matrices needs to be computed to find the minimal
polynomial basis of R(ξ ). Hence, the algorithm being iterative and the large
size of the augmented matrix results in more error and computation time.
Further the operation of finding minimal basis is done twice in Algorithm 7.4
and this also adds to the error and computation time.
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Fig. 6. Plot of error residue versus system’s order.

balancing and adjoint network method.

9. CONCLUDING REMARKS

This paper dealt with the computation of the stored energy
in lossless/all-pass systems. We presented four different con-
ceptual methods to compute the unique storage function for
lossless/all-pass systems.
1) LC realization based method: This uses Foster/Cauer

method (Theorem 3.1 and Theorem 3.6) and capacitor
voltages & inductor currents as states.

2) Bezoutian based method: (Theorem 4.1) States corre-
sponding to controller canonical form are used in this
method. Three different techniques are presented to com-
pute the Bezoutian of such systems.

a) Euclidean long division,
b) 2D discrete Fourier transform,
c) Pseudo-inverse.

3) Controllable/Observable Gramians balancing method:
(Theorem 5.1). The method uses states in a balanced basis:
‘balanced’ loosely means that the extent of controllability
and observability is equal for each state.

4) Adjoint network method: Unlike the three methods men-
tioned above, this method takes an arbitrary minimal state-
space realization as the starting point.

All the methods mentioned in the paper can also be used to
solve optimal control problems where ARE does not exist due
to failure of regularity conditions on D. Based on the results
of the paper, algorithms were formulated and compared for
computation time and numerical accuracy: see Figures 5 and
6. All computations were done in Scilab: the time comparison
would be thorough if the implementation were in C or Fortran
language for example. This paper focussed only on ‘proof-of-
concept’ algorithms emanating out of the main results.
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