Dissipativity analysis of SISO systems using Nyquist-Plot-Compatible supply rates

Narahari Santosh Kumar Debasattam Pal.

Department of Electronics and Electrical Engineering Indian Institute of Technology Guwahati, Guwahati - 781 039 India.

> Department of Electrical Engineering Indian Institute of Technology Bombay Mumbai - 400 076 India

December 16, 2014 The 53rd IEEE Conference on Decision and Control, Los Angeles, USA

Introduction

Figure : System and supply rate

- Electrical two port network, w = (v, i): Power supply Q = vi.
- Mechanical system, w = (f, x): Power supply $Q = f \frac{dx}{dt}$.
- γ -contracting system, w = (d, z): $Q = \gamma^2 \parallel d \parallel^2 - \parallel z \parallel^2$.
- Clubbed together as supply rates, these quadratic functions generalize the notion of power supply [Willems and Trentelman, 1998].
- The usual question:

Given a supply rate, characterize all possible systems that are dissipative with respect to the supply rate [Pendharkar and Pillai, 2004, 2009].

• Here, we deal with the converse:

Given a SISO system, how to construct a meaningful and useful supply rate, with respect to which the given system would be dissipative?

Introduction

Figure : System and supply rate

- Electrical two port network, w = (v, i): Power supply Q = vi.
- Mechanical system, w = (f, x): Power supply $Q = f \frac{dx}{dt}$.
- γ -contracting system, w = (d, z): $Q = \gamma^2 \parallel d \parallel^2 - \parallel z \parallel^2$.
- Clubbed together as supply rates, these quadratic functions generalize the notion of power supply [Willems and Trentelman, 1998].
- The usual question:

Given a supply rate, characterize all possible systems that are dissipative with respect to the supply rate [Pendharkar and Pillai, 2004, 2009].

• Here, we deal with the converse:

Given a SISO system, how to construct a meaningful and useful supply rate, with respect to which the given system would be dissipative?

A partial answer with the help of Nyquist-Plot-Compatible (NPC) supply rates.

Santosh and Déboux (IITG/IITB)

NPC Supply Rates

Figure : Feedback interconnection

- Suppose $||G|| = \gamma_1$ and $||\varphi|| = \gamma_1$ (the \mathcal{L}_2 -induced norms).
- G, φ are open-loop stable.

Small gain theorem

 $\gamma_1 \gamma_2 < 1 \implies$ closed-loop is finite gain \mathcal{L}_2 -stable.

Figure : Feedback interconnection

- Suppose $||G|| = \gamma_1$ and $||\varphi|| = \gamma_1$ (the \mathcal{L}_2 -induced norms).
- G, φ are open-loop stable.

Small gain theorem

 $\gamma_1 \gamma_2 < 1 \implies$ closed-loop is finite gain \mathcal{L}_2 -stable.

- Suppose, individually, G and φ satisfies $uy > \frac{d}{dt}V_i$, where V_1, V_2 are storage functions.
- G, φ are called passive.
- G, φ are open-loop stable.

Passivity theorem

The closed-loop is finite gain \mathcal{L}_2 -stable.

- Both small gain and passivity are dissipativity properties.
- The above two theorems have been generalized using dissipativity with generalized notion of power supply [Moylan and Hill, 1978], [Megretski and Rantzer, 1997], [Pendharkar and Pillai, 2011].
- The plant is dissipative w.r.t. a quadratic supply rate.
- Controller, too, is dissipative w.r.t. a supply rate determined by the plant's supply rate and the interconnection topology.

Then the interconnected system is guaranteed to be stable.

- Both small gain and passivity are dissipativity properties.
- The above two theorems have been generalized using dissipativity with generalized notion of power supply [Moylan and Hill, 1978], [Megretski and Rantzer, 1997], [Pendharkar and Pillai, 2011].
- The plant is dissipative w.r.t. a quadratic supply rate.
- Controller, too, is dissipative w.r.t. a supply rate determined by the plant's supply rate and the interconnection topology.

Then the interconnected system is guaranteed to be stable.

Given a plant, we need to find out a suitable supply rate with respect to which the plant is dissipative.

Dissipativity: quadratic differential forms Generalization of power supply

Dissipativity has been dealt with using two variable polynomial matrices [Willems and Trentelman, 1998]

$$\Phi(\zeta,\eta) := \sum_{i,k} \Phi_{ik} \zeta^i \eta^k \in \mathbb{R}^{\mathsf{w} \times \mathsf{w}}[\zeta,\eta].$$

Dissipativity: quadratic differential forms Generalization of power supply

Dissipativity has been dealt with using two variable polynomial matrices [Willems and Trentelman, 1998]

$$\Phi(\zeta,\eta) := \sum_{i,k} \Phi_{ik} \zeta^i \eta^k \in \mathbb{R}^{\mathsf{w} \times \mathsf{w}}[\zeta,\eta].$$

Then a quadratic differential form (QDF) is a map $Q_{\Phi} : \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathfrak{g}}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$ defined as:

$$Q_{\Phi}(w) := \sum_{i,k} (\frac{\mathrm{d}^{i}w}{\mathrm{d}t^{i}})^{\mathrm{T}} \Phi_{ik} (\frac{\mathrm{d}^{k}w}{\mathrm{d}t^{k}}).$$

 $\Phi(\zeta,\eta)$ induces the QDF Q_{Φ} called the supply rate.

Dissipativity: quadratic differential forms Generalization of power supply

Dissipativity has been dealt with using two variable polynomial matrices [Willems and Trentelman, 1998]

$$\Phi(\zeta,\eta) := \sum_{i,k} \Phi_{ik} \zeta^i \eta^k \in \mathbb{R}^{\mathsf{w} \times \mathsf{w}}[\zeta,\eta].$$

Then a quadratic differential form (QDF) is a map $Q_{\Phi} : \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathfrak{g}}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$ defined as:

$$Q_{\Phi}(w) := \sum_{i,k} (\frac{\mathrm{d}^i w}{\mathrm{d} t^i})^{\mathrm{T}} \Phi_{ik}(\frac{\mathrm{d}^k w}{\mathrm{d} t^k}).$$

 $\Phi(\zeta,\eta)$ induces the QDF Q_{Φ} called the supply rate.

$$\begin{split} vi &= [v \ i] \Phi(\boldsymbol{\zeta}, \boldsymbol{\eta}) \left[\begin{array}{c} v \\ i \end{array} \right]; \\ \Phi(\boldsymbol{\zeta}, \boldsymbol{\eta}) &= \left[\begin{array}{c} 0 & 1/2 \\ 1/2 & 0 \end{array} \right]. \end{split}$$

$$f\frac{\mathrm{d}x}{\mathrm{d}t} = [f \ x]\Phi(\zeta,\eta) \begin{bmatrix} f \\ x \end{bmatrix};$$
$$\Phi(\zeta,\eta) = \begin{bmatrix} 0 & \eta/2 \\ \zeta/2 & 0 \end{bmatrix}.$$

Definition (linear differential behavior) [Polderman and Willems, 1998]

 \mathfrak{B} is said to be a linear differential behavior, denoted by $\mathfrak{B} \in \mathfrak{L}^{\mathfrak{u}}$ if it is a set of $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathfrak{u}})$ trajectories satisfying a system of linear differential equations with constant coefficients.

\$

Existence of a polynomial matrix $R(\xi) \in \mathbb{R}^{\bullet \times w}[\xi]$ such that

 $\mathfrak{B} := \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathtt{W}}) \mid R(\frac{\mathrm{d}}{\mathrm{d}t})w = 0 \}.$

Definition (linear differential behavior) [Polderman and Willems, 1998]

 \mathfrak{B} is said to be a linear differential behavior, denoted by $\mathfrak{B} \in \mathfrak{L}^{\mathsf{w}}$ if it is a set of $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathsf{w}})$ trajectories satisfying a system of linear differential equations with constant coefficients.

\$

Existence of a polynomial matrix $R(\xi) \in \mathbb{R}^{\bullet \times w}[\xi]$ such that

$$\mathfrak{B} := \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathsf{w}}) \mid R(\frac{\mathrm{d}}{\mathrm{d}t})w = 0 \}.$$

Consider a transfer function $G = \frac{Y(s)}{U(s)}$. The corresponding behavior with w = (y, u) is given by:

$$\mathfrak{B}_G = \left\{ \left[\begin{array}{c} y \\ u \end{array} \right] \in \mathfrak{C}^\infty(\mathbb{R}, \mathbb{R}^2) \ | \ [U(\frac{\mathrm{d}}{\mathrm{d}t}) \ -Y(\frac{\mathrm{d}}{\mathrm{d}t})] \left[\begin{array}{c} y \\ u \end{array} \right] = 0 \right\}.$$

A behavior $\mathfrak{B} \in \mathfrak{L}^{\mathfrak{w}}$ is said to be controllable if for every $w', w'' \in \mathfrak{B}$, there exists a $w \in \mathfrak{B}$ and a $\tau > 0$ such that

w(t) = w'(t) for all $t \leq 0$ and w(t) = w''(t) for all $t \geq \tau$.

For the SISO system, controllability is equivalent to Y(s) and U(s) being coprime.

• \mathfrak{B} is controllable if and only if there exists a polynomial matrix $M(\xi) \in \mathbb{R}^{w \times m}[\xi]$ such that

 $\mathfrak{B} := \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathtt{w}}) \mid \exists \ \ell \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathtt{m}}) \text{ such that } w = M(\frac{\mathrm{d}}{\mathrm{d}t})\ell \} = \mathrm{im} \ M(\frac{\mathrm{d}}{\mathrm{d}t}).$

Definition (dissipativity)

 $\mathfrak{B}\in\mathfrak{L}^{\tt w}_{\rm cont}$ is said to be dissipative on $\mathbb R$ with respect to $\Phi(\zeta,\eta)$ if

$$\int_{\mathbb{R}} Q_{\Phi}(w) \mathrm{d}t \geqslant 0 \text{ for all } w \in \mathfrak{B} \cap \mathfrak{D}.$$

 $\bullet~\mathfrak{B}$ is called strictly dissipative if the above inequality is strict.

Proposition [Willems and Trentelman, 1998]

- Consider $\mathfrak{B} = \operatorname{im} M(\frac{\mathrm{d}}{\mathrm{d}t})$, and
- $\Phi(\zeta, \eta)$ a two variable polynomial matrix.

Then \mathfrak{B} is dissipative with respect to $\Phi(\zeta,\eta)$ on \mathbb{R} if and only if

 $M^{\mathrm{T}}(-j\omega)\Phi(-j\omega,j\omega)M(j\omega) \ge 0$ for all $\omega \in \mathbb{R}$.

• $||G|| \leq \gamma \Leftrightarrow \mathfrak{B}_G$ is dissipative w.r.t

$$\Phi_{\rm sg} := \begin{bmatrix} \gamma^2 & 0 \\ 0 & -1 \end{bmatrix}$$

• G is passive $\Leftrightarrow \mathfrak{B}_G$ is dissipative w.r.t

$$\Phi_{\mathrm{pa}} := \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Proposition [Willems and Trentelman, 1998]

- Consider $\mathfrak{B} = \operatorname{im} M(\frac{\mathrm{d}}{\mathrm{d}t})$, and
- $\Phi(\zeta, \eta)$ a two variable polynomial matrix.

Then \mathfrak{B} is strictly dissipative with respect to $\Phi(\zeta, \eta)$ on \mathbb{R} if and only if

 $M^{\mathrm{T}}(-j\omega)\Phi(-j\omega,j\omega)M(j\omega) > 0$ for almost all $\omega \in \mathbb{R}$.

• $||G|| \leq \gamma \Leftrightarrow \mathfrak{B}_G$ is dissipative w.r.t

$$\Phi_{\rm sg} := \begin{bmatrix} \gamma^2 & 0 \\ 0 & -1 \end{bmatrix}$$

• G is passive $\Leftrightarrow \mathfrak{B}_G$ is dissipative w.r.t

$$\Phi_{\mathrm{pa}} := \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Nyquist-Plot-Compatible supply rates

• Special supply rates, dissipativity with respect to which can be directly read off from systems' Nyquist plots.

 $\partial \Phi(j\omega) := \Phi(-j\omega, j\omega).$

Nyquist-Plot-Compatible supply rates

• Special supply rates, dissipativity with respect to which can be directly read off from systems' Nyquist plots.

$$\partial \Phi(j\omega) := \Phi(-j\omega, j\omega).$$

Definition: NPC supply rates

A supply rate $\Phi(\zeta, \eta) \in \mathbb{R}^{2 \times 2}[\zeta, \eta]$ is said to induce a trichotomy of the complex plane \mathbb{C} if corresponding to $\Phi(\zeta, \eta)$ there exists a 3-tuple of disjoint sets $\{\mathcal{A}^+_{\Phi}, \mathcal{A}^-_{\Phi}, \mathcal{A}^-_{\Phi}\}$, such that

$$\mathcal{A}_{\Phi}^{+} \cup \mathcal{A}_{\Phi}^{0} \cup \mathcal{A}_{\Phi}^{-} = \mathbb{C}.$$

Plus, for every \mathfrak{B}_G having image representation matrix $M(\frac{\mathrm{d}}{\mathrm{d}t})$, we have the following:

for all real frequency $\omega \ge 0$

- Nyquist plot of G at ω is contained in $\mathcal{A}^+_{\Phi} \iff M^T(-j\omega)\partial\Phi(j\omega)M(j\omega) > 0.$
- **2** Nyquist plot of G at ω is contained in $\mathcal{A}^0_{\Phi} \iff M^T(-j\omega)\partial\Phi(j\omega)M(j\omega) = 0.$
- **③** Nyquist plot of G at ω is contained in $\mathcal{A}_{Φ}^{-}$ \iff $M^{T}(-jω)∂Φ(jω)M(jω) < 0$.

If a supply rate satisfies all these properties, then it is called a Nyquist-Plot-Compatible (NPC) supply rate.

Santosh and Déboux (IITG/IITB)

NPC Supply Rates

Examples of various standard NPC supply rates

- Strict dissipativity \Leftrightarrow Nyquist plot of G being contained in \mathcal{A}_{Φ}^+ for almost all positive frequencies.
- We refer to \mathcal{A}_{Φ}^+ as NPC-region, and \mathcal{A}_{Φ}^0 as NPC-boundary associated with the NPC supply rate Φ .

Small-gain:
$$\Phi_{sg} = \begin{bmatrix} r^2 & 0\\ 0 & -1 \end{bmatrix}$$
.

Figure : Associated region of small-gain supply rate.

- Are these all? How do we get more such NPCs?
- Define

 $\Omega := \{ \Phi(\zeta, \eta) \in \mathbb{R}^{2 \times 2}[\zeta, \eta] \mid \Phi \text{ is NPC} \}.$

Santosh and Déboux (IITG/IITB)

Examples of various standard NPC supply rates

- Strict dissipativity \Leftrightarrow Nyquist plot of G being contained in \mathcal{A}_{Φ}^+ for almost all positive frequencies.
- We refer to \mathcal{A}_{Φ}^+ as NPC-region, and \mathcal{A}_{Φ}^0 as NPC-boundary associated with the NPC supply rate Φ .

Passivity:
$$\Phi_{pa} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
.

Figure : Associated region of passivity supply rate.

- Are these all? How do we get more such NPCs?
- Define

$$\Omega := \{ \Phi(\zeta, \eta) \in \mathbb{R}^{2 \times 2}[\zeta, \eta] \mid \Phi \text{ is NPC} \}.$$

Santosh and Déboux (IITG/IITB)

Examples of various standard NPC supply rates

- Strict dissipativity \Leftrightarrow Nyquist plot of G being contained in \mathcal{A}_{Φ}^+ for almost all positive frequencies.
- We refer to \mathcal{A}^+_{Φ} as NPC-region, and \mathcal{A}^0_{Φ} as NPC-boundary associated with the NPC supply rate Φ .

Negative-imaginary [Petersen and Lanzon, 2010]: $\Phi_{ni} = \begin{bmatrix} 0 & \eta \\ \zeta & 0 \end{bmatrix}$.

Figure : Associated region of negative-imaginary supply rate.

- Are these all? How do we get more such NPCs?
- Define

 $\Omega := \{ \Phi(\zeta, \eta) \in \mathbb{R}^{2 \times 2}[\zeta, \eta] \mid \Phi \text{ is NPC} \}.$

Santosh and Déboux (IITG/IITB)

More NPC supply rates

Proposition	
• $\Phi \in \Omega$.	
• $T \in \mathbb{R}^{2 \times 2}$ non-singular.	
	the supply rate $T^T \Phi T \in \Omega$.

Lemma

• $T = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2}$ is non-singular. • $\Sigma_{br} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

 $\Phi = T^T \Sigma_{br} T$ has \mathcal{A}_{Φ}^+ one of the following:

- If b = d, then \mathcal{A}_{Φ}^{0} , is a line parallel to the imaginary axis. Further, if ab cd > 0 (or, if ab cd < 0) then \mathcal{A}_{Φ}^{+} is the RHS (LHS) of the line \mathcal{A}_{Φ}^{0} .
- If b ≠ d then, A⁰_Φ, is a circle with center on the real axis. Further, the corresponding A⁺_Φ is the interior (or the exterior) of the circle if b² − d² < 0 (b² − d² > 0).

Mixing NPC supply rates

- There are many systems whose Nyquist plots need not be in any obvious NPC region.
- Can we go beyond NPC supply rates for these situations.
- What happens if Nyquist plot of a system is contained in the union of two (or, more, but finitely many) known NPC regions?

Theorem

- G(s) is a SISO LTI system.
- $\mathfrak{B}_G = \operatorname{im} M(\frac{d}{dt})$ is its image representation.
- Let Φ_1 and Φ_2 be NPC supply rates.

Then the following two statements are equivalent:

- G has Nyquist plot contained in $\mathcal{A}_{\Phi_1}^+ \cup \mathcal{A}_{\Phi_2}^+$ for almost all $\omega \ge 0$.
- **2** There exist $p, q \in \mathbb{R}[\xi]$ such that \mathfrak{B}_G is strictly dissipative with respect to

 $\Phi(\zeta,\eta) := p(\zeta)\Phi_1(\zeta,\eta)p(\eta) + q(\zeta)\Phi_2(\zeta,\eta)q(\eta).$

• \mathfrak{B}_G is strictly dissipative with respect to the $\Phi(\zeta, \eta)$ defined above $\Leftrightarrow p(\xi), q(\xi)$ satisfy $M^T(-j\omega)p(-j\omega)\partial\Phi_1(j\omega)p(j\omega)M(j\omega) + M^T(-j\omega)q(-j\omega)\partial\Phi_2(j\omega)q(j\omega)M(j\omega) > 0$

for almost all $\omega \in \mathbb{R}$, or, equivalently,

$$\begin{bmatrix} p(-j\omega) \\ q(-j\omega) \end{bmatrix} \begin{bmatrix} \Gamma(-j\omega,j\omega) & 0 \\ 0 & \Pi(-j\omega,j\omega) \end{bmatrix} \begin{bmatrix} p(j\omega) \\ q(j\omega) \end{bmatrix} > 0$$

for almost all $\omega \in \mathbb{R}$, where Γ and Π are defined as

$$\begin{split} & \Gamma(-j\omega,j\omega) &:= & M^T(-j\omega)\partial\Phi_1(j\omega)M(j\omega) \\ & \Pi(-j\omega,j\omega) &:= & M^T(-j\omega)\partial\Phi_2(j\omega)M(j\omega). \end{split}$$

• This is true \Leftrightarrow the auxiliary behavior, $\mathfrak{B}_{aux} := \operatorname{im} \begin{bmatrix} p(\frac{d}{dt}) \\ q(\frac{d}{dt}) \end{bmatrix}$ is strictly dissipative with respect to

$$\Phi_{\mathrm{aux}}(\zeta,\eta) = \begin{bmatrix} \Gamma(\zeta,\eta) & 0\\ 0 & \Pi(\zeta,\eta) \end{bmatrix}.$$

• It has been shown in [Pendharkar and Pillai, 2004 and 2009] that it is possible to find a $\mathfrak{B}_{aux} \Leftrightarrow$ the worst inertia of Φ_{aux} is *not* (2,0).

Definition: worst inertia [Pendharkar and Pillai, 2004 and 2009]

- $P(\xi) \in \mathbb{R}^{w \times w}[\xi]$ is para-Hermitian
- $P(\xi)$ is nonsingular as a polynomial matrix, i.e., $\det(P(\xi)) \neq 0$.
- $\omega \in \mathbb{R}$ is such that $j\omega$ is not a zero of $P(\xi)$, i.e., $\det(P(j\omega)) \neq 0$.
- The inertia of $P(j\omega)$ is defined as the 2-tuple: $(\sigma_{-}(P(j\omega)), \sigma_{+}(P(j\omega)))$ where

 $\sigma_{-}(P(j\omega)) =$ no. of negative eigenvalues of $P(j\omega)$ and $\sigma_{+}(P(j\omega)) =$ no. of positive eigenvalues of $P(j\omega)$.

- If $P(j\omega)$ is singular, then the inertia is undefined at that point.
- Worst inertia is $(\nu_{\max}, \mathbf{w} \nu_{\max})$, where

$$\nu_{max} := \max_{\omega \in \mathbb{R}} \{ \sigma_{-}(P(j\omega)) \}$$

Example: mixing of small-gain and passivity

- $G = \frac{3}{s^2 + 3s + 2}$.
- The Nyquist plot (for positive frequencies) is contained in the union of the unit circle $(r = 1 \text{ in } \Phi_{sg})$ and the right half plane.
- There exists $p, q \in \mathbb{R}[\xi]$ such that \mathfrak{B}_G is strictly dissipative with respect to

$$\Phi(\zeta,\eta) = p(\zeta)\Phi_{\rm sg}p(\eta) + q(\zeta)\Phi_{\rm pa}q(\eta).$$
(1)

The required p, q are

$$p(\xi) = 2.449\xi^3 + 2.449\xi^2 + 0.3709\xi + 2.0781$$

$$q(\xi) = 1.3163\xi^3 - 2.65256\xi^2 - 0.36314\xi - 2.236.$$

Figure : Mixing of small-gain and passivity

Santosh and Déboux (IITG/IITB)

NPC Supply Rates

Example: mixing of passivity and negative imaginary

- $G = \frac{2s-1}{s^3+2s^2+2s}$.
- The Nyquist plot (for positive frequencies) is contained in the union of the right half plane and the lower half plane.
- There exists $p, q \in \mathbb{R}[\xi]$ such that \mathfrak{B}_G is strictly dissipative with respect to

$$\Phi(\zeta,\eta) = p(\zeta)\Phi_{\rm pa}p(\eta) + q(\zeta)\Phi_{\rm ni}q(\eta).$$
⁽²⁾

The required p, q are

$$p(\xi) = -2.69282\xi^3 - 1.30718\xi^2 - 2.0\xi$$

$$q(\xi) = -2.0\xi^4 - 2.0\xi^3 + 0.0784\xi^2 - 2.0784\xi.$$

Figure : Mixing of passivity and negative imaginary

Santosh and Déboux (IITG/IITB)

NPC Supply Rates

Algorithm to find the weighting polynomials

Define

$$S(\xi) := \begin{bmatrix} \Gamma(-\xi,\xi) & 0\\ 0 & \Pi(-\xi,\xi) \end{bmatrix}.$$

- Note that, Statement (1) not satisfied means $S(j\omega)$ has worst inertia (2,0). Then $S(j\omega)$ is negative semi-definite for all $\omega \in \mathbb{R}$. No p, q exists.
- If $S(j\omega)$ has worst inertia (0,2) then $S(j\omega)$ is positive semi-definite (losing its rank only at finitely many frequencies). Thus any pair of $p, q \in \mathbb{R}[\xi]$ will work.

What happens when the worst inertia is (1,1)?

Proposition [Pendharkar and Pillai, 2004 and 2009]

There exist polynomial matrices $K \in \mathbb{R}^{2 \times 2}[\xi]$ and $L \in \mathbb{R}^{\bullet \times 2}[\xi]$, with K square and nonsingular, such that

$$P(\xi) = K^{T}(-\xi) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} K(\xi) + L^{T}(-\xi)L(\xi).$$

Algorithm to find the weighting polynomials

• Choose $p, q \in \mathbb{R}[\xi]$ such that

 $K(\xi) \begin{bmatrix} p(\xi) \\ q(\xi) \end{bmatrix}$

gives the image representation of a behavior whose \mathcal{H}_{∞} -norm is less than 1.

• Such p, q can be found thus:

• Let
$$\widetilde{G}(s) = \frac{n(s)}{d(s)}$$
 be such that $||G||_{\mathcal{H}_{\infty}} < 1$.

• Define

$$\begin{bmatrix} p(\xi) \\ q(\xi) \end{bmatrix} = \operatorname{adj}(K(\xi)) \begin{bmatrix} n(\xi) \\ d(\xi) \end{bmatrix}.$$

Algorithm to find the weighting polynomials

• Choose $p, q \in \mathbb{R}[\xi]$ such that

 $K(\xi) \begin{bmatrix} p(\xi) \\ q(\xi) \end{bmatrix}$

gives the image representation of a behavior whose \mathcal{H}_{∞} -norm is less than 1.

- Such p, q can be found thus:
 - Let $\widetilde{G}(s) = \frac{n(s)}{d(s)}$ be such that $||G||_{\mathcal{H}_{\infty}} < 1$.
 - Define

$$\begin{bmatrix} p(\xi) \\ q(\xi) \end{bmatrix} = \operatorname{adj}(K(\xi)) \begin{bmatrix} n(\xi) \\ d(\xi) \end{bmatrix}.$$

We have a given a simple algorithm to carry out this factorization under following assumptions:

- The number of crossover frequencies is only two.
- **2** The roots of the polynomials $\Gamma(-j\omega, j\omega)$ and $\Pi(-j\omega, j\omega)$ are known precisely.

References

- A. Megretski and A. Rantzer. System Analysis via Integral Quadratic Constraints. *IEEE Trans. Automatic Control*, 42(6):819–830, 1997.
- P.J. Moylan, D.J. Hill, Stability criteria for large-scale systems, *IEEE Transactions on Automatic Control*, Vol. 23, No. 2, pp.143-149, April 1978.
- I. Pendharkar, H.K. Pillai, A parametrization for dissipative behaviors, *Systems and Control Letters*, Vol. 51, pp.123-132, 2004.
- **I**. Pendharkar, H.K. Pillai A parametrization for dissipative behaviors the matrix case, *International Journal of Control*, Vol. 82, pp.1006-1017, 2009.
 - I. Pendharkar, H.K. Pillai, Application of quadratic differential forms to designing linear controllers for nonlinearities, *Asian Journal of Control*, Vol. 13, pp.449-455, 2011.
- I.R. Petersen, A. Lanzon, Feedback control of negative-imaginary Systems, *IEEE Control Systems Magazine*, Vol. 30, No. 5, pp.54-72, October 2010.
- J.W. Polderman and J.C. Willems. Introduction to Mathematical Systems Theory: A Behavioral Approach. Springer-Verlag, 1998.
- J.C. Willems and H.L. Trentelman. On quadratic differential forms. *SIAM Journal on Control and Optimization*, 36:1703–1749, 1998.

Thank you