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Introduction

w o Electrical two port network, w = (v,14):
Power supply Q = vi.

System

@ Mechanical system, w = (f, z): Power
supply Q = f9Z.

Figure : System and supply rate e v-contracting system, w = (d, z):

Q=71dl*~1=I>

o Clubbed together as supply rates, these quadratic functions generalize the notion of
power supply [Willems and Trentelman, 1998|.

o The usual question:

Given a supply rate, characterize all possible systems that are dissipative with respect to the
supply rate [Pendharkar and Pillai, 2004, 2009]. J

o Here, we deal with the converse:

Given a SISO system, how to construct a meaningful and useful supply rate, with respect to
which the given system would be dissipative? J
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Q=71dl*~1=I>

o Clubbed together as supply rates, these quadratic functions generalize the notion of
power supply [Willems and Trentelman, 1998|.

o The usual question:

Given a supply rate, characterize all possible systems that are dissipative with respect to the
supply rate [Pendharkar and Pillai, 2004, 2009]. J

o Here, we deal with the converse:

Given a SISO system, how to construct a meaningful and useful supply rate, with respect to
which the given system would be dissipative? J

A partial answer with the help of Nyquist-Plot-Compatible (NPC) supply rates. J
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The small gain and passivity theorems

Figure : Feedback interconnection

e Suppose ||G|| =~1 and ||¢|| = y1 (the L32-induced norms).
o G, are open-loop stable.

Small gain theorem

Y172 < 1 = closed-loop is finite gain La-stable.
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Motivation

The small gain and passivity theorems

Figure : Feedback interconnection

e Suppose ||G|| =~1 and ||¢|| = y1 (the L32-induced norms).
o G, are open-loop stable.

Small gain theorem

Y172 < 1 = closed-loop is finite gain La-stable.

o Suppose, individually, G and ¢ satisfies uy > %Vi, where V1, Va are storage functions.
o G,y are called passive.

o G,y are open-loop stable.

Passivity theorem

The closed-loop is finite gain La-stable.
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Motivation

o Both small gain and passivity are dissipativity properties.

o The above two theorems have been generalized using dissipativity with generalized
notion of power supply [Moylan and Hill, 1978], [Megretski and Rantzer, 1997],
[Pendharkar and Pillai, 2011].

o The plant is dissipative w.r.t. a quadratic supply rate.

o Controller, too, is dissipative w.r.t. a supply rate determined by the plant’s supply rate
and the interconnection topology.

Then the interconnected system is guaranteed to be stable. J
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o Both small gain and passivity are dissipativity properties.

o The above two theorems have been generalized using dissipativity with generalized
notion of power supply [Moylan and Hill, 1978], [Megretski and Rantzer, 1997],
[Pendharkar and Pillai, 2011].

o The plant is dissipative w.r.t. a quadratic supply rate.

o Controller, too, is dissipative w.r.t. a supply rate determined by the plant’s supply rate
and the interconnection topology.

Then the interconnected system is guaranteed to be stable. J

Given a plant, we need to find out a suitable supply rate with respect to which the plant is
dissipative.
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Dissipativity: quadratic differential forms

Generalization of power supply

Dissipativity has been dealt with using two variable polynomial matrices [Willems and
Trentelman, 1998]

(¢,m) =Y ipl'n® € RVVIC, n).

i,k
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Dissipativity: quadratic differential forms

Generalization of power supply

Dissipativity has been dealt with using two variable polynomial matrices [Willems and
Trentelman, 1998]
(¢,m) =Y ipl'n® € RVVIC, n).
i,k
Then a quadratic differential form (QDF) is a map Qg : €°°(R,R¥) — €°°(R, R) defined as:

dkw
dtk

diw

dt?

Qa(w) =D (=) "Pur(

ik

).

®(¢,n) induces the QDF Qg called the supply rate.
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Dissipativity: quadratic differential forms

Generalization of power supply

Dissipativity has been dealt with using two variable polynomial matrices [Willems and
Trentelman, 1998]
(¢,m) =Y ipl'n® € RVVIC, n).
i,k
Then a quadratic differential form (QDF) is a map Qg : €°°(R,R¥) — €°°(R, R) defined as:

i k
ik dt* dt

i’LU kw
Qu(w) = S (E) T, (L), J

®(¢,n) induces the QDF Qg called the supply rate.

vi=[v i}cb(c,n)[ ; }; fi—f=[f r]¢’(<7n){ i };

e =49 7] sen=| 0 %]
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Dissipativity: quadratic differential forms

Behavioral theory preliminaries

Definition (linear differentia ) [Polderman

B is said to be a linear differential behavior, denoted by B € £¥ if it is a set of €>° (R, R¥)
trajectories satisfying a system of linear differential equations with constant coefficients.

¢

Existence of a polynomial matrix R(£) € R**¥[] such that

B = {w € €°(R,R") | R(L)w = 0}.
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Dissipativity: quadratic differential forms

Behavioral theory preliminaries

Definition (linear

B is said to be a linear differential behavior, denoted by B € £¥ if it is a set of €>° (R, R¥)

trajectories satisfying a system of linear differential equations with constant coefficients.

¢

Existence of a polynomial matrix R(£) € R**¥[] such that

B = {w € €°(R,R") | R(L)w = 0}.

Consider a transfer function G YEZ;
by:

G

so={| ¥ ] cevmm 1w -vgn| Y ]-o}. J

tosh and Déboux (IITG/IITB)
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Dissipativity: quadratic differential forms

Controllable behavior

A behavior B € £V is said to be controllable if for every w’, w’ € B, there exists a w € B and
a 7 > 0 such that

w(t) = w'(t) for all ¢ < 0 and w(t) = w’(t) for all t > 7. J

For the SISO system, controllability is equivalent to Y (s) and U(s) being coprime. J

e B is controllable if and only if there exists a polynomial matrix M (£) € R¥*®[¢] such that

B = {w € €®°(R,R¥) | 3 £ € €°(R,R") such that w = M (& )¢} =im M(Z). J
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Dissipativity: quadratic differential forms

Definition of dissipativity

Definition (dissipativity)

B e £

con

¢ is said to be dissipative on R with respect to ®(¢,n) if

/ Qa(w)dt > 0 for all w € BND.
R

o B is called strictly dissipative if the above inequality is strict.
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Dissipativity: quadratic differential forms

Proposition [Willems and Trentelman, 1998|
o Consider B = im M(%)7 and
o ®(¢,n) a two variable polynomial matrix.

Then B is dissipative with respect to ®(¢,n) on R if and only if

MT (—jw)®(—jw, jw)M (jw) > 0 for all w € R. J

o |G|l < v © B is dissipative w.r.t o G is passive & B is dissipative w.r.t

e[ ] | el g |
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Dissipativity: quadratic differential forms

Proposition [Willems and Trentelman, 1998|
o Consider B = im M(%)7 and
o ®(¢,n) a two variable polynomial matrix.

Then B is strictly dissipative with respect to ®(¢,n) on R if and only if

M7 (—jw)®(—jw, jw)M (jw) > 0 for almost all w € R. J

o |G|l < v & B is dissipative w.r.t o G is passive & B is dissipative w.r.t

we[f ] | el g |
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Nyquist-Plot-Compatible supply rates

o Special supply rates, dissipativity with respect to which can be directly read off from
systems’ Nyquist plots.

0P (jw) := P(—jw, jw).
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Nyquist-Plot-Compatible supply rates

o Special supply rates, dissipativity with respect to which can be directly read off from
systems’ Nyquist plots.

0P (jw) := P(—jw, jw).

Definition: NPC supply rates

A supply rate ®(¢,n) € R2X2[(, ] is said to induce a trichotomy of the complex plane C if
corresponding to ®(¢,n) there exists a 3-tuple of disjoint sets {.A$, Ag,, Ag }, such that

AtuAjuag =c. ]

Plus, for every B¢ having image representation matrix M ((f—t), we have the following:

for all real frequency w > 0
O Nyquist plot of G at w is contained in A <= M7 (—jw)d®(jw)M (jw) > 0.
@ Nyquist plot of G at w is contained in A} <= M7 (—jw)0®(jw)M (jw) = 0.
@ Nyquist plot of G at w is contained in Ay <= M7T(—jw)o®(jw)M (jw) < 0.

If a supply rate satisfies all these properties, then it is called a Nyquist-Plot-Compatible
(NPC) supply rate.
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mples of various standard NPC supply rates

e Strict dissipativity < Nyquist plot of G being contained in Aj}f for almost all positive
frequencies.

o We refer to Ag as NPC-region, and .A% as NPC-boundary associated with the NPC
supply rate ®.

6 ImG
4
2
2 ) Re G
Small-gain: ®gg = [TO _OJ »
-4

Figure : Associated region of small-gain supply rate.

o Are these all? How do we get more such NPCs?
o Define

Q= {®(¢,n) € R2X2[¢,n] | @ is NPC}. J
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mples of various standard NPC supply rates

e Strict dissipativity < Nyquist plot of G being contained in Aj}f for almost all positive
frequencies.

o We refer to Ag as NPC-region, and .A% as NPC-boundary associated with the NPC
supply rate ®.

ImG
3
2
1
Passivity: ®pa = |:(1) (1)] 1
-2
3

Figure : Associated region of passivity supply rate.

o Are these all? How do we get more such NPCs?
o Define

Q= {®(¢,n) € R2X2[¢,n] | @ is NPC}. J

and Déboux (IITG/IITB) upply Rates 53rd IEEE CDC 2014 11 / 21



mples of various standard NPC supply rates

e Strict dissipativity < Nyquist plot of G being contained in Aj}f for almost all positive
frequencies.

o We refer to Ag as NPC-region, and .A% as NPC-boundary associated with the NPC
supply rate ®.

Negative-imaginary [Petersen and

Lanzon, 2010]: ®,; = |:2 g]

Figure : Associated region of negative-imaginary supply
rate.

o Are these all? How do we get more such NPCs?
o Define

Q= {®(¢,n) € R2X2[¢,n] | @ is NPC}. J

53rd IEEE CDC 2014 11 / 21




More NPC supply rates

o e

o T € R2%2 pon-singular.

the supply rate T7®T € Q. J

v
Lemma

o T'= [(Z S] € R2%2 is non-singular.

o Xy, = [(1)_01]

& =775, T has Ag one of the following:
@ If b = d, then A, is a line parallel to the imaginary axis. Further, if ab— cd > 0 (or,
if ab — cd < 0) then Ag is the RHS (LHS) of the line A} .
@ If b # d then, A}, is a circle with center on the real axis. Further, the corresponding
A$ is the interior (or the exterior) of the circle if b — d? < 0 (b2 — d? > 0).
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Mixing NPC supply rates

o There are many systems whose Nyquist plots need not be in any obvious NPC region.
o Can we go beyond NPC supply rates for these situations.

o What happens if Nyquist plot of a system is contained in the union of two (or, more, but
finitely many) known NPC regions?

Theorem

o G(s) is a SISO LTI system.
o B = imM(%) is its image representation.
o Let ®; and $3 be NPC supply rates.

Then the following two statements are equivalent:

@ G has Nyquist plot contained in ‘A$1 U A$2 for almost all w > 0.
@ There exist p, g € R[] such that B¢ is strictly dissipative with respect to

2(¢,n) = p(Q)21(C, mp(n) +a(Q)P2(¢,ma(n)- |
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Mixing NPC supply rates

A sketch of the proof

o B is strictly dissipative with respect to the ®(¢,n) defined above < p(&), ¢(§) satisfy
M7 (—jw)p(—jw)d®1 (jw)p(jw) M (jw) + MT (—jw)q(—jw)dP2 (jw)q(jw) M (jw) > 0

for almost all w € R, or, equivalently,

q(—jw) O(—jw,jw) | [ q(iw)

[P(*jw)] [F(fjgf,jW) 0 ] [P(jW)] >0 J

for almost all w € R, where I' and II are defined as

[(—jw,jw) = M7 (=jw)d®1(jw)M (jw)
I(—jw,jw) = MT(—jw)0P2(jw)M (jw). J

d
o This is true < the auxiliary behavior, Baux := im [p(‘gf) is strictly dissipative with
a(gz)
respect to

Paux(¢,n) = [F(%’") n(gm]' J

o It has been shown in [Pendharkar and Pillai, 2004 and 2009] that it is possible to find a
Baux < the worst inertia of Paux is not (2,0).
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Mixing NPC supply rates

A sketch of the proof

inition: worst inertia [Pendharkar and Pillai, 2004 and 2009]

P(¢) € R"¥V[¢] is para-Hermitian
P(¢) is nonsingular as a polynomial matrix, i.e., det(P(§)) # 0.
o w € R is such that jw is not a zero of P(&), i.e., det(P(jw)) # 0.

o The inertia of P(jw) is defined as the 2-tuple: (o—(P(jw)), o+ (P(jw))) where

o_(P(jw)) = no. of negative eigenvalues of P(jw) and

o4+ (P(jw)) = no. of positive eigenvalues of P(jw).

If P(jw) is singular, then the inertia is undefined at that point.

e Worst inertia is (Vmax, W — Vmax ), Where

Vmazx ‘= glg']f{;({o-_ (P(]UJ))}
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ample: mixing of small-gain and p

_ 3
° G= s243542"

o The Nyquist plot (for positive frequencies) is contained in the union of the unit circle

(r =1 in ®sg) and the right
o There exists p, g € R[{] such

half plane.
that B is strictly dissipative with respect to

(¢, n) = p(Q)Psgp(n) + ¢(¢)Ppaq(n)-

The required p, g are

p(§)
q§) =

Figure :

2.449¢3 4 2.449¢2 + 0.3709¢ + 2.0781
1.3163¢% — 2.65256£2 — 0.36314€ — 2.236.

ImG
A ¥

-1.5

Mixing of small-gain and passivity

NPC Supply Rates 53rd IEEE CDC 2014
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Example: mixing of p ty and negative imagin
_ 2s—1
°o G= s3425242s "
o The Nyquist plot (for positive frequencies) is contained in the union of the right half
plane and the lower half plane.
o There exists p, g € R[¢] such that B¢ is strictly dissipative with respect to

®(¢,m) = p(Q)Ppap(n) + (C)Pnig(n)- ()
The required p, g are
p(f) = —2.69282¢% — 1.30718¢2 — 2.0¢
q(€) = —2.06* —2.06% +0.0784¢2 — 2.0784¢.

Figure : Mixing of passivity and negative imaginary
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Algorithm to find the weighting polynomials

@ Define

$© =" nlee ] J

o Note that, Statement (1) not satisfied means S(jw) has worst inertia (2,0). Then S(jw)
is negative semi-definite for all w € R. No p, ¢ exists.

o If S(jw) has worst inertia (0,2) then S(jw) is positive semi-definite (losing its rank only
at finitely many frequencies). Thus any pair of p, q € R[¢] will work.

What happens when the worst inertia is (1,1)? J

Proposition [Pendharkar and Pillai, 2004 and 2009]

There exist polynomial matrices K € R2X2[¢] and L € R**2[¢], with K square and
nonsingular, such that

PO=K"(-9 [y O] x@+1r7-0r©. J
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Algorithm to find the weighting polynomials

o Choose p, g € R[£] such that
p(E)}
K
58
gives the image representation of a behavior whose H.-norm is less than 1.

@ Such p, ¢ can be found thus:

o Let G(s) = ”(S; be such that [|G||#o, < 1.
o Define

[ggg] = adj(K (€)) [défﬂ J
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Algorithm to find the weighting polynomials

o Choose p, g € R[£] such that
p(E)}
K
58
gives the image representation of a behavior whose H.-norm is less than 1.

@ Such p, ¢ can be found thus:

o Let G(s) = n(s; be such that [|G||#o, < 1.
o Define

[ggg] = adj(K (€)) [défﬂ J

We have a given a simple algorithm to carry out this factorization under following
assumptions:

@ The number of crossover frequencies is only two.

@ The roots of the polynomials I'(—jw, jw) and II(—jw, jw) are known precisely.
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