# Algorithm for obtaining a Direct Decomposition into Cyclic Invariant Subspaces 

(following GANTMACHER: Theory of Matrices, Vol-I)

November 2014

## CONTEXT

$V$ is a finite-dimensional vector space over any field $F, L: V \rightarrow V$ a linear function

## ALGORITHM

## STEP 1

Determine a vecctor, say, $w_{1}$, whose minimal polynomial ( mp ), $p_{1}$, is the mp of the whole space $V$.
Calculate $\operatorname{css}\left(w_{1}\right)$. This is $V_{1}$ of the decomposition

$$
V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}
$$

to be calculated.
If $V_{1}=V$, $\underline{\text { STOP }}$
If $V_{1} \subset V$, go to Step 2

## STEP 2

All mp calculations are now to be done MODULO $\operatorname{css}\left(w_{1}\right)$ or $V_{1}$.
Determine a vector, say, $w_{2}^{\prime}$, not in $c s s\left(w_{1}\right)$, whose mp, RELATIVE TO or MODULO $V_{1}$, say $\overline{p_{2}}$, is the same as the relative mp of $V$.

From $w_{2}^{\prime}$, calculate $w_{2}$ as in the algorithm for determination of a vector whose mp is the same as the mp of the whole space.

Then, $\operatorname{css}\left(w_{2}\right)$ will be independent of $\operatorname{css}\left(w_{1}\right)$ and it will be our $V_{2}$.
(As a check on your calculations, this mp will also be the ABSOLUTE mp of $w_{2}$.)

## STEP 3

If $\operatorname{css}\left(w_{1}\right) \oplus \operatorname{css}\left(w_{2}\right)=V, \underline{\text { STOP }}$.
If not, choose a $w_{3}^{\prime}$, not in $\operatorname{css}\left(w_{1}\right) \oplus \operatorname{css}\left(w_{2}\right)$, etc doing calculations MODULO $\operatorname{css}\left(w_{1}\right) \oplus \operatorname{css}\left(w_{2}\right)$. A vector $w_{3}$ obtained this way generates $\operatorname{css}\left(w_{3}\right)=V_{3}$.
(Again, the relative mp obtained here is also the absolute mp of $w_{3}$ )
...and so on ....
As a check on your calculations, $p_{1}$ will be divisble by $p_{2}, p_{2}$ by $p_{3}$, and so on $\ldots$..Further $\operatorname{dim}(V)$ will be equal the sum of the degrees of all these mp's.

