Algorithm for obtaining a Direct Decomposition into Cyclic Invariant Subspaces

(following GANTMACHER: Theory of Matrices, Vol-I)

November 2014

CONTEXT

V is a finite-dimensional vector space over any field $F, L: V \to V$ a linear function

ALGORITHM

STEP 1

Determine a vector, say, w_1 , whose minimal polynomial (mp), p_1 , is the mp of the whole space V. Calculate $css(w_1)$. This is V_1 of the decomposition

$$V = V_1 \oplus V_2 \oplus ... \oplus V_k$$

to be calculated.

If $V_1 = V$, **STOP** If $V_1 \subset V$, go to Step 2

STEP 2

All mp calculations are now to be done MODULO $css(w_1)$ or V_1 .

Determine a vector, say, w_2' , not in $css(w_1)$, whose mp, <u>RELATIVE</u> TO or <u>MODULO</u> V_1 , say $\overline{p_2}$, is the same as the relative mp of V.

From w_2 , calculate w_2 as in the algorithm for determination of a vector whose mp is the same as the mp of the whole space.

Then, $css(w_2)$ will be independent of $css(w_1)$ and it will be our V_2 .

(As a check on your calculations, this mp will also be the ABSOLUTE mp of w_2 .)

STEP 3

If $css(w_1) \oplus css(w_2) = V$, **STOP**.

If <u>not</u>, choose a w_3' , not in $css(w_1) \oplus css(w_2)$, etc doing calculations <u>MODULO</u> $css(w_1) \oplus css(w_2)$. A vector w_3 obtained this way generates $css(w_3) = V_3$.

(Again, the relative mp obtained here is also the absolute mp of w_3)

 \dots and so on \dots

As a check on your calculations, p_1 will be divisble by p_2 , p_2 by p_3 , and so onFurther dim(V) will be equal the sum of the degrees of all these mp's.