Agashe's Algorithm for determination of a vecctor whose mp is the same as the mp of the whole vector space

(Comapre with GANTMACHER : Theory of matrices, Vol-I)
November 2014

CONTEXT

V is a finite-dimensional vector space over any field $F, L: V \rightarrow V$ a linear function

ALGORITHM

STEP 1

Choose any non-zero vector in V, say, v_{1} and determine its minimal polynomial (mp), $p_{1}(s)=s^{k}+a_{k-1} s^{k-1}+\ldots+a_{1} s+a_{0}$, say, so that the set of vectors

$$
\left\{v_{1}, L v_{1}, L^{2} v_{1}, \ldots, L^{k-1} v_{1}\right\}
$$

is an independent set, and

$$
L^{k} v_{1}=-a_{k-1} L^{k-1} v_{1}-\ldots-a_{1} L v_{1}-a_{0} v_{1}
$$

Let $\operatorname{css}\left(v_{1}\right)$ denote the span of the independent set above; it is the "cyclic" subspace generated by v_{1} under the action of L

STEP 2

If $\operatorname{css}\left(v_{1}\right)=V$, equivalently, $k=\operatorname{dim}(V)$, Stop
We have found a vector v_{1} whose $\mathrm{mp} \overline{p_{1}}$ is the mp of the whole space (Prove!)
If $k<\operatorname{dim} V$, equivalently, $\operatorname{css}\left(v_{1}\right) \subset V$, go to Step 3.

STEP 3

Option (a)

Determine $\operatorname{Ker}(p(L))$. If $\operatorname{Ker}(p(L))=V$, stop. v_{1} is the required vector.
If $\operatorname{Ker}(p(L)) \subset V$, go to $\operatorname{Step} 4$.
(This involves more work "right now", but may involve less work "later".)

Option (b)

Go to Step 4 directly

STEP 4

Determine a vector v_{2}^{\prime}, which is not in $\operatorname{css}\left(v_{1}\right)$, or not in $\operatorname{Ker}(p(L)$). (This can be done by choosing any basis for V and choosing a suitable vector from this basis independent of the independent set in Step 1, or a basis of $\operatorname{Ker}(p(L)$). (This involves more work!).
"Append" the vectors $v_{2}^{\prime}, L v_{2}^{\prime}, L^{2} v_{2}^{\prime}, \ldots$ sequentially to the independent set in Step 1 , checking for independence at every step. Thus, first consider $\left\{v_{1}, L v_{1}, L^{2} v_{1}, \ldots, L^{k-1} v_{1}, v_{2}^{\prime}\right\}$. Is it independent? Yes, because v_{2}^{\prime} was CHOSEN to meet this requirement. Next, consider $\left\{v_{1}, L v_{1}, L^{2} v_{1}, \ldots, L^{k-1} v_{1}, v_{2}^{\prime}, L v_{2}^{\prime}\right\}$. Is it independent? If not, $L v_{2}^{\prime}$ is a linear combination of $\left\{v_{1}, L v_{1}, L^{2} v_{1}, \ldots, L^{k-1} v_{1}, v_{2}^{\prime}\right\}$. If independent, calculate $L^{2} v_{2}^{\prime}$, and check if for independence with respect to $\left\{v_{1}, L v_{1}, L^{2} v_{1}, \ldots, L^{k-1} v_{1}, v_{2}^{\prime}, L v_{2}^{\prime}\right\}$.

After a finite number of steps, you will obtain for a least positive integer $l \geq 1$:

$$
L^{l} v_{2}^{\prime}=\text { linear combination of }\left\{v_{1}, L v_{1}, L^{2} v_{1}, \ldots, L^{k-1} v_{1}, v_{2}^{\prime}, L v_{2}^{\prime}, \ldots, L^{l-1} v_{2}^{\prime}\right\}
$$

This calculation is an example of working with the new vector v_{2}^{\prime} MODULO THE SUBSPACE $\operatorname{css}\left(v_{1}\right)$, i.e., checking for independence with resprect to $\operatorname{css}\left(v_{1}\right)$.

You will thus have obtained two polynomials, $\overline{p_{2}}$ and $\overline{q_{2}}$, say, such that

$$
\overline{p_{2}}(L) v_{2}^{\prime}=\overline{q_{2}}(L) v_{1}
$$

$\overline{p_{2}}$ is of degree $l, \overline{q_{2}}$ is of degree less than k, and $\overline{p_{2}}$ is the unique(monic) polynomial of least degree satisfying the above equation. It may be called the RELATIVE mp of v_{2}^{\prime} MODULO or 'WITH RESPECT TO' the $\operatorname{css}\left(v_{1}\right)$.

CASE 1

If $\overline{q_{2}}$ is the zero polynomial, $\overline{p_{2}}$ is the mp of v_{2}^{\prime}. In that case, take $p_{2}=\overline{p_{2}}$ and $v_{2}=v_{2}^{\prime}$ for the next step 5, Case 1.

CASE 2

If degree of $\overline{p_{2}}$ is less than or equal to the degree of $\overline{q_{2}}$, by polynomial division, obtain two polynomials q_{2} and q, with $\operatorname{deg}\left(q_{2}\right)<\operatorname{deg}\left(\overline{p_{2}}\right)$, such that

$$
\overline{q_{2}}=q \cdot \overline{p_{2}}+q_{2}
$$

, and calculate v_{2} as

$$
v_{2}=v_{2}^{\prime}-q(L) v_{1}
$$

(Check, if you wish, that $\left.v_{2} \neq \mathbf{0}_{V}, \operatorname{deg}\left(q_{2}\right)<\operatorname{deg}\left(\overline{p_{2}}\right), \overline{p_{2}}(L) v_{2}=q_{2}(L) v_{1}\right)$.
Proceed to Step 5 with this v_{2}.
If $\operatorname{deg}\left(\overline{p_{2}}\right)>\operatorname{deg}\left(\overline{q_{2}}\right)$, then take v_{2}^{\prime} itself as the v_{2} for the next step.

STEP 5

CASE 1

The mp of $v_{2}\left(=v_{2}^{\prime}\right)$ is $p_{2}=\overline{p_{2}}$, as if v_{1} and $\operatorname{css}\left(v_{1}\right)$ did not exist. (This could be called the ASBOLUTE mp of v_{2}, in contrast with the RELATIVE mp of $\overline{p_{2}}$ MODULO $\operatorname{css}\left(v_{1}\right)$, in Step 4, case 2).

Calculate its cyclic subspace, i.e., $\operatorname{css}\left(v_{2}\right)$.
It can be shown that $\operatorname{css}\left(v_{2}\right)$ is 'DISJOINT' from $\operatorname{css}\left(v_{1}\right)$, i.e.,

$$
\operatorname{css}\left(v_{2}\right) \cap \operatorname{css}\left(v_{1}\right)=\left\{\mathbf{0}_{V}\right\} .
$$

Further the vector $\left(v_{1}+v_{2}\right)$ has the $\operatorname{mp} \operatorname{LCM}\left(p_{1}, p_{2}\right)$, which is also the mp of the sum

$$
\operatorname{css}\left(v_{2}\right) \oplus \operatorname{css}\left(v_{1}\right)
$$

This sum has a dimension greater than that of $\operatorname{css}\left(v_{1}\right)$. Thus, we have obtained a "BIGGER" subspace, and also a vector whose mp is the mp of this bigger subspace. Note that $\operatorname{css}\left(v_{1}+v_{2}\right) \underline{\text { MAY NOT equal } \operatorname{css}\left(v_{2}\right) \oplus \operatorname{css}\left(v_{1}\right) \text {, but mp of }}$ $\operatorname{css}\left(v_{2}\right) \oplus \operatorname{css}\left(v_{1}\right)$ is $\operatorname{LCM}\left(p_{1}, p_{2}\right)$ which is also the mp of $\left(v_{1}+v_{2}\right)$.

CASE 2(follows step 4, case 2)

Calculate the ABSOLUTE mp of p_{2} of v_{2}, as if v_{1} and $\operatorname{css}\left(v_{1}\right)$ did not exist. It can be shown that, the degree of p_{2} is greater than the degree of $p_{1},\left(\operatorname{deg}\left(p_{2}\right)>\operatorname{deg}\left(p_{1}\right)\right)$, and so $\operatorname{css}\left(v_{2}\right)$ has a dimension greater than that of the dimension of $\operatorname{css}\left(v_{1}\right)$.

If $\operatorname{css}\left(v_{2}\right)=V$, Stop.
If not, determine a vector v_{3}^{\prime}, which is not in $\operatorname{css}\left(v_{2}\right)$, and proceed as in Step 4 , with v_{3}^{\prime} in place of v_{2}^{\prime}, and check for independence MODULO $\operatorname{css}\left(v_{2}\right)$.
(As a check on your calculations, p_{2} should turn out to be a multiple of $\overline{p_{2}}$, and p_{1} should turn out to be the same multiple of q_{2}.)

STEP 6

If $\operatorname{css}\left(v_{1}\right) \oplus \operatorname{css}\left(v_{2}\right)=V, \underline{\text { STOP }}$.
If not, determine a vector v_{3}^{\prime} which is not in $\operatorname{css}\left(v_{1}\right) \oplus \operatorname{css}\left(v_{2}\right)$, and proceed as in Step 4 with this v_{3}^{\prime} in place of v_{2}^{\prime}, and checking for independence MODULO $\operatorname{css}\left(v_{1}\right) \oplus \operatorname{css}\left(v_{2}\right)$, instead of MODULO $\operatorname{css}\left(v_{1}\right)$.

Calculate polynomials $\overline{p_{3}}, \overline{q_{31}}, \overline{q_{32}}$ such that

$$
\overline{p_{3}}(L) v_{3}^{\prime}=\overline{q_{31}}(L) v_{1}+\overline{q_{32}}(L) v_{2}
$$

and determine v_{3} from v_{3}^{\prime} in a way similar to the way in which you obtained v_{2}^{\prime} from v_{2}, and the $\operatorname{mp} p_{3}$ of v_{3}.
Calculate $\operatorname{css}\left(v_{3}\right)$. It will be disjoint from $\operatorname{css}\left(v_{1}\right) \oplus \operatorname{css}\left(v_{2}\right)$. Further,

$$
L C M\left(L C M\left(p_{1}, p_{2}\right), p_{3}\right)
$$

will be mp of $\left(v_{1}+v_{2}+v_{3}\right)$ as also the mp of the still BIGGER subspace

$$
\operatorname{css}\left(v_{1}\right) \oplus \operatorname{css}\left(v_{2}\right) \oplus \operatorname{css}\left(v_{3}\right)
$$

Do YOU SEE that after a finite number of steps, you will have obtained a vector whose mp is the same as the mp of the whole space V ?

Problems

Try the algorithm as a numerical example. $V=\mathbb{R}_{c o l}^{4}, L$ is the action of the matrix A :

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-24 & -50 & -35 & -10
\end{array}\right)
$$

Problem

1. Start with $v_{1}=e_{1}^{4}=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)^{T}$
2. Start with $v_{1}=\left(\begin{array}{llll}1 & -1 & -1\end{array}\right)^{T}$
3. Start with $v_{1}=(2-35-9)^{T}$

GOOD LUCK!

REMARK

If one is willing to do more wotk at the beginning, at Step 1 , instead of choosing v_{1} arbitratily and perhaps, choosing it as one of the 'unit' vectors, one can choose a basis for V, calculate the mp of each of the basis vectors. One can then choose for V, a basis vector whose mp has the highest degree.

If willing to do some work, you can check the mp's for co-primeness, or the corresponding cyclic subspaces for disjointness, and use the following theorems.

THEOREM 1

If w_{1}, w_{2} have mp's p_{1}, p_{2}, and p_{1}, p_{2} are co-prime, $\left(w_{2}+w_{2}\right)$ has $m p\left(p_{1} p_{2}\right) ; \operatorname{css}\left(w_{1}\right)$ and $\operatorname{css}\left(w_{2}\right)$ are disjoint, and $\left(p_{1} p_{2}\right)$ annihilate $\operatorname{css}\left(w_{1}\right) \oplus \operatorname{css}\left(w_{2}\right)$.

THEOREM 2

If w_{1}, w_{2} are such that $\operatorname{css}\left(w_{1}\right)$ and $\operatorname{css}\left(w_{2}\right)$ are disjoint, then $\left(w_{1}+w_{2}\right)$ has for mp the LCM of the mp's of w_{1} and w_{2}, and the subspace annihilated by this mp contains $\operatorname{css}\left(w_{1}\right) \oplus \operatorname{css}\left(w_{2}\right)$.

Flow Chart for the Algorithm

