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CONTEXT

V is a finite-dimensional vector space over any field F , L : V → V a linear function

ALGORITHM

STEP 1

Choose any non-zero vector in V , say, v1 and determine its minimal polynomial (mp), p1(s) = sk + ak−1s
k−1 + ...+ a1s+ a0,

say, so that the set of vectors
{v1, Lv1, L2v1, ..., L

k−1v1}

is an independent set, and
Lkv1 = −ak−1L

k−1v1 − ...− a1Lv1 − a0v1

Let css(v1) denote the span of the independent set above; it is the ”cyclic” subspace generated by v1 under the action of L

STEP 2

If css(v1) = V , equivalently, k = dim(V ), Stop
We have found a vector v1 whose mp p1 is the mp of the whole space (Prove!)
If k < dimV , equivalently, css(v1) ⊂ V , go to Step 3.

STEP 3

Option (a)

Determine Ker(p(L)). If Ker(p(L)) = V , stop. v1 is the required vector.
If Ker(p(L)) ⊂ V , go to Step 4.
(This involves more work ”right now”, but may involve less work ”later”.)

Option (b)

Go to Step 4 directly

STEP 4

Determine a vector v
′

2, which is not in css(v1), or not in Ker(p(L)). (This can be done by choosing any basis for V and
choosing a suitable vector from this basis independent of the independent set in Step 1, or a basis of Ker(p(L)). (This
involves more work!).

”Append” the vectors v
′

2, Lv
′

2, L
2v

′

2, ... sequentially to the independent set in Step 1, checking for independence at ev-
ery step. Thus, first consider {v1, Lv1, L2v1, ..., L

k−1v1, v
′

2}. Is it independent? Yes, because v
′

2 was CHOSEN to meet
this requirement. Next, consider {v1, Lv1, L2v1, ..., L

k−1v1, v
′

2, Lv
′

2}. Is it independent? If not, Lv
′

2 is a linear combi-
nation of {v1, Lv1, L2v1, ..., L

k−1v1, v
′

2}. If independent, calculate L2v
′

2, and check if for independence with respect to
{v1, Lv1, L2v1, ..., L

k−1v1, v
′

2, Lv
′

2}.

After a finite number of steps, you will obtain for a least positive integer l ≥ 1:

Llv
′

2 = linear combination of{v1, Lv1, L2v1, ..., L
k−1v1, v

′

2, Lv
′

2, ..., L
l−1v

′

2}

1



This calculation is an example of working with the new vector v
′

2 MODULO THE SUBSPACE css(v1), i.e., checking for
independence with resprect to css(v1).

You will thus have obtained two polynomials, p2 and q2, say, such that

p2(L)v
′

2 = q2(L)v1

p2 is of degree l, q2 is of degree less than k, and p2 is the unique(monic) polynomial of least degree satisfying the above
equation. It may be called the RELATIVE mp of v

′

2 MODULO or ’WITH RESPECT TO’ the css(v1).

CASE 1

If q2 is the zero polynomial, p2 is the mp of v
′

2. In that case, take p2 = p2 and v2 = v
′

2 for the next step 5, Case 1.

CASE 2

If degree of p2 is less than or equal to the degree of q2, by polynomial division, obtain two polynomials q2 and q, with
deg(q2) < deg(p2), such that

q2 = q.p2 + q2

,and calculate v2 as
v2 = v

′

2 − q(L)v1

(Check, if you wish, that v2 6= 0V ,deg(q2) < deg(p2), p2(L)v2 = q2(L)v1).
Proceed to Step 5 with this v2.

If deg(p2) > deg(q2), then take v
′

2 itself as the v2 for the next step.

STEP 5

CASE 1

The mp of v2(= v
′

2) is p2 = p2, as if v1 and css(v1) did not exist. (This could be called the ASBOLUTE mp of v2, in contrast
with the RELATIVE mp of p2 MODULO css(v1), in Step 4, case 2).

Calculate its cyclic subspace, i.e., css(v2).
It can be shown that css(v2) is ’DISJOINT’ from css(v1), i.e.,

css(v2) ∩ css(v1) = {0V }.

Further the vector (v1 + v2) has the mp LCM(p1, p2), which is also the mp of the sum

css(v2)⊕ css(v1).

This sum has a dimension greater than that of css(v1). Thus, we have obtained a ”BIGGER” subspace, and also a
vector whose mp is the mp of this bigger subspace. Note that css(v1 + v2) MAY NOT equal css(v2)⊕ css(v1), but mp of
css(v2)⊕ css(v1) is LCM(p1, p2) which is also the mp of (v1 + v2).

CASE 2(follows step 4, case 2)

Calculate the ABSOLUTE mp of p2 of v2, as if v1 and css(v1) did not exist. It can be shown that, the degree of p2 is greater
than the degree of p1, (deg(p2) > deg(p1)), and so css(v2) has a dimension greater than that of the dimension of css(v1).

If css(v2) = V , Stop.

If not, determine a vector v
′

3, which is not in css(v2), and proceed as in Step 4, with v
′

3 in place of v
′

2, and check for
independence MODULO css(v2).
(As a check on your calculations, p2 should turn out to be a multiple of p2, and p1 should turn out to be the same multiple
of q2.)
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STEP 6

If css(v1)⊕ css(v2) = V , STOP.
If not, determine a vector v

′

3 which is not in css(v1)⊕ css(v2), and proceed as in Step 4 with this v
′

3 in place of v
′

2, and
checking for independence MODULO css(v1)⊕ css(v2), instead of MODULO css(v1).

Calculate polynomials p3, q31, q32 such that

p3(L)v
′

3 = q31(L)v1 + q32(L)v2,

and determine v3 from v
′

3 in a way similar to the way in which you obtained v
′

2 from v2, and the mp p3 of v3.
Calculate css(v3). It will be disjoint from css(v1)⊕ css(v2). Further,

LCM(LCM(p1, p2), p3)

will be mp of (v1 + v2 + v3) as also the mp of the still BIGGER subspace

css(v1)⊕ css(v2)⊕ css(v3).

Do YOU SEE that after a finite number of steps, you will have obtained a vector whose mp is the same as the mp of the
whole space V ?

Problems

Try the algorithm as a numerical example.
V = R4

col, L is the action of the matrix A:

A =


0 1 0 0
0 0 1 0
0 0 0 1
−24 −50 −35 −10


Problem

1. Start with v1 = e41 = (1 0 0 0)T

2. Start with v1 = (1 − 1 1 − 1)T

3. Start with v1 = (2 − 3 5 − 9)T

GOOD LUCK!

REMARK

If one is willing to do more wotk at the beginning, at Step 1, instead of choosing v1 arbitratily and perhaps, choosing it as
one of the ’unit’ vectors, one can choose a basis for V , calculate the mp of each of the basis vectors. One can then choose for
V , a basis vector whose mp has the highest degree.

If willing to do some work, you can check the mp’s for co-primeness, or the corresponding cyclic subspaces for disjointness,
and use the following theorems.

THEOREM 1

If w1, w2 have mp’s p1, p2, and p1, p2 are co-prime, (w2 + w2) has mp (p1p2); css(w1) and css(w2) are disjoint, and (p1p2)
annihilate css(w1)⊕ css(w2).

THEOREM 2

If w1, w2 are such that css(w1) and css(w2) are disjoint, then (w1 +w2) has for mp the LCM of the mp’s of w1 and w2, and
the subspace annihilated by this mp contains css(w1)⊕ css(w2).
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Flow Chart for the Algorithm

Start

Step 1: Choose
v1 6= 0V

Calculate mp p1, css(v1)

Step2: Is
css(v1) = V

Stop

Step 3: Choose v
′

2 /∈ css(v1)

Step 4: Calculate
vectors Lv

′

2, ..
Check sequen-

tially for depen-
dence on css(v1)

{v1, ..., Lk−1v1, v
′

2, ..., L
l−1v

′

2}
independent set and

Llv
′

2 = l.c. of{v′

2, ..., L
l−1v

′

2}
gives the mp p2 of v

′

2

mp of (v1 + v2) = LCM(p1, p2)
annihilates css(v1) ⊕ css(v2)

Go to step 2 with
(v1 + v2) as ’v1’

{v1, ..., Lk−1v1, v
′

2, ..., L
l−1v

′

2}
independent set and Llv

′

2

= l.c. that involves some
of the vectors v1, ..., L

k−1v1

p2(L)v2 = q2(L)v1

deg(q2) < deg(p2), v2 = v
′

2

Calculate mp p2 of v2
deg(p2) > deg(p1)

Go to step 2 with v2 as ’v1’

deg(q2) ≥ deg(p2) Cal-
culate a ’suitable’ v2

no

yes

case 1

case 2
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