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Abstract. We look afresh at the deduction of the “Lorentz contraction” of a “rod”
from the Lorentz transformation equations of the special theory of relativity. We show
that in some situations, which include acceleration of the “rod”, length “expansion”
and “invariance” are possible. We also show that in some situations, in contrast
to “time dilatation”, “time contraction” and “time invariance” are possible. Such
examples should convince students of relativity that these are purely kinematical
phenomena.
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1. Introduction

After a brief recapitulation (to fix the notation) of the usual textbook derivation of

“Lorentz contraction” from the Lorentz transformation, we consider two novel situations,

and show that length “expansion” and even “invariance” are possible. We also show that

in contrast to “time dilatation”, in some situations, time “contraction” and “invariance”

are possible. Such examples should help dispel any lurking suspicion that these are

phenomena associated with motion of a body. We are dealing here with only the

mathematical derivation of the Lorentz contraction from the Lorentz transformation

equations, and not with the historical evolution of the Lorentz contraction itself.

2. Usual deduction of the Lorentz contraction

Let S denote a reference frame with coordinates x, y, z, and time t. Let S ′ be another

reference frame whose origin moves with speed v (v > 0), relative to S, in the direction

of the positive x-axis of S, and let x′, y′, z′ denote the coordinates in S ′, and t′ the time

in S ′. Let us suppose also that the origins of S and S ′ coincide at time t = 0 which is

also the time t′ = 0. The y′- and z′- axes of S ′ are assumed to remain parallel to the y-

and z- axes of S, respectively. Then, following in Einstein’s footsteps, the coordinates

x, y, z, and time t in S of an event are related to the coordinates x′, y′, z′, and time t′

in S ′ of the same event by the following Lorentz transformation:

x ′ = β(x− vt), y′ = y, z′ = z, t′ = β(t− vx

c2
) (1)

where c denotes the speed of light in S and S ′ and β = 1/
√

1− v2/c2. Note that β > 1.

The transformation (1) has an inverse, namely:

x = β(x′ + vt′), y = y′, z = z′, t = β(t′ +
vx′

c2
). (2)

If the origin of S ′ were to move in the direction of the negative x- axis of S, with speed

v (v > 0) then in (1) and (2), we would have to replace v by −v.

Now, in deducing the Lorentz contraction on the basis of the transformation

equations (1) and (2), most authors talk about a rigid rod lying at rest on the x′- axis of

the moving system S ′. The ends P1 and P2 of this rod can thus be thought of as a series

of events in S ′: P1 ≡ {(x′
1, 0, 0, t

′)} and P2 ≡ {(x′
2, 0, 0, t̄

′)}, with x′
2−x′

1 = l > 0, say, so

that we can call l the constant (in S ′) length of the rod. Next, one shows that although

the rod is at rest in S ′, it is “observed” to be moving in S with speed v and as it moves

in S, its length remains constant in S. However, its length in S is different from its

length l in S ′, and is, in fact, 1
β
l, which is smaller than l. Hence the term “contraction”.

Indeed, using (2), at any time t′
1 of S ′, the coordinates of P1 in S are (β(x′

1 + vt′
1), 0, 0),

and at any time t′
2 of S ′, the coordinates of P2 in S are (β(x′

2 + vt′
2), 0, 0). If t′

1 and t′
2

in S ′ correspond to a common time t in S, we have

t = β(t′
1 +

vx′
1

c2
) = β(t′

2 +
vx′

2

c2
). (3)
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and so, the distance between P1 and P2 in S at time t, and, thus, the length of the rod

in S at time t, are given by

β(x′
2 + vt′

2)− β(x′
1 + vt′

1) = β(x′
2 − x′

1) + βv(t′
2 − t′

1) (4)

= β(x′
2 − x′

1)− βv
v

c2
(x′

2 − x′
1) (5)

= β(1− v2

c2
)(x′

2 − x′
1) (6)

=
1

β
l. (7)

3. The case of a rod moving uniformly in both reference frames

The above derivation of the relation between the lengths of a rod in two frames of

reference in a particular situation is perfectly impeccable. However, the accompanying

comments on this “phenomenon” can create some unwarranted impressions in the minds

of students. Thus, the author of [1] says:

One consequence is this: a body’s length is measured to be greatest when it is

at rest relative to the observer. When it moves with a velocity v relative to

the observer its measured length is contracted in the direction of its motion by

the factor
√

1− v2/c2, whereas its dimensions perpendicular to the direction

of motion are unaffected.

This might give a beginning student the impression that for a single observer, when

a body, which has been at rest relative to the observer for a while, starts moving relative

to the same observer, its length is contracted in the direction of motion. This usually

leads to the further impression that according to the special theory of relativity, the

act of putting a body in motion results in or causes its length to contract. To counter

such impressions and to emphasize the fact that the transformation equations (1) and

(2) relate only events in two reference frames, and that they cannot deal with the issue

of what happens to a body in a single reference frame when the state of motion of the

body is changed, it may be useful to consider some novel situations, for example, (a) a

body which is moving uniformly relative to both reference frames and (b) a body which

is accelerated relative to the reference frames. We consider situation (a) first.

Let a point P1 have a uniform motion in S, given by the series of events

{(x0 + ut, 0, 0, t)}. Let another point P2 have the motion {(x0 + l + ut̄, 0, 0, t̄)}, with

l > 0. Thus P2 also moves in S with the same speed and in the same direction, and

the distance between P1 and P2 remains constant in S. We could think of P1 and P2

as the ends of a rigid rod moving in S since its length remains constant in S. Are the

motions of P1 and P2 uniform in S ′? Further, does the distance between them remain

constant in S ′ too, so that the rod remains rigid in S ′?

Indeed the motions of P1 and P2 in S ′, with the times t and t̄ in S regarded as

parameters, are given by

P1 : {(β(x0 + ut− vt), 0, 0, β(t− v(x0 + ut)

c2
))} (8)
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and

P2 : {(β(x0 + l + ut̄− vt̄), 0, 0, β(t̄− v(x0 + l + ut̄)

c2
))}. (9)

From these equations we can see that their common speed is given by

u− v

(1− uv
c2

)
. (10)

The S ′- distance between P1 and P2 at a time t′ in S ′ is given by

β(x0 + l + ut̄− vt̄)− β(x0 + ut− vt) (11)

where t and t̄ are related to t′ by

t′ = β(t− v(x0 + ut)

c2
) = β(t̄− v(x0 + l + ut̄)

c2
). (12)

The distance calculates out to be
1

β(1− uv
c2

)
l. (13)

Thus, the rod has constant length in S ′ too. But is its length in S ′ necessarily smaller

than its length l observed in S? Denoting the factor multiplying l in (13) by k(u), the

function k has the following values:

k(
c2

v
) = ∞, (14)

k(c) =
1

β(1− v/c)
=

√
1 + v/c

1− v/c
> 1, (15)

k(v) =
1

β(1− v2/c2)
= β > 1, (16)

k(0) =
1

β
< 1, (17)

k(−c) =
1

β(1 + v/c)
=

√
1− v/c

1 + v/c
< 1, (18)

k(−∞) = 0, (19)

with

k(−c) < k(0) < 1 < k(v) < k(c). (20)

The case u = 0 corresponds to the rod being at rest in S and its length in S ′ is

observed to be smaller than its length in S, but if u = v, the rod is at rest in S ′, its

length in S ′ is observed to be larger than its length in S. Further, there is a particular

value of u, namely:

ū =
c2

v

[
1−

√
1− v2/c2

]
, (21)

such that k(ū) = 1, and 0 < ū < v. Thus, there is a speed ū for which the rod is

observed to be moving in both S and S ′, but its length is observed to be the same in

both.

So, we can have not only a contraction but also an expansion and even invariance!
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4. Length of a rod changes and does not change!

To drive home further the point that one should talk, not of a change in length, but of

a difference in length in two reference frames, we may point out that in the deductions

above, it is not necessary that the points P1 and P2, or the rod whose ends they might

be, be in uniform motion (or at rest) for all time t. It is enough if there is uniform

motion (or rest) over a sufficiently long time-interval or duration. Therefore, one can

imagine a motion of a rod which somehow remains constant in length, say, l, in S all

the time; let it “start” in a state of rest, say, then smoothly accelerate to a state of

uniform motion at the appropriate velocity ū, stay in that state for a while, and then

smoothly accelerate again to a state of uniform motion with speed v, so that it is finally

at rest in S ′. As seen from S ′, the length of the rod will start with a value that is less

than l, changing smoothly to l after some time, and then changing smoothly to a value

greater than l finally. Thus, the rod will be seen to change its length in S ′ as it moves

maintaining a constant length in S, getting accelerated in both in S and S ′.

We may conclude, therefore, that the “change” in length is purely a kinematical

fact, arising out of the manner in which the two systems S and S ′ and their coordinates

and times are related, and we need not look for any dynamical reason for the change in

either system. It is high time, therefore, that teachers of relativity stopped highlighting

contraction as an important phenomenon in special relativity.

We consider next situation (b) of accelerated motion.

5. Accelerated motion of the rod

Consider the following question: is it possible for two points P1 and P2 which have

continuously accelerated motion in S while maintaining a constant distance between

them in S, to maintain a constant distance between them in S ′ also? We explore the

special situation when the motion in S is along the x- axis (and so, in S ′ the motion

is along the x′- axis), and so, we suppress the y- and z- coordinates in the calculations

below.

Let the motions of two points P1 and P2 in S be given by two functions x1(t) and

x2(t) with x2(t) = x1(t)+ l for all t, so that the distance between them remains contant

in S. Let the two functions x′
1(t

′) and x′
2(t

′) describe their motions in S ′. We seek

conditions under which the difference x′
2(t

′)− x′
1(t

′) will be constant. Now, let t1 and t2
denote the times in S, corresponding to a common time t′ in S ′, for the two motions,

so that we have, from (2):

t 1 = β(t′ +
vx′

1(t
′)

c2
) , x1(t1) = β(x′

1(t
′) + vt′) (22)

t2 = β(t′ +
vx′

2(t
′)

c2
) , x2(t2) = β(x′

2(t
′) + vt′) (23)

and so,

t2 − t1 =
βv

c2
(x′

2(t
′)− x′

1(t
′)). (24)
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Thus, the distance x′
2(t

′)− x′
1(t

′) between the two points in S ′ will be constant, say, l′,

if and only if (t2 − t1) is constant, say α, where α = βvl′/c2. But then

x2(t2)− x1(t1) = β(x′
2(t

′)− x′
1(t

′)) (25)

=
c2α

v
. (26)

Since t2 − t1 = α, we can write the above as

x2(t1 + α)− x1(t1) =
c2α

v
, (27)

and since

x2(t1 + α) = x1(t1 + α) + l, (28)

finally

x1(t1 + α)− x1(t1) =
c2α

v
− l. (29)

Now (29) must hold for all times t1. (To see why, imagine choosing first the time instant

t1, then using (1), determining the corresponding t′ in S ′, and finally determining the

corresponding t2 in S using (2)). Thus, we have proved the following necessary condition.

Proposition 1 If the motions x1(t) of P1 and x2(t) = x1(t)+ l of P2 are such that the

distance between them in S ′ is a constant, say, l′, then there is number α such that for

all t:

x1(t + α)− x1(t) =
c2α

v
− l = βl′ − l. (30)

Further, l′ = c2α
βv

.

Comment: If the function x1 is continuously differentiable, from (30), we see

immediately that the derivative of x1, i.e., the velocity , of P1, is a periodic function of

the time in S, with period α.

In the special case when x1 is a uniform motion with speed u, we have

α = l/

(
c2α

v
− u

)
, (31)

and so

l′ =
1

β(1− uv
c2

)
l, (32)

which agrees with (13).

Note that in the accelerated case we can no longer talk about the entire rod

remaining rigid, i.e., all the points of the rod including its end points maintaining a

constant distance between each other in S ′, because (30) cannot hold for all points; we

can only talk about a pair of points whose distance apart is l satisfying (30).

Proposition 1 suggests the following surprising proposition.

Proposition 2 If the motion x(t) in S of a particle is such that its velocity is periodic

with period α, say, and the displacement during any one period is d, the corresponding

motion in S ′ is also with periodic velocity, with the period α′ given by α′ = β(α− vd
c2

).
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We have, for all t, x(t + α)− x(t) = d. Let t′
1 correspond to t and t′

2 to t + α. Then,

t′
1 = β(t− vx(t)

c2
), t′

2 = β(t + α− vx(t + α)

c2
), (33)

so that

t′
2 − t′

1 = β(α− vd

c2
). (34)

If x′
1(t

′
1) and x′

2(t
′
2) correspond to x(t) and x(t + α), then

x ′
1(t

′
1) = β(x(t)− vt), x′

2(t
′
2) = β(x(t + α)− v(t + α)) (35)

so

x′
2(t

′
2)− x′

1(t
′
1) = β(d− vα). (36)

Thus, the motion in S ′ has a periodic velocity with period β(α− vd
c2

) and displacement

during a period given by β(d− vα).

Corollary 3 If a particle has a periodic motion in S with period α, its motion in S ′ is

periodic too, with period βα.

6. Time Dilatation

What about “time dilatation”? Just as we have given examples of “length expansion”

and “length invariance”, we give examples of “time contraction” and “time invariance”.

Indeed, consider again a particle moving with velocity u along the x-axis in S. Suppose

that the path of this particle is crossed by two other particles, by one particle at time t1
and by the other particle at time t2, so that the time interval in S between the crossings

is (t2− t1). What will be the time interval in S ′ between these crossings? Since the two

events in S are (ut1, t1) and (ut2, t2), we can quickly calculate that the time interval in

S ′ is given by β(1− uv
c2

)(t2−t1). So, from our earlier discussion, it is clear that depending

on the value of u, the S ′-interval will be greater than, equal to, or, smaller than, the

S-interval. One should, therefore, talk, not of time dilatation or slowing down of clocks,

but of difference in time reckonings in two reference frames.
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