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1 Linear Algebra 6= Matrix Theory

2

“Simultaneous” Linear Equations, or, Systems of Linear Equations – How do they “arise”?

2.1

Does the number of equations have to be equal to the number of unknowns or variables?

2.2

The set of all solutions of a system or the solution set of the system

• there may be no solution : the system is inconsistent, the equations incompatible with one
another ; the system may be over determined

• there may be at least one solution, the system is consistent, but

– the system may have more than one solution, may be incomplete, underdetermined :
or

– the system may have one and only one solution , the solution may be unique ; this is,
of course, good, but may not happen.

2.3 Theorem of the Alternatives:

A system of linear equations may have no solution, exactly one solution, or infinitely many solu-
tions. Obviously only one of the alternatives holds.

2.3.1

If the number of equations is less than the number of unknowns, either there is no solution, or there
are infinitely many solutions.

3 How to solve a system Ax = b ?

Here, b is a column , x is the column of the variables or unknowns , and A is the matrix of
coefficients. Very rarely the system may be written as yB = c where y and c are rows.
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3.1

A may not be “square”, but may be “rectangular ” , “tall” or “broad” , so we cannot get away with

x = A−1b (1)

i.e.,find the inverse of the matrix, so, we have to go beyond inverse, determinants, etc.

3.2 Classical method of "Elimination of Variables":

This involves operations on the equations, changing them but not the variables or unknowns; when
working with the matrix-vector form, Ax = b, this involves doing “elementary” operations on the rows
of the matrix A, or row operations, this corresponds to choosing any equation, choosing any non zero
coefficient occurring in it as the pivot element and eliminating the associated variable from all the
other equations.

3.2.1

• It is not necessary that the (1,1) entry of the matrix has to be chosen as the first pivot element.

• The “elementary” operation of interchanging two rows is not necessary.

• The “elementary” operation of “scaling” a row is not necessary.

• The “elementary” operation of changing a row by adding a (non zero) multiple of another pivot
row to it is sufficient.

• Since the equations are changed the right hand side numbers also get changed.

3.2.2

By using Row operations successively, the equations are changed into a form where

• Inconsistency, if any, becomes evident; the entries in a row of coefficients are zero but the
corresponding number on the right hand side is not zero.

• Consistency and completeness : each unknown occurs in one and only equation and so can
be solved “easily”.

• Consistency and Incompleteness: some work is required to write the set of solutions in the
form

x = v0 + p1v1 + p2v2 + . . . . . . .pkvk (2)

where v0, v1, . . . .vk are some columns of numbers and the “coefficients” p1, p2, . . . ..pk can be any
arbitrary numbers (“independent free parameters”). The columns v1, v2, . . . ..vk are “independent”
solutions of the “corresponding” homogenous system

Ay = 0 (3)

and v0 is a “particular” solution of
Ax = b (4)

.
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3.2.3

If Ax = b is to be solved for more than one column b, or the entries of b are not specified, it is useful
to calculate a “Row Operation” matrix at the same time as the row operations are being carried out
on A. This is done by starting with an appropriate-sized identity matrix I, and working with the pair
(A, I). when A becomes row-reduced to AR, I will be changed to R, and it can be shown that

AR = R.A (5)

Instead of
Ax = b (6)

one can solve
AR.x = R.b (7)

3.3 "Column Operations" Method:

But there is another method of solving Ax = b. It involves operating on columns of A, leaving b
alone, that is, not operating on it. It is useful to keep track of the column operations by calculating
a “Column Operation” matrix, starting with an appropriately sized identity matrix I . Thus I will be
changed to a “Column Reduced” Matrix AC while I is changed to C and

AC = A.C (8)

To solve
Ax = b (9)

one solves instead
AC .y = b (10)

and calculates x using
x = C.y (11)

3.3.1

The method can thus be seen to involve a change of variables resulting also in a change of equations,
but it is better not to worry about the successive change of variables; it is enough be aware that the
“final ” set of variables y is not the same as the “original” set of variables x.

3.3.2

In some of the transformed equations in new variables

AC .y = b (12)

only one unknown from the set y occurs so it can be solved “easily”; these calculated value are then
substituted in the remaining equations, containing more than one unknown to check for consistency:
we then obtain one particular solution.
Some columns of AC may be “zero” so that the corresponding variables in y are free; using this fact
and the relation

x = C.y (13)

one can write a general or complete solution of

Ax = b (14)

as
x = w0 + p1w1 + p2w2 + . . . ..pkwk (15)

where w1, w2 . . . . . . wk are appropriate columns of the column operation matrix C.
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3.3.3

Since one usually works with columns, the column operation method is more natural. Also, by using
the column operation matrix, much more “information” can be easily obtained.

3.3.4

One can see that if the solution set of the homogenous system Ax = 0 is “non-empty”, that is, if the
system is consistent,it has the following two “properties ” .

• If a column v is a solution so is p.v where p is any number;

• If the columns v1, v2 are two solutions, so is

p1.v1 + p2.v2 (16)

where p1, p2 are any two numbers;

• If v1, v2, . . . .vk are some solutions, so is any “linear combination”

p1.v1 + p2.v2 −+ . . . . . . .pk.vk (17)

.

4 ENTER “LINEAR ALGEBRA” or “THEORYOF VECTOR SPACES”

4.1

The above observations on solution of systems of linear equations as well as some ideas from plane and
solid geometry, and ideas from physics, based on these geometrical ideas, suggest the abstraction
called “abstract vector space.”

A vector space V over a field F consists of a field F whose elements are referred to as “scalars” and
a set V, whose elements are referred to as “vectors” and a number of additional “things”, namely:

• A binary operation
⊕

V on V, called addition of vectors

• An operation
⊙

F,V involving an element of F and an element of V, producing an element of V.⊙
F,V is called "scalar" (-vector) multiplication; and

• assumptions called axioms, that V, F,
⊕

V and
⊙

F,V satisfy or some properties that they have.

Homework: Look up a textbook for complete statement.

Note: A field itself involves abstract things like a set F and also some operations.

When we will talk about “vector spaces” ,we will “pretend” that we do not know anything about
the elements of the sets V,F nor about the “operations”

⊕
V ,
⊙

F,V except that certain properties hold
or are satisfied.

4.2

One can, and should, of course think of concrete vector spaces side by side as a help in understand-
ing or seeing the significance of abstract concepts. Some examples are :

• R,C as fields

• Rn
col, R

n
row as vector spaces over R
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• The set P≤n of all “polynomials” with degree ≤ n, with “real” coefficients ;

• The set P of all polynomials ,with no restrictions on their degree ;

• f : R 7→ R, the set of all real valued functions of real variables;

• The set of all “arrow” originating from a point and lying in a plane containing that point;

• The set of all “arrows” in “space ” originating from a point.

4.3 SUBSPACE OF VECTOR SPACE :

The observation about the solution set of linear equations suggests the abstract concept of subspace.

A subset W of the set of vectors V of a vector space is called a subspace if

• It is “closed” under addition
⊕

V ,

• It is “closed ” under scalar multiplication
⊙

F,V .

4.3.1

A subspace can also be “visualized” geometrically.

4.3.2

If W is a subspace of V, by using the operations from V, W can be made into a related or derived
vector space. Such a derived vector space may have some properties which the “original” vector space
from which it is derived does not have and “conversely”.

4.3.3

Trivial subspaces {0V } and V itself.

4.4 SPAN OF A (FINITE) SET OF VECTORS {v1, v2, . . . vk}

Note: The vi may not be the columns of numbers: In fact , we do not need to know what they are
except that they belong to some abstract vector space V .
The ‘span’ is the set of all “linear” combinations of these vectors. These linear combination vectors are
said to be “generated” by the vectors {v1, v2, . . . . . . vk}.

4.4.1 SPAN OF A ARBITRARY SET W OF VECTORS FROM A VECTOR SPACE
V :

It is the set of all finite linear combinations of elements of W.
Note:

⊕
V is defined for two vectors, and can be extended for three , thousand, billion,. . . . . . . i.e.,

any finite number of vectors , but not for any arbitrary “infinite number” of vectors.

4.5 INDEPENDENCE OF A SET OF VECTORS,
AN "INDEPENDENT" SET OF VECTORS:

If not, dependence of a set of vectors, a dependent set of vectors, dependence relation between
a set of vectors.

4.5.1

There is a more general notion of independence of a set of “conditions” or “properties” (and even of
“Axioms”); dependence goes with redundancy, superfluity.
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4.6 A BASIS B FOR A SUBSPACE W OF A VECTOR SPACE V

4.6.1

There is nothing like the basis for a subspace, or even for the vector space itself. However, {e1, e2, . . . , en}
or {eT1 , eT2 , . . . , eTn} is a (sometimes useful) basis of “unit” vectors for Rn

col, R
n
row.

4.7 FINITE DIMENSIONAL VECTOR SPACE (OR SUBSPACE) AND
THE DIMENSION OF SUCH A VECTOR SPACE OR SUBSPACE.

5 LINEAR FUNCTIONS AND TRANSFORMATIONS

Given two vector spaces V, W, over the same field F, with perhaps different operations
⊕

V ,
⊙

F,V ,
⊕

W

and
⊙

F,W a function f on V into W denoted by f : V 7→W is said to be LINEAR if

• It is homogenous, i.e,
f(λ�F,V v) = λ�F,W f(v), (18)

and

• It is additive, i.e,
f(v1 ⊕V v2) = [f(v1)]⊕W [f(v2)] (19)

5.1

A p × q matrix A of real numbers could be viewed as being associated with, or producing, a linear
function

Acol = Rq
col 7→ Rp

col, (20)

and another linear function

Arow : Rp
row 7→ Rq

row

as follows

Acol(x) = Ax,

Arow(y) = yA,

here x is a column, y is a row.
Thus, a matrix can act on columns (of proper ‘size’) and also on rows (of proper size). The matrix

may not be square,but could be rectangular.

5.1.1

Note: these definitions of associated functions do not involve any notion, and so, choice, of a “ basis”
for Rn

col or R
n
row.

5.2

However, given f : V 7→W , a linear function and two ordered bases, a basis BV for V and basis BW

for W, if V is of dimension p and W of dimension q, we can associate with any abstract vector v in V,
a concrete column vector V BV

col in Rp
col, Similarly with a vector w in W.

Thus we have two representation functions,(or four), representing ‘abstract’ vectors as ‘concrete’
columns (or rows).
Using this, we can associate with the function f a matrix f col

BV ,BW
, such that, if v ∈ V is represented by

the column V BV
col , then f(v) ∈W will be represented by the column [f(v)]BW

col and the matrix is defined
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by

[f col
BV ,BW

] vBV
col = [f(v)]BW

col . (21)

Such a matrix can be “built up” column by column by choosing basis vectors in BV one by one, “act-
ing” on them by f, expanding the resulting vector with respect to the basis BW , and writing the basis
expansion coefficients as a column.
(If a vector v is shown or assumed to be a linear combination)

λ1v1 + λ2v2 + . . . . . . λpvp (22)

of the basis vector v1, v2, . . . ..vp, such a sum is referred to as “basis expansion.”)

5.2.1

Note: the matrix f col
BV ,BW

, associated with or representing an abstract function f, depends on the choice
BV , BW of bases for V and W.

5.2.2

Starting with a p× q matrix A, with no reference whatsoever to any bases(or even any vector space),
we can think of A as giving rise to a linear function

Acol = Rq
col 7→ Rp

col. (23)

Now for Rq
col and R

p
col, one could choose bases BV , BW , not necessarily of “unit” vectors, and then

obtain a matrix
(Acol)col

BV ,BW
(24)

which will, in general, be quite different from A. Such a matrix is said to obtained from A by a
“similarity transformation” or by a “change of basis” (it would be better to say: "by a choice of basis").
An important question(and problem) is: given a matrix A, can it be transformed, by a similarity
transformation, into a “simpler matrix”, e.g, identity matrix, diagonal matrix, companion form matrix,
Jordan block form matrix etc.

6 KERNEL(OR NULL) AND IMAGE (OR RANGE)SUBSPACES
ASSOCIATED WITH LINEAR FUNCTION f : V 7→ W.

6.1

The solution set of a homogenous system
Ax = 0col (25)

suggests the concept of the kernel of f, kerf .

6.2

The fact that Ax can be seen to a linear combination of the columns of A, suggests the concept of the
image of f, imf.

6.3

The set of all linear combinations of the columns of a matrix is called the column space of the matrix
A.
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Similarly, row space.
The set of all solutions of the corresponding homogenous system

Ax = 0 (26)

is called the column null space of A. (Similarly, row null space).

Strang talks lovingly of the four fundamental subspaces associated with the matrix A;
however, with a linear function f : V 7→ W . we have only two subspaces: kerf is a subspace of
V, imf is a subspace of W, so these are subspaces of the two different vector spaces V,W. This is
because the elements of V and W are abstract vectors, not columns or rows, and f is an abstract
linear function, not a matrix.
Given a p× q matrix A, if it is viewed as a linear function

Acol : Rq
col 7→ Rp

col, (27)

then its column space is a subspace of Rp
col, and its column null space is a subspace of Rq

col.

6.4

For a linear function f : V 7→W kerf may be a “trivial” subspace, either {0v} or V
kerf = {0v} if and only if f is “one to one”.
kerf = V if and only if f is the “zero function”.

6.5

Similarly, imf may be trivial.
imf = {0w}if and only if f is the zero function.
However, even if imf is one-to-one , imf may not be W. If imf = W , f is said to be onto W

6.6

If V is finite dimensional, so are kerf and imf and

dim(kerf) + dim(imf) = dimV. (28)

(W may or may not be finite dimensional)

6.7

Column operations are particularly useful here. If A, I are changed to Ac, C the non-zero columns of
Ac (or even the corresponding columns of A), constitute a basis for the column space of A, and the
columns of C, corresponding to the zero column of A, constitute a basis for the column null space.

Note: Column operations do not change the column space( or the image space) but may change the
column null space. Column operation may change the row space but do not change the row-null space.

7 BREAKING UP INTO PARTS - TO REDUCE AND SIMPLIFY:
DECOMPOSITION OF A VECTOR SPACE INTO SUM OF SUB-
SPACES

A vector space V is said to be decomposed into two subspaces, W1and W2, or said to be the
direct sum of the subspaces W1and W2, if for each vector v ∈ V , there are two vectors w1 and w2,
w1 in W1 and w2 in W2 such that:

v = w1 + w2 (29)
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and such vectors w1, w2 are unique, i.e., if there is also a decomposition of V given by

v = v1 + v2 (30)

then v1 must be equal to w1 or w2, and v2 equal to w2 and w1 respectively.
One uses the symbolism

V = W1 ⊕W2. (31)

Of course there is no use of this idea if the subspaces are trivial.

7.1

The definition can be extended to decomposition into more than two, but a finite number of subspaces.

7.2

If V is finite dimensional and

V = W1 ⊕W2 (32)

then W1and W2 are also finite dimensional, and

dim(V ) = dim(W1) + dim(W2). (33)

So, a vector space V of dimension n can be decomposed into at most n subspaces, each of these being
of dimension 1. This is finest possible decomposition.

7.3

The concept of decomposition for an abstract vector space is motivated by the idea of ‘resolution’ of
vectors in geometry or physics(such as forces). One may refer to w1 and w2 as components of v.

The two subspaces W1 and W2 are ‘smaller’ than V and may have some special properties. But
the real use of this concept is for the decomposition of linear functions.

7.4

Suppose f : V 7→W is linear and V,W have decompositions such that

V = V1 ⊕ V2,

W = W1 ⊕W2 ,

and f takes elements of V1to W1, and elements of V2to W2.
Then, with f we can associate two functions :

f |V1 : V1 7→W1 ,

f |V2 : V2 7→W2.

These are called the ‘restrictions’ of f to V1 and V2, respectively. The original function is nicely related
to the two restrictions, which could be “simpler” than the original function. In particular, if one chooses
bases BV1and BV2 for V1, V2 and BW1and BW2 for W1,W2, and bases BV1 ∪BV2 for V, and BW1 ∪BW2

for W , then the matrix representing f with respect to these two bases ’breaks up’ into four parts, two
of which are on the ’diagonal’. And the other two are zero matrices.[

[ ] 0
0 [ ]

]
, (34)

.
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7.5

A very important special case is when the domain V of f and co-domain W of f are the same vector
space, or f : V 7→ V is a linear transformation of the vector space V into itself. In this case to get
a block diagonal decomposition of the representing matrix, it is necessary that the subspaces V1and V2

are “f - invariant”, i.e.,f takes vectors in V1 into vectors in V1and vectors in V2 into vectors into V2

So we have the following problem: given f : V 7→ V find, if any, decomposition

V = V1 ⊕ V2 (35)

into f -invariant subspaces V1 and V2. One may also also want such a decomposition to be as fine as
possible.

8 DECOMPOSITION USING ker/im SPACES

8.1

Given f : V 7→ V, V finite dimensional, it can be shown that

dimV = dim(im f) + dim(ker f) (36)

Further it can be shown that the two subspaces im f and ker f are f -invariant. So, one would wish
that:

V = im f ⊕ ker f. (37)

Unfortunately, this is so in exceptional cases.

8.1.1

If f is the zero function, im f = {0v}, ker f = V , and so we have the trivial decomposition

V = {0v} ⊕ V. (38)

Similarly, if f is a one-to-one transformation, then im f = V, ker f = {0v} and we get a trivial
decomposition.

So, to get a non-trivial decomposition, f should be neither the zero function nor a one-to-one
function, so that ker f 6= {0v} but, ker f % {0v} and im f 6= V but, imf $ V , i.e.,ker f and im f
are non-trivial subspaces.

8.2

For a given f : V 7→ V , one could find bases for kerf and imf using column operations, and check
whether these two bases put together give a bases for V . This can also be done using column operations.
In fact, column operations can be used to check whether a given vector is some linear combination of
some other given vectors, or whether a given finite set of vectors is independent

8.3

But if V 6= kerf ⊕ imf , one need not despair. One can take the function f ◦f , also denoted by f2, and
called the composition of f with itself. (If f is represented by a matrix A, then f2 is represented
by the matrix A ◦ A or A2. Thus, composition of linear functions and product of matrices are closely
related - as also “addition” of linear functions, and “scalar multiple” of a linear function.) One can
check whether

V = kerf2 ⊕ imf2; (39)

if this is not true, one can try f3. It can be shown that if f is finite dimensional there is a smallest
number k, 1 ≤ k ≤ dimV such that

V = kerfk ⊕ imfk. (40)
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Of course, this decomposition may turn out to be trivial, with imfk = {0V }, kerfk = V . In this
case, f is said to be nilpotent, and k is said to be its index of nilpotent.

This method gives a decomposition, if it is non-trivial at all, into only two, subspaces. So, we look
for other, “better” methods.

9 CYCLIC SUBSPACE AND MINIMUM POLYNOMIAL:

Given f : V 7→ V , there is a simple way of generating f - invariant subspaces. Choose any non-zero
vector w ∈ V , calculate f(w) and check if f(w) depends on ( and so , is a multiple of ) w. If it does
then

sp{w} (41)

is f -invariant and of dimension one.
If f(w) is “independent” of w , then calculate f(f(w)) or f2(w) and check whether it is dependent

on the independent set {w, f(w)} containing two vectors. If it is, then

sp{w, f(w)} (42)

is f -invariant and of dimension two.
So, it should be “clear” that given any non zero vector w of V and the linear function f : V 7→ V

there is a smallest number k, 1 ≤ k ≤ dimV , such that the set

{w, f(w), f2(w), .......f{k−1}(w)} (43)

is an independent set , and the vector fk(w) is a linear combination of these vectors, and so the
subspace

sp{w, f(w), f2(w), .......f{k−1}(w)} (44)

is f -invariant. It is said to be the cyclic subspace generated by w under the action of f , or
with respect to f . The set {w, f(w), f2(w), .......f{k−1}(w)} is said to be a cyclic basis for the cyclic
subspace.

9.1

If f is - or is represented by - a matrix, and w is - or is represented by - a column, then using column
operations one can determine such cyclic subspaces.

9.2

It may happen that there is a vector w ∈ V such that, under the action of f , it generates V itself. In
that case, V is said to be cyclic with respect to f , or even f is said to be cyclic.

9.2.1

If A is a special matrix, called a “companion” or “companion form” matrix:

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 . . . −an−1 −an

 (45)

of size n, and we consider it as a function

Acol : Rn
col 7→ Rn

col (46)

then Rn
col is cyclic, or A is cyclic, with the unit vector en as a cyclic generator.

Note: There are some other forms of matrices which are also said to be “companion” or “companion
form” by various authors.
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9.3

A very important, and surprising, fact is the association of a polynomial with a vector w ∈ V , under
the action of a given f , or with respect to a given f .

If
sp{w, f(w), f2(w), .......f{k−1}(w)}

is the cyclic basis for the cyclic subspace generated by w under the action of f , then f (k)(w) is a
unique linear combination of these vectors, and so there is a unique set of numbers ak−1, ak−2, . . . , a1, a0.
such that

fk(w) + ak−1f
k−1(w) + . . .+ a1f(w) + a0w = 0V . (47)

The corresponding polynomial p(s), given by

p(s) = pk + ak−1p
k−1 + . . .+ a1p+ a0 (48)

- or p(λ), or p(t), or even p(x), if these symbols λ, t, x stand for a “dummy” variable - like s does, - this
polynomial p(s) is said to be the minimum annihilating polynomial, or minimum polynomial,
mp for short, of the vector w under the action of f .

9.4

If A is an n× n matrix such that there is a column v0 such that the mp of v0 is of degree n, i.e., v0 is
a cyclic generator of Rn

col, with mp

p(s) = sn + an−1s
n−1 + . . .+ a1s+ a0, (49)

then if the following ordered bases is chosen,

{w1, w2, w3 . . . wn}

where

w1 = An−1w0 + an−1A
n−2w0 + . . .+ a1w0

w2 = An−2w0 + an−1A
n−3w0 + . . .+ a2w0

...
wn = w0,

the matrix representing A with respect to this bases will be the companion - form matrix mentioned
in 9.2.1.

9.5 MINIMUM POLYNOMIAL OF A SUBSPACE AND OF THE WHOLE VEC-
TOR SPACE:

The concept of mp of a single vector w with respect to a linear function f can be extended to the
concept of mp of a set of vectors of a subspace and even of the whole vector space. It is simply the
least degree monic(leading coefficient = 1) polynomial that, “annihilates”(makes into the zero vector)
the subspace or the whole space. Such mp can be calculated as follows:

9.5.1 ALGORITHM FOR mp OF A FINITE-DIMENSIONAL SUBSPACE OR VEC-
TOR SPACE:

Choose any bases for the subspace(or the whole space). Find out the mp of each of the bases vectors
singly or separately. Then the mp of the subspace (or whole space) is the “LCM” (least common
multiple) of the mp of the individual bases vectors.
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9.5.2 HOW TO FIND THE LCM OF TWO POLYNOMIAL{p1, p2}?

NOT BY FACTORIZING EACH POLYNOMIAL (THE METHOD TAUGHT IN SCHOOL!) BUT
BY FINDING OUT THE “GCD”(Greatest Common Divisor) or “HCF” (Highest Common Factor) OF
THE POLYNOMIALS. THEN,

LCM =
Product of polynomials

GCD
(50)

(There is no need to factorize when multiplying or dividing polynomials).

9.5.3 HOW TO FIND THE GCD OF TWO POLYNOMIALS WITHOUT FACTORIZ-
ING THEM?

Use the “EDA” (Euclidean Division Algorithm). The last non-zero remainder obtained in the EDA
process is the GCD.

9.5.4 HOW TO FIND THE LCM OF A SET OF THREE OR MORE POLYNOMIALS
{p1, p2, p3, . . . , pk}.

First, find the LCM of p1 and p2, say p12. Then find the LCM of p12 and p3, say, p123, and so on.

10 AN ALGORITHM FOR DECOMPOSITION THAT DOES NOT
INVOLVE FACTORIZATION OF POLYNOMIALS

10.1

Why not factorization of polynomials(or determining their roots) when there are so many excellent
computer programs available? Answer: The program gives only an approximate solution. There is
no algorithm for finding roots of a real or complex - coefficient polynomial that involves only +,−,×
and ÷ operations!

10.2

1. First, determine the mp p1 of the whole space.

2. Next, find out a vector w1 whose mp is the mp of whole space. This is not as easy as it seems; we
want an algorithm, no guesswork, choosing randomly, try this out, etc. There is an algorithm
for finding out such a vector.(See my paper: “An algorithm for a result on minimal polynomials”,
Linear Algebra and its applications, vol. 357, 2002,pp. 291-293).

In two special situations, both involving factorization, there is a method for obtaining such a
vector that makes use of factorization.

(a) If the mp is a “power” of an “irreducible” polynomial, say pk, where p is an irreducible
polynomial (no factors, e.g, (s + 2), or (s2 + s + 1) - if we do not use complex numbers),
then such a vector is found by choosing any bases for the subspace or whole space, and
calculating their individual mp’s. At least one of them will have mp = pk.

(b) If the mp is a product of two co-prime polynomials p1 and p2, say

p = p1 ◦ p2, (51)

then if (somehow) vectors v1, v2 are “known” whose mp’s are p1, p2 , respectively, then the
vector (v1 + v2) has mp = p.

3. Next calculate the cyclic subspace V1 generated by this special vector. If V1 is the whole space
(this will happen when the degree of the mp equals the dimension of the vector space), then stop.
This algorithm will not give a decomposition. But if V1 $ V , we proceed further.

13



4. We calculate a new “object” - the mp of the space relative to this subspace V1. This is an
extension of the concept of mp of the space, not “relative” to anything - so that it now could be
called the “absolute” mp - a new concept. (Actually, the original mp can be seen to be the mp
relative to the trivial subspace {0V }. To find the mp of a vector w relative to a given subspace
V1, we calculate f(w), f2(w), . . . as before, except at each step, we check whether some linear
combination of the vectors calculated up to any stage lies in the the subspace V1. If it does, we
stop. Thus the mp of w relative to V1 will be a polynomial of least degree.

sk + ak−1s
k−1 + . . .+ a1s+ a0 (52)

if

(a) no linear combination {w, f(w), . . . , fk−1(w)} is in V1, and

(b) the l.c fk(w) + ak−1f
k−1(w) + . . .+ a1f(w) + a0w is in V1

The mp of the whole space relative to V1 is, as before, the LCM of the mp’s of vectors from any
basis relative to V1.

5. Next, find out a vector w′
2 whose mp relative to V1 is the same as the mp of whole space relative

to V1, say p2. Then
p2(f)(w

′
2) ∈ V1 (53)

and since V1 is a cyclic subspace generated by our first vector w1, there is a polynomial p3 such
that

p2(f)(w
′
2) = p3(f)w1 (54)

It has been shown that the polynomial p2 divides p3, i.e.,

p3 = p2p4

so p2(f)[w
′
2 − p4(f)(w1)] = 0V .

The vector w′
2 − p4(f)(w1) = w2, say, is our next cyclic generator. The cyclic subspace V2

generated by w2 will be “independent” of the first cyclic subspace V1.

Check whether

V = V1 ⊕ V2.

If so, stop. No more decomposition is possible, using this algorithm.

If not find out the mp of the whole space relative to the subspace “V1 +V2” and proceed further.

If V is finite dimensional , this process will end after a finite number of steps.

6. The polynomials p1, p2 . . ., obtained in this procedure are called the invariant polynomials of
the function. Each polynomial in the sequence divides all of its “predecessors”, and the product
of the polynomials equals the “characterstic polynomial” of f . If appropriate bases are chosen for
the cyclic subspaces V1, V2, . . ., the matrix representing f will be a “block - diagonal” matrix, each
diagonal block being a companion - form matrix. Such a matrix is known as the FROBENIUS
or RATIONAL CANONICAL FORM.

11 ANOTHER ALGORITHM FORDECOMPOSITION THATDOES
INVOLVE FACTORISATION OF POLYNOMIALS

11.1

Suppose the mp of the whole space p “has” a factorization

p = p1p2 (55)
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where p1 and p2 are “coprime” (have no common factor, GCD is equal to constant polynomial), and
no factorisation of p1, p2 is known. Then

ker(p1(f)) = im(p2(f))
ker(p2(f)) = im(p1(f))

V = ker(p1(f))⊕ im(p1(f))
= ker(p2(f))⊕ im(p2(f))

Now apply the algorithm of the previous section 10 to these subspaces.
Example:

p(s) = (s− 1)3(s2 + s+ 1)2

then p1(s) = (s− 1)3, p2(s) = (s2 + s+ 1)2.

11.2

Of course if p has a factorization into three or more piecewise co-prime polynomials, say

p = p1p2 . . . pk (56)

it should be clear what is to be done.
Example:

p(s) = (s− 1)3(s+ 1)2(s+ 3) (57)

In this case, one will obtain the JORDAN CANONICAL FORM.
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