
Prob 1 : Calculate the mp of v = [ 1 0 2 −1]T under the action of

A =


6 1 1 1
−1 4 −1 −1

6 1 1 1
−6 −1 4 4


Solution:

• Step 1: We calculate Av, A2v = A(Av), A3v, A4v

Av =


7
−2

7
−2

 , A2v =


45
−20

45
−20

 ,
1
5

A2v =


9
−4

9
−4



1
5
A3v =


55
−30

55
−30

 ,
1
25

A3v =


11
−6
11
−6

 ,
1
25

A4v =


65
−40

65
−40


1

125
A4v =


13
−8
13
−8


Note: We have scaled the columns for ‘human convenience’. A computer program may not do this.

• Step 2: Now, we do column operations on these columns in order v, Av, 1
5A2v, 1

25A3v, 1
125A4v using a

5 × 5 column operations matrix, and marking the various pivot elements as we go on. We do not need to
do ‘backward’ (‘leftward’) creation of zeros in pivot columns.


v Av 1

5A2v 1
25A3v 1

125A4v

11 7 9 11 13
0 −2 −4 −6 −8
2 7 9 11 13
−1 −2 −4 −6 −8




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


↓


11 0 0 0 0
0 −22 −4 −6 −8
2 −7 −9 −11 −13
−1 5 5 5 5




1 −7 −9 −11 −13
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


↓


11 0 0 0 0
0 −22 0 0 0
2 −7 53 10 15
−1 5 −5 −10 −15




1 −7 5 10 15
0 1 −2 −3 −4
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


↓
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
11 0 0 0 0
0 −22 0 0 0
2 −7 53 0 0
−1 5 −5 0 0




1 −7 5 0 0
0 1 −2 1 2
0 0 1 −2 −3
0 0 0 1 0
0 0 0 0 1


The fourth column has become zero, as also the fifth , but 1

25A3v comes before 1
125A4v. so from the column

operations matrix , we obtain

(1)Av + (−2)
1
5
A2v + (1)

1
25

A3v = 04

So A3v − 10A2v + 25Av = 04

or (A3 − 10A2 + 25A)v = 04

So, the mp is s3 − 10s2 + 25s

Prob 2: Obtain a direct decomposition, for a suitable k:

R4 = ker Bk ⊕ im Bk

where B =


2 0 −5 3
0 2 −3 1
−5 3 2 0
−3 1 0 2

 .

Solution :

• Step 1: We first calculate ker B, im B.

Note: We are free to use any non-zero entry as pivot . The column operations matrix is 4 X 4.


2 0 −5 3
0 2 −3 11

−5 3 2 0
−3 1 0 2




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


↓


22 −6 4 3
0 0 0 11

−5 3 2 0
−3 −3 6 2




1 0 0 0
0 1 0 0
0 0 1 0
0 −2 3 1


↓


22 0 0 3
0 0 0 11

−5 −123 12 0
−3 −12 12 2




1 3 −2 0
0 1 0 0
0 0 1 0
0 −2 3 1


↓
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
22 0 0 3
0 0 0 11

−5 −123 0 0
−3 −12 0 2




1 3 1 0
0 1 1 0
0 0 1 0
0 −2 1 1


No more column operations are possible.
Note: It is not necessary to create leftward or rightward zeros in pivot columns, at least right now.

The zero column on the “B side” says that the corresponding columns on the columns-operations matrix side are
in ker B. The non-zero columns on the B side are in im B.
So,

ker B = sp{[1 1 1 1]T }
im B = sp{[2 0 − 5 − 3]T , [0 0 − 12 − 12]T , [3 1 0 2]T }.

• Step 2: We now check whether

R4 = ker B ⊕ im B

by using column operations .(Note: Nothing is obvious). It is not necessary to write the column operations
matrix. 

11 2 0 3
1 0 0 1
1 −5 −12 0
1 −3 −12 2



↓
11 0 0 0
1 −22 0 −2
1 −7 −12 −3
1 −5 −12 −1



↓
11 0 0 0
1 −22 0 0
1 −7 −12 43

1 −5 −12 4


↓

11 0 0 0
1 −22 0 0
1 −7 0 43

1 −5 0 4



The zero column shows that the four vectors do not form a linearly independent set and so,

R4 6= ker B ⊕ im B .

• Step 3: So, we have to calculate ker B2, im B2 and check whether
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R4 = ker B2 ⊕ im B2 .

It is easier to calculate im B2; it is simply the span of vectors obtained by acting by B on the three vectors in
im B. 

2 0 −5 3
0 2 −3 1
−5 3 2 0
−3 1 0 2


2
0
−5
−3

0
0

−12
−12

3
1
0
2

namely, 
20
12
−20
−12

 ,


24
24
−24
−24

 ,


12
4

−12
−4

 .

We now check whether these vectors are linearly independent. We scale them for human convenience.
5 11 3
3 1 1
−5 −1 −3
−3 −1 −1

 →


0

−22

0
2

11

1
−1
−1

0
−22

0
2

 →


0

−22

0
2

11

1
−1
−1

0
0
0
0


.

So, im B2 = sp
{
[0 − 2 0 2]T , [1 1 − 1 − 1]T

}
$ im B.

• Step 4: We could now calculate ker B2 and check whether

R4 = ker B2 ⊕ im B2,

but, it is easier to calculate im B3 and check whether

im B3 = im B2.

For im B3, we calculate
2 0 −5 3
0 2 −3 1
−5 3 2 0
−3 1 0 2




0
−2

0
2

 ,


1
1
−1
−1

 =


6
−2
−6

2

 ,


4
4
−4
−4


and check the last two vectors for independence:

6 4
−2 4
−6 −4

2 −4

 →


6 0
−2 16/3
−6 0

2 −16/3

 ;

they are independent. So

dim im B3 = dim im B2 ,

and so,

im B3 = im B2.
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• Step 5: We have to calculate ker B2, we already know ker B = sp[1 1 1 1]T . We should not calculate B2.
So we have to solve

Bx =


1
1
1
1

 .

We will need the column operations matrix, which we have already found out. However, B was not fully column
reduced, but it is not too late, we can do it now, using the same pivot elements in the same order.

22 0 0 3
0 0 0 11

−5 −123 0 0
−3 −12 0 2




1 3 1 1
0 1 1 0
0 0 1 0
0 −2 1 1


↓


22 0 0 0
0 0 0 11

−5 −123 0 15/2
−3 −12 0 13/2




1 3 1 −3/2
0 1 1 0
0 0 1 0
0 −2 1 1


↓

22 0 0 0
0 0 0 11

0 −123 0 0
2 −12 0 −1



−1/4 3 1 3/8
−5/12 1 1 5/8

0 0 1 0
5/6 −2 1 −1/4

 .

So we have to solve 
22 0 0 0
0 0 0 11

0 −123 0 0
2 −12 0 −1

 y =


1
1
1
1


giving

2y1 = 1 or y1 = 1/2
y4 = 1

−12y2 = 1 or y2 = −1/12

Substituting in 4th equation for consistency

2(1/2) + (−1/12)(−12) + (−1)1 ?= 1.

y3 is free. So solution is

x =


−1/4 3 1 3/8
−5/12 1 1 5/8

0 0 1 0
5/6 −2 1 −1/4




1/2
−1/12

y3

1



= y3


1
1
1
1

 +


(−1/8− 1/4 + 3/8)

(−5/24− 1/12 + 5/8)
0

(5/12 + 1/6− 1/4)

 = y3


1
1
1
1

 +


0

1/3
0

1/3


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Before proceeding further,we check whether the ‘constant’ part [0 1/3 0 1/3]T is such that B acting on it
takes it to ker B. 

2 0 −5 3
0 2 −3 1
−5 3 2 0
−3 1 0 2




0
1/3
0

1/3

 =


1
1
1
1


We also see(as a check) that [1 1 1 1]T and [0 1/3 0 1/3]T form an independent set:

1 0
1 1/3
1 0
1 1/3


So, scaling [0 1/3 0 1/3]T ,

ker B2 = sp
{
[1 1 1 1]T , [0 1 0 1]T

}
and

im B2 = sp
{
[0 − 1 0 − 1]T , [1 1 − 1 − 1]T

}
Finally, we verify that, these 4 vectors form a linearly independent set.

11 0 0 1
1 1 −1 1
1 0 0 −1
1 1 1 −1

→

11 0 0 0
1 12 −1 0
1 0 0 −2
1 1 1 −2

→

11 0 0 0
1 12 0 0
1 0 0 −2
1 1 23 −2

→

11 0 0 0
1 12 0 0
1 0 0 −2
0 0 23 0

Thus R4 = ker B2 ⊕ im B2, k = 2.

Prob. 3: The mp of the matrix C given by

C =


−4 4 3 15
−1 0 0 5

0 0 −4 −3
0 0 2 1


is (s + 1)(s + 2)3. Calculate a suitable ordered basis so that the matrix is transformed into its Jordan
Canonical form. What will be the FROBENIUS Canonical Form of the matrix?

Solution :

• Step 1: The mp, say, p(s):

p(s) = (s + 1)(s + 2)3

is seen to be factorized into two factors (s + 1), and (s + 2)3, which are coprime, say p1(s) = (s + 1) and
p2(s) = (s + 2)3.
So,

R4 = ker(C + I)⊕ ker(C + 2I)3

but, since there are only two factors,

ker(C + 2I)3 = im(C + I),

6



that is

R4 = ker(C + I)⊕ im(C + I)

• Step 2: So we simply have to calculate bases for the ker and im spaces of the matrix (C+I).We do this
using column operations matrix.

C+I I
−3 4 3 15
−1 11 0 0

0 0 −3 −3
0 0 2 2




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



↓
12 4 3 −5
0 11 0 0
0 0 −3 −3
0 0 2 −2




1 0 0 0
1 1 0 −5
0 0 1 0
0 0 0 1


↓


12 0 0 0
0 11 0 0
0 0 −33 −3
0 0 2 2




1 −4 −3 5
1 −3 −3 0
0 0 1 0
0 0 0 1


↓

12 0 0 0
0 11 0 0
0 0 −33 0
0 0 2 0




1 −4 −3 8
1 −3 −3 3
0 0 1 −1
0 0 0 1

 .

So,
ker (C + I) = sp

{
[8 3 − 1 1]T

}
im (C + I) = sp

{
[1 0 0 0]T , [0 1 0 0]T , [0 0 − 3 2]T

}
= ker (C + 2I)3

• Step 3: We now check whether the subspace ker (C + 2I)3 can be decomposed. Its mp is(s + 2)3. We have
to find a vector where mp is p2(s). Since p2(s) is a power of a prime(irreducible) polynomial, at least one
of the basis vectors of the subspace must have mp = p2(s).

mp of [1 0 0 0]T under C: Say v1 = [1 0 0 0]T , Cv1 = [−4 − 1 0 0]T , C2v1 = [12 4 0 0]T ; scaling 1
4C2v1 =

[3 1 0 0]T , 1
4C3v1 = [−8 − 3 0 0]T .

To check independence, we will do column operations.
v1 Cv1

1
4C2v1

1
4C3v1

11 −4 3 −8
0 −1 1 −3
0 0 0 0
0 0 0 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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↓
11 0 0 0
0 −12 1 −3
0 0 0 0
0 0 0 0




1 4 −3 8
0 1 0 0
0 0 1 0
0 0 0 1


↓

11 0 0 0
0 −12 0 0
0 0 0 0
0 0 0 0




1 4 1 −4
0 1 1 −3
0 0 1 0
0 0 0 1


So,

v1 + Cv1 + 1
4C2v1 = 04

i.e, (C2 + 4C + 4I)v1 = 04.

The mp of v1 is s2 + 4s + 4 and this has to be power of (s + 2): it is indeed (s + 2)2.

So next, v2 = [0 1 0 0]T , Cv2 = [4 0 0 0]T , C2v2 = [−16 − 4 0 0]T , scaling 1
4C2v2 = [−4 − 1 0 0]T ,

1
4C3v2 = [12 4 0 0]T , 1

16C3v2 = [3 1 0 0]T
v2 Cv2

1
4C2v2

1
4C3v2

0 4 −4 3
11 0 −1 1
0 0 0 0
0 0 0 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


↓

0 42 −4 3
11 0 0 0
0 0 0 0
0 0 0 0




1 0 1 −1
0 1 0 0
0 0 1 0
0 0 0 1


↓

0 42 0 0
11 0 0 0
0 0 0 0
0 0 0 0




1 0 1 −1
0 1 1 −3/4
0 0 1 0
0 0 0 1


So,

v2 + Cv2 + 1
4C2v2 = 04

i.e, (C2 + 4C + 4I)v2 = 04.

Hence, mp of v2 is also (s + 2)2.

So next v3 = [0 0 − 3 2]T . It’s mp had better be (s + 2)3!
Cv3 = [21 10 6 − 4], C2v3 = [−86 − 41 − 12 8], C3v3 = [264 126 24 − 16]

v3 Cv3 C2v3 C3v3

0 21 −86 264
0 10 −41 126
−3 6 −12 24

2 −4 8 −16




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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↓
0 21 −86 264
0 10 −41 126
−3 0 0 0

2 0 0 0




1 2 −4 8
0 1 0 0
0 0 1 0
1 0 0 1


Here, the usual operations will involve fractions. But,we can use column operation with a difference - instead of
creating zeros directly, we can reduce the size of numbers. Thus,

C3 ← C3 + 4C2, C4 ← C4 − 12C2

↓
0 21 −2 12
0 10 −1 6
−3 0 0 0

2 0 0 0




1 2 4 −16
0 1 4 −12
0 0 1 0
0 0 0 1


but we must carry out the operations in one direction only, namely, from v3 to Cv3 to C2v3. But, we could also
scale some columns to avoid fractions. For example,

↓
0 21 −860 2640
0 102 −410 1260

−32 0 0 0
2 0 0 0




1 2 −40 80
0 1 0 0
0 0 10 0
0 0 0 10


↓

0 21 1 −6
0 102 0 0

−32 0 0 0
2 0 0 0




1 2 42 −172
0 1 41 −126
0 0 10 0
0 0 0 10


↓

0 21 1 0
0 10 0 0
−3 0 0 0

2 0 0 0




1 2 42 80
0 1 41 120
0 0 10 60
0 0 0 10


So we have,

10C3v3 + 60C2v3 + 120Cv3 + 80v3 = 04,

and so,

(C3 + 6C2 + 12C + 8I)v3 = 04,

as expected!

We may of course verify directly that (s + 2)3 = s3 + 6s2 + 12s + 8 is the mp of [0 0 − 3 2]. We can check
whether, 

264
126
24
−16

+ 6


−86
−41
−12
8

+ 12


21
10
6
−4

+ 8


0
0
−3
2

 ?=


0
0
0
0


9



LHS =


264− 516 + 252
126− 246 + 120

24− 72 + 72− 24
−16 + 48− 48 + 16

 =


0
0
0
0


Also verify that (s + 2) and (s + 2)2 = s2 + 4s + 4 are not mp’s of [0 0− 3 2].

[21 10 6− 4]T + 2[0 0− 3 2]T = [21 10 0 0]T 6= [0 0 0 0]T

[−86− 41− 12 8]T + 4[21 10 6− 4]T + 4[0 0− 3 2]T = [−2− 1 0 0]T 6= [0 0 0 0]T

Since (C+2I)3v3 = 04, the basis vectors will be (C+2I)2v3, (C+2I)v3, v3, i.e., [−2−1 0 0]T , [21 10 0 0]T , [0 0−3 2]T

in that order.

Putting, together this basis for ker(C + 2I)3 and the basis for ker(C + I), we obtain an ordered basis for
R4:
[−2 −1 0 0]T , [21 10 0 0]T , [0 0− 3 2]T , [8 3 − 1 1]T ,
such that with respect to this basis, the matrix C is represented by (transformed into) its JORDAN CANONICAL
FORM: 

−2 1 0 0
0 −2 1 0
0 0 −2 0

−− −− −− −−
0 0 0 −1

 ,

the 3X3 Jordan Block corresponding to the eigenvalue -2 appearing"’first"’, and the 1X1 Jordan Block corre-
sponding to the eigenvalue -1 appearing "‘second"’.
The mp of C, namely, p(s), is of degree 4, which equals the size of the matrix (and the dimensions of the vector
space R4). So, the FROBENIUS CANONICAL FORM of the matrix will be a single block, namely:

0 1 0 0
0 0 1 0
0 0 0 1
−8 −20 −18 −7

 ,

since p(s) = s4 + 7s3 + 18s2 + 20s + 8.

Prob.4: Using the STEINITZ procedure, extend the set {v1, v2, v3} to a basis for R4 .

v1 = [1 1 1 1]T , v2 = [3 3− 1− 1]T , v3 = [3 5 1 1]T .

Solution: Incidentally, we will check that the given set is linearly independent.
We will select additional vectors - in this case, only one - from any known basis, for simplicity, say, the basis

of the ‘unit’ vectors, (e4
1, e

4
2, e

4
3, e

4
4 ).

We use column operations to check dependence. There is no need to use the column operations matrix. It
helps to create zeros to the left and right.

v1 v2 v3 e1 e2 e3 e4

11 3 3 1 0 0 0
1 3 5 0 1 0 0
1 −1 1 0 0 1 0
1 −1 1 0 0 0 1

↓
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11 0 0 0 0 0 0
1 0 22 −1 1 0 0
1 −4 −2 −1 0 1 0
1 −4 −2 −1 0 0 1

↓

11 0 0 0 0 0 0
0 0 22 0 0 0 0
2 −43 −2 −2 1 1 0
2 −4 −2 −2 1 0 1

↓


11 0 0 0 0 0 0
1 0 22 0 0 0 0
0 −43 0 0 0 0 0
0 −4 0 0 0 −1 1


So e1, e2 are dependent on {v1, v2, v3}, but both e3, e4 are independent of {v1, v2, v3}. So, any one of them can
be adjoined.
Answer: {v1, v2, v3, e3} , {v1, v2, v3, e4}

A short-cut suggested by Bhavin Patel: If the unit vector basis is used, by looking at the pivot ele-
ment columns, we can immediately see which unit vector will be independent of these columns. Thus, in the
above example, both e3 and e4 will be independent, so we do not have to do column operations on the unit vectors.

Steinitz replacement procedure: What is given above is not a replacement procedure. In the replacement
procedure, given a basis {v1, v2, . . . , vn} and an independent set {w1, w2, . . . , wk}, with k < n, one finds out what
members of the basis can be replaced by vectors from the independent set to form a new basis.

Prob.5: Obtain the "least squares" solution to following inconsistent system using column operations only.
What is the norm of the error vector for this solution?


1 −1 1
1 0 0
1 1 1
1 2 4

x =


1
2
1
2


Solution: We do column operations with a difference. Instead of creating zeros to the left and right of a

chosen pivot element, we choose a pivot column and orthogonalize the remaining columns, including the right
hand side vector, using the pivot column. We also need the column operations matrix.

Step 1: Choose any non-zero column of the coefficient matrix(multiplying x) as the pivot column, say, the
first column. If we denote the pivot column by v, then another column w is replaced by,

w −
(

v·w
v·v
)
v.

This new column is then orthogonal to v. We will write the inner products involved above at the bottom.

(1)
1 −1 1 1 1 0 0 0
1 0 0 2 0 1 0 0
1 1 1 1 0 0 1 0
1 2 4 2 0 0 0 1

(4) (2) (6) (6)
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Step 2:
(2)

1 −3/2 −1/2 −1/2 1 −1/2 −3/2 −3/2
1 −1/2 −3/2 1/2 0 1 0 0
1 1/2 −1/2 −1/2 0 0 1 0
1 3/2 5/2 1/2 0 0 0 1

(5) (5) (1)

(We could scale the columns, but then we have to keep track of the scale factors.)

Step 3:
(3)

1 −3/2 1 −1/5 1 −1/2 −1 −7/5
1 −1/2 −1 3/5 0 1 −1 −1/5
1 1/2 −1 −3/5 0 0 1 0
1 3/2 1 1/5 0 0 0 1

(4) (0)

The column corresponding to the right hand side vector has zero inner-product with the third pivot column, so
no operation is necessary. It is the error vector(or it’s negative, depending on how you define "error").
Using the last column of the column-operation matrix, we have,

(−7/5)


1
1
1
1

+ (−1/5)


3
3
−1
−1

+ (0)


3
5
1
1

+ (1)


1
2
1
2

 =


−1/5

3/5
−3/5

1/5


So the solution is,

x =

 7/5
1/5

0


(Norm of error)2 = 1/25 + 9/25 + 9/25 + 1/25 = 20/25

∴ Norm of error = 2/
√

5.
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