
A New Observer

S. D. Agashe∗

Adjunct Professor

Department of Electrical Engineering

Indian Institute of Technology Bombay

Mumbai, India-400076

June 8, 2012

Keywords: Observer, parametrization, interpolation.

1 The Parametrization approach

A “parametrization” approach was introduced in [1] to solve the problem of determining

all inputs which achieve a specified “state-transfer” of a linear controllable system. That

approach does not require computation of the state-transition matrix, and reduces the

state-transfer problem to an “interpolation” problem, namely, the problem of “determin-

ing” all sufficiently differentiable functions which, along with their derivatives upto some

order,have specific values at the initial and final time-instants of the control interval.

Subsequently, the approach was used [2] to solve an optimal control problem. In this pa-

per,we solve the problem of determining the state of a linear observable system, knowing

the output history over a time-interval. The solution uses the well-known duality between

controllability and observability, and the parametrization of inputs in the state-transfer

problem.

2 The New Observer

As shown in [1], for a given single-input controllable system

ẋ = Ax+ ub (1)
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with x(t) ∈ Rn, the problem of determining all inputs which steer the system from any

specified initial state x(ti) to any specified final state x(tf ) can be reduced to the problem

of determining all n-times differentiable functions φ(t) which, along with their (n − 1)

derivatives Dφ,D2φ, ..., D(n−1)φ, have specific values, at the initial and final time instants,

that are determined by x(ti) and x(tf ) respectively, as follows:

D(n−1)φ(ti)b+D(n−2)φ(ti)Ab+ ...+Dφ(ti)A
(n−2)b+ φ(ti)A

(n−1)b = x(ti), (2)

D(n−1)φ(tf )b+D(n−2)φ(tf )Ab+ ...+Dφ(tf )A
(n−2)b+ φ(tf )A

(n−1)b = x(tf ), (3)

and the corresponding input is given by

u = p(D)φ

where p(s) is the characteristic polynomial of A (and also the minimum polynomial of b

under the action of A). Such functions φ were referred to as parametrizing functions, and

the problem of determining these functions was referred to as the interpolation problem.

There are, of course, such functions; indeed, there are polynomials of degree at most

(2n − 1) which satisfy the conditions (2) and (3). (The well-known “Hermite Polyno-

mial Interpolation Problem” is precisely this problem.) Note that the solution of the

interpolation problem does not require calculation of the state-transition matrix function

eAt.

Now, let

ż = Az

y = cT z (4)

be a single-output observable autonomous system. Then, the pair (AT , c) is a controllable

pair, and so is also the pair (−AT , c). Consider an associated controllable system,

ẋ = −ATx+ uc (5)

with input u over a time-interval [ti, tf ]. Then, we have

D(xT z) = [−ATx+ uc]T z + xTAz

= u(cT z)

= uy,

and so, integrating over [ti, tf ],

xT (tf )z(tf )− xT (ti)z(ti) =

∫ tf

ti

u(τ)y(τ)dτ.
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Note that, the input u steers the system (5) from x(ti) at ti to x(tf ) at tf .

Let us now choose x(ti) = 0, so that u is an input which steers the system from state

0 at ti to x(tf ) at tf , and we can choose x(tf ) to be any vector that we like. Such an

input can be calculated from a suitable parametrizing function φ. We, therefore, have

the result:

Theorem 1. Let ej denote the j-th unit vector of Rn and let φj be the corresponding

parametrizing function. Then,

eTj z(tf ) =

∫ tf

ti

p(D)φj(τ)y(τ)dτ (6)

where z and y are solutions of (4) over the time-interval [ti, tf ], and so, z(tf ) can be

determined knowing the integrals in (6), and thus, knowing the output history over the

observation interval [ti, tf ].

Remark 1. The reconstruction of the state z(tf ) is “instantaneous”, and not asymptotic,

as tf →∞. So, the state can be recovered in real time. Note also that the functions φj(τ)

depend on the choice of ti and tf , and these could be regarded as parameters. In particular,

the time-instant tf could be chosen as the “running” or “current” time t, and the time-

instant ti could be chosen as t− 1, say, corresponding to an observation interval [t− 1, t]

of duration 1. For a specific class of functions, such as polynomials or trigonometric

polynomials, the functions φj(τ) can be explicitly determined as functions of τ , with ti

and tf as parameters. (See Example below.)

In particular, if we choose φj(τ) to be a polynomial of degree atmost (2n − 1), then

the integrals in (6) involve “the moments”∫ tf

ti

τ ky(τ)dτ

for k = 0, ..., (2n − 1). These moments could be computed on-line, in real time. Then,

the state z(t) is given by

z(t) = M(t)


∫ t
t−1

y(τ)dτ∫ t
t−1

τy(τ)dτ
...∫ t

t−1
τ 2n−1y(τ)dτ


where M(t) is an appropriate polynomial matrix which can be determined knowing A

and c. The integrals in (6) could also be generated by “hardware”.
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To “recover” the state of an observable linear system driven by an input, such as :

ẋ = Ax+ bu (7)

y = cTx

one could construct a “model”- a “physical” one or a “computational” one- given by

ẇ = Aw + bu (8)

ȳ = cTw

so that the difference z = x− w between x and w satisfies an autunomous equation

ż = Az (9)

(y − ȳ) = cT z

From y − ȳ, we can obtain z(t) and then x(t) as

x(t) = z(t) + w(t) (10)

3 Example

Let

ż =

[
0 2

−1 3

]
z (11)

y =
[
0 1

]
z

be the observable system whose state z(t) is to be determined. Let the associated con-

trollable system, whose input is to be determined using the parametrization approach,

be

ẋ =

[
0 1

−2 −3

]
x+

[
0

1

]
u.

Choosing the parametrizing functions φ1 and φ2 to be polynomials of degree at most

three, to steer the state 0 at time-instant ti to e1 and e2, respectively, at time-instant t,

we obtain.

φ1(τ) =
(τ − ti)2(3t− ti − 2τ)

(t− ti)3
,

and

φ2(τ) =
(τ − ti)2(τ − t)

(t− ti)2
,
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and so,

z(t) =
1

(t− ti)3

[
2t2i (3t− ti)− 18tit+ 6(t+ ti) −12tit+ 18(t+ ti)− 12 6(t+ ti)− 18 −4

−2t− 4ti + 3t2i + 6tti − 2tt2i 6− 6t− 12ti + 2t2i + 4tti 9− 2t− 4ti 2

]
w

(12)

where

w =


∫ t
ti
y(τ)dτ∫ t

ti
τy(τ)dτ∫ t

ti
τ 2y(τ)dτ∫ t

ti
τ 3y(τ)dτ

 .
If we choose ti = t− 1, we get

z(t) =

[
(−4 + 30t− 24t2 + 4t3) (−30 + 48t− 12t2) (−24 + 12t) −4

(7− 20t+ 13t2 − 2t3) (20− 26t+ 6t2) (13− 6t) 2

]
∫ t
t−1

y(τ)dτ∫ t
t−1

τy(τ)dτ∫ t
t−1

τ 2y(τ)dτ∫ t
t−1

τ 3y(τ)dτ


(13)

We could choose trigonometric polynomials for the interpolation. Thus, let the ob-

servation interval be [t− π, t] and let

φ1(τ) = a1cos(τ − t) + a2cos2(τ − t) + b1sin(τ − t) + b2sin2(τ − t).

Then we find, applying the condition (2),

φ1(τ) =
1

2
cos(τ − t) +

1

2
cos2(τ − t)

and

φ2(τ) =
1

2
sin(τ − t) +

1

4
sin2(τ − t).

The state reconstruction is given by

z(t) =

[
1
2
cost+ 3

2
sint −cos2t+ 3sin2t 1

2
sint− 3

2
cost −sin2t− 3cos2t

cost− sint cos2t+ 1
4
sin2t cost+ sint −1

4
cos2t+ sin2t

]
∫ t
t−π(cosτ)y(τ)dτ∫ t
t−π(cos2τ)y(τ)dτ∫ t
t−π(sinτ)y(τ)dτ∫ t
t−π(sin2τ)y(τ)dτ

 .
(14)

Reconstruction (10) might be preferred to (8) and (9) because of the boundedness of the

trigonometric functions. Interestingly, the integrals in (10) are, almost, Fourier series

coefficients of y(τ).
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