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1 The Parametrization approach

A “parametrization” approach was introduced in [1] to solve the problem of determining
all inputs which achieve a specified “state-transfer” of a linear controllable system. That
approach does not require computation of the state-transition matrix, and reduces the
state-transfer problem to an “interpolation” problem, namely, the problem of “determin-
ing” all sufficiently differentiable functions which, along with their derivatives upto some
order,have specific values at the initial and final time-instants of the control interval.
Subsequently, the approach was used [2] to solve an optimal control problem. In this pa-
per,we solve the problem of determining the state of a linear observable system, knowing
the output history over a time-interval. The solution uses the well-known duality between
controllability and observability, and the parametrization of inputs in the state-transfer

problem.

2 The New Observer

As shown in [1], for a given single-input controllable system

&= Ax+ub (1)
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with z(t) € R™, the problem of determining all inputs which steer the system from any
specified initial state x(t;) to any specified final state z(¢f) can be reduced to the problem
of determining all n-times differentiable functions ¢(¢) which, along with their (n — 1)
derivatives D¢, D?¢, ..., D"~V have specific values, at the initial and final time instants,

that are determined by z(¢;) and x(t;) respectively, as follows:

DVt + D Dp(t)Ab+ ... + Dp(t) AT Db + ¢(t) A Vb = x(t), (2)
DU Vep(t)b+ D™Dt )Ab + ... + Dot ;) Ao+ ot ) A Vb = x(ty), (3)

and the corresponding input is given by

u=p(D)¢

where p(s) is the characteristic polynomial of A (and also the minimum polynomial of b
under the action of A). Such functions ¢ were referred to as parametrizing functions, and
the problem of determining these functions was referred to as the interpolation problem.
There are, of course, such functions; indeed, there are polynomials of degree at most
(2n — 1) which satisfy the conditions (2) and (3). (The well-known “Hermite Polyno-
mial Interpolation Problem” is precisely this problem.) Note that the solution of the
interpolation problem does not require calculation of the state-transition matrix function

et

Now, let

y=c'z (4)

be a single-output observable autonomous system. Then, the pair (AT, ¢) is a controllable

pair, and so is also the pair (—A”,¢). Consider an associated controllable system,
i =—ATs +uc (5)
with input u over a time-interval [¢;, ¢;]. Then, we have

D(x'2) = [-ATx +ud" 2z + 27 Az
= u(c' z2)
= uy,

and so, integrating over [t;, ],

£ (tg)2(ty) — 27 (6)2(t:) = / "u(ryy(r)dr,
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Note that, the input u steers the system (5) from z(¢;) at ¢; to z(ty) at ;.

Let us now choose z(t;) = 0, so that u is an input which steers the system from state
0 at t; to z(ty) at ¢y, and we can choose x(tf) to be any vector that we like. Such an
input can be calculated from a suitable parametrizing function ¢. We, therefore, have
the result:

Theorem 1. Let e; denote the j-th unit vector of R" and let ¢; be the corresponding

parametrizing function. Then,

eT(ty) = / " p(D)dy(r)y(r)dr )

where z and y are solutions of (4) over the time-interval [t;,t¢], and so, z(ty) can be

determined knowing the integrals in (6), and thus, knowing the output history over the

observation interval [t;,ty].

Remark 1. The reconstruction of the state z(ty) is “instantaneous”, and not asymptotic,
asty — 00. So, the state can be recovered in real time. Note also that the functions ¢;(T)
depend on the choice of t; andty, and these could be regarded as parameters. In particular,
the time-instant ty could be chosen as the “running” or “current” time t, and the time-
instant t; could be chosen ast—1, say, corresponding to an observation interval [t — 1,t]
of duration 1. For a specific class of functions, such as polynomials or trigonometric
polynomials, the functions ¢,;(T) can be explicitly determined as functions of T, with t;

and ty as parameters. (See Example below.)

In particular, if we choose ¢;(7) to be a polynomial of degree atmost (2n — 1), then

the integrals in (6) involve “the moments”

tf
/ Tky(T)dT
t;

for k = 0,...,(2n — 1). These moments could be computed on-line, in real time. Then,
the state z(t) is given by

[ y(r)dr
J ry(r)dr

ft =1y (r)dr

where M (t) is an appropriate polynomial matrix which can be determined knowing A

and c. The integrals in (6) could also be generated by “hardware”.
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To “recover” the state of an observable linear system driven by an input, such as :
&= Ax+bu (7)
y=cuw

one could construct a “model”’- a “physical” one or a “computational” one- given by

w = Aw+bu (8)

y:cTw

so that the difference z = x — w between x and w satisfies an autunomous equation

z = Az (9)
(y—y) = 'z

From y — g, we can obtain z(t) and then z(t) as

z(t) = z(t) + w(t) (10)
3 Example
Let
i 0 2
z2= [_1 3] z (11)
Yy = [0 1] z

be the observable system whose state z(t) is to be determined. Let the associated con-

trollable system, whose input is to be determined using the parametrization approach,

be
. 0 1
Tr =
-2 =3

Choosing the parametrizing functions ¢; and ¢ to be polynomials of degree at most

0
1

T+ U.

three, to steer the state 0 at time-instant ¢; to e; and es, respectively, at time-instant ¢,

we obtain. ( . )2(325 1)
T —1; —U; — 2T
#ulr) = (t —t:)? ’

nd (r— )27 — 1)
PO="
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1 202(3t — t;) — 18t + 6(¢t + ;) —12t;t +18(t + ;) — 12 6(t +¢t;) — 18 —4
w

)= (t —=t)® | —2t —4t; + 3t2 + 6tt; — 212 6 — 6t — 12t; + 242 + 4tt, 9 —2t —4t; 2
(12)
where
jZ y(T)dr
fti Ty(T)dT
fti 2y(T)dT
fti y(r)dr

If we choose t; =t — 1, we get

J y(rydr

(—4+ 30t — 242 + 41%) (=30 +48t — 12¢%) (=24 +12t) —4| | [\ 7y(r)dr
(T—20t+ 132 —26%)  (20—26t+6t%)  (13—6t) 2| | [, 72y(r)dr
ftt_l y(r)dr
(13)

We could choose trigonometric polynomials for the interpolation. Thus, let the ob-

z(t) =

servation interval be [t — 7, ¢] and let
d1(1) = arcos(T — t) + agcos2(T — t) + bysin(T — t) + basin2(T — t).
Then we find, applying the condition (2),
1 1
o1(7) = 5003(7’ —t)+ 56082(7’ —t)

and

Go(T) = %sm(T —1)+ isinQ(T —1).

The state reconstruction is given by

j:iﬂ(COST)y(T)dT
A(t) = cost + Ssint  —cos2t + 3sin2t  Lsint — 2cost —sin2t — 3cos2t ﬁ%W(COSQT)y(T)dT
cost — sint  cos2t + tsin2t  cost + sint  —jcos2t + sin2t| | [,_(sinT)y(r)dT

[1_(sin2r)y(r)dr
(14)

Reconstruction (10) might be preferred to (8) and (9) because of the boundedness of the
trigonometric functions. Interestingly, the integrals in (10) are, almost, Fourier series

coefficients of y(7).
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