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@ Power amplifiers are the last component in a RF transmitter chain for radar and
telecommunication equipments.

High efficiency and gain are highly commercially important parameters.

Applications such as wireless communication devices have limited battery. Keeping
the efficiency high would provide a better battery life.

o For military application scenarios it is important to maintain the same performance
for electrical circuits across wide temperature ranges.
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Problem description

@ Power Amplifiers (PA) are high power devices which lead to significant rise in
temperature due to high power dissipation.

@ Temperature rise affects the MOS transistor drain current and transconductance
which in turn degrades PA characteristics like gain, linearity and efficiency.
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Block diagram of temperature compensation method
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@ A temperature compensation unit makes the PA characteristics independent of
heating.

o Compensation unit can either be feedback based or non-feedback based. A
temperature sensor can be used for feedback based control.
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Effect of temperature on MOSFET drain current

@ Drain current in saturation

,ucox w 2
Ip = — (Vs — V

D 5 1 (Ves H)
o Mobility dependence on temperature w= /Lo(Tlo)fm where m ~ 1.5.

@ Threshold voltage dependence on temperature - Vi = Vi + x(T — To)
where x & —1mV /°C.
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Drain current dependence on temperature
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@ For very small values of (Vgs — Vrw), Ip increases with increase in temperature and
for high values of (Vgs — Vi), Ip decreases with increase in temperature.

@ There exists a point where % = 0(Drain current is independent of temperature
variations).
-
Ves = Vry — (T?
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Small signal transconductance (G,,) dependence on temperature
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@ A similar trend is seen in ac transconductance. For small values of (Ves — Vi), Gm
increases with increase in temperature and for high values of (Vgs — Vi), Gn
decreases with increase in temperature.

@ In order to stabilize PA gain within a temeperature range G, must be constant.

@ Consider a constant G, of ImA/V. Vs must vary from 0.8126V at 0°C to 1.035V
at 100°C.
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Block diagram of temperature compensation method

Bias Control

@ It is now clear that the temperature compensation unit can stabilize the PA gain by
changing gate bias voltage from 0.8126V at 0°C to 1.035V at 100°C.

@ So how can one design a circuit that changes its output voltage as a function of
temperature?

@ Case 1:(No Feedback) Use some temperature sensitive devices like diodes, BJTs,
MOSFETSs.

o Case 2: (Feedback from Temperature Sensor) Temperature sensor output is a
voltage/current indicating the temperature. This signal can be used to generate the
desired variation in bias voltage either by using an external microcontroller or some
on chip circuit.
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Method 1: Gate bias control using diodes and resistors

DC Response
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o] i
L R @ As the temperature rises, voltage drop
Voare VDS across diode reduces and Vgate
increases almost linearly with
. a0 temperature.
1
1o L
O A, s @ To maintain constant G, = 1mA/V,

Vare varies from 0.8127V to 1.036V.

Ref: K. Yamauchi, Y. lyama, and M. Yamaguchi, “X -Band MMIC power amplifier with an on-chip temperature compensation

circuit,/[EEE Tran. Micr. Theory and Techniques, 2001.
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Method 1: Gate bias control using diodes and resistors

DC Analysis
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@ The variation in Gp, is reduced from 27.5% (without compensation) to 1.88% (with
compensation) within temperature range 0 to 100°C.
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Can we reduce it even further?? (Constant Gm contours)
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Constant Gm contours using 45 nm CMOS Predictive Technology Model

Constant Gm Contours
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Constant G, contours on Vs versus temperature plot in 45 nm CMQOS Predictive
Technology Model
@ For very high values of G, it may not be possible to maintain a constant G,, for any
Vs over entire temperature range.
o For G, = 185uA/V the following quadratic equation gives an optimal solution.
Ves = 3.45 %107 % % T2 4+ 4545 % 10 * * T 4 0.3927
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Method 2: Temperature sensor based feedback control of gate bias voltage
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Block diagram of temperature compensation unit

@ A temperature sensor senses the on chip temperature in vicinity of PA.

@ Microcontroller generates a corresponding bias control voltage depending on output
of temperature sensor to stabilize G, using the optimal quadratic function.

@ One drawback is that there is a need for a microcontroller to perform the
compensation. Can it been done using some circuit technique??

Ref: T. Yoshida et al., “CMOS power amplifier with temperature compensation for 79 GHz radar system, Asia-Pacific Microw.

Conf. Proceedings, 2013.
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Summary of Methods 1 and 2

DC Response
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@ Method 1 implements a linear bias control voltage which is not an optimal solution.

@ Method 2 implements a quadratic bias voltage control but requires microcontroller
for the same.
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Summary of Methods 1 and

2

DC Analysis
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@ In method 1 bias voltage varies linearly with temperature.
@ Viarer increases faster than it should from 0 to 44°C causing G, to increase with

temperature.

@ Viare1 increases slower for the remaining temperature range causing G, to decrease

with temperature.

Akshay Adlakha (I.I.T. Bombay)

PA temperature compensation

11 March, 2016 14 /25



Proposed temperature compensation method using MOS diode and resistor

MOS Diode

@ In this technique MOS as a diode is used to implement an on chip quadratic bias
voltage. Simulations are done in UMC 180nm CMOS technology.
@ In saturation MOS current does not show quadratic relation with temperature and
can not be used for implementing bias voltage.
Olb _ 15 2lbx
oT — ° T~ Ves— Vi
@ Drain current equation in subthreshold is given as

Ves — V-
Ip = ,Oexp(u

—Vbs
Ve )]

)1 — exp( Vv,

where Iy oc T2 and V7 = kT/q.
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Proposed temperature compensation method using MOS diode and resist

DC Response
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@ Vps is small and the second term is neglected. Using Taylor series expansion for
exponential term and neglecting higher order terms,

Ves =V | 1, Ves — Vo
Ip = Ih(1 —
b=h(1+ Vo + 2( v )9)

@ The first term shows a square law relationship with temperature. So it is possible to

get square law relation from MOS diode in subthreshold region.
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Proposed temperature compensation method using MOS diode and resistor
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Proposed temperature compensation method using MOS diode and resistor

DC Analysis
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@ G, variation versus temperature is only 0.29% over the entire temperature range.

@ As compared to method 1(1.88% variation), variation in G, has reduced by 6.5
times.

@ It shows a promising nearly optimal solution for on chip temperature compensation.
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Are we done yet?? (Drawbacks/other approaches)
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Block diagram of temperature compensation method

@ The circuit technique discussed previously is a good biasing circuit but it will be
difficult to control the gain after fabrication.
@ We wish to explore feedback based approach using the temperature sensor.

@ Advantages of using a temperature sensor -

i. Measures the on chip temperature.
ii. Estimates the PA power dissipation non invasively.
iii. May be used to predict characteristics like efficiency and 1-dB compression point.
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Differential temperature sensor
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Schematic Diagram

@ This sensor has been widely implemented in the past for the purpose of on chip
temperature sensing of PAs due to its high sensitivity.
@ How do you perform simulations for this circuit 77

Ref: J. L. Gonzlez, B. Martineau, D. Mateo, and J. Altet, “Non-invasive monitoring of CMOS power amplifiers operating at RF

and mmW Frequencies using an on-chip thermal sensor, Dig. Pap. - IEEE Radio Freq. Integr. Circuits Symp., 2011.
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power dissipation in AN
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Points where temperature is being monitored

@ The two sources represent two separate power amplifiers.

@ Separate points to measure temperature are chosen to see the effect of temperature
sensitivity versus distance from source.

@ The power in each of the sources is changed from 10mW to 0.5W.
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Measuring power dissipation in ANSYS Icepak

Power (Watt) 151 152 TP1 P2 TP3 TP4 TP5 TP6
2.00E-02 31.3724 31.3394 31.1687 31.1949 31.2311 31.1642 31.1889 31.22
1.00E-01 48.862 48.6969 47.8434 47.9743 48.1554 47.8212 47.0447 48.1
2.00E-01 70.724 70.3937 68.6868 68.9436 69.3109 68.6424 63.8894 69.1998
4.00E-01 114.448 113.787 110.374 110.897 111.622 110.285 110.779 111.4
6.00E-01 158.172 157.181 152.06 152.843 153.993 151.927 152.668 153.599
8.00E-01 201.896 200.575 193.747 194.794 196.243 193.57 194.55 195.799
1.00E+00 245.62 243.97 235.43 236.74 238.55 235.212 236.447 237.999

Table: Temperature at monitor points for different source powers
Monitor Point Sensitivity (C/Watt)

Point 1 10.2
Temperature difference from source 1versus power Point 2 8.88
12 Point 3 7.07
Point 4 10.4
Point 5 9.17
10 P Point 6 7.62
Zs // —T51-TPL ‘
£ —TS1-TP2
L S1 3 2 1
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L
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o
E? j L6
ol
0 . ; , r : : o5
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Icepak simulation- temperature profile on chip
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@ The two figures show temperature contours on the chip and PCB for a specified
power.
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Thank You

Questions?
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