Finding the Average number of Jobs in a Random Queue

Date - 5/2/2016

Anlkit Vijay
M.tech. $2^{\text {nd }}$ Yr.

Control and Computing EE Dept.
IIT Bombay

Outline

- Basics of Markov chains
- Stationary average
- Monte Carlo methods
- Value iteration with Stochastic approximations
- Function approximation
- Simulation Results

Markov chain

$\left\{\mathrm{St}_{\mathrm{t}}\right\}$ is a sequence of random variable.
$S_{1}, S_{2}, \ldots, S_{n}$ are markov if
$P\left(S_{n+1}=j \mid S_{1}=i_{1}, \ldots ., S_{n}=i_{n}\right)=P\left(S_{n+1}=j \mid S_{n}=i_{n}\right)$
$\forall i_{1}, i_{2}, i_{n}, j \in \mathcal{S}$
where, \mathcal{S} is the set of states.

Designing a Markov chain / Queue

- Let
X_{n} : representing the amount of work seen by n'th arrival in a Queue
B_{n} : denotes the amount of work bring by the n'th arrival in a Queue
A_{n} : denotes the inter arrival time between the X_{n} and X_{n+1} arrival.
- This Queue can be modeled as:

$$
X_{n+1}=X_{n}+B_{n}-A_{n}
$$

where, X
B, A
denotes the state of the markov chain denotes the random variable, generated by some known distribution.

Estimation of the Stationary average

$$
\beta=\sum_{i \in \mathcal{S}} f(i) \eta(i)
$$

where, f is a prescribed function.
η is the stationary distribution of the chain.

- To calculate the stationary average of the markov chain, we take $f(X)=X$

Monte Carlo method

The standard Monte Carlo approach is to simulate the Markov chain as per the given distributions and then take the sample average

$$
\frac{1}{N} \sum_{m=1}^{N} f\left(X_{m}\right)
$$

where, N denotes the number of samples.
By strong law of large no., as N tends to infinity, the function will converge to the stationary average.

Analysis of Monte Carlo method

- Although the chain is assumed to be irreducible, there might be exist some almost invariant sets of the state space
- Convergence does not depends upon the initial state we choose but convergence time does depend.

Stochastic Approximation

Stochastic approximation algorithms are recursive update rules that can be used, to solve optimization problems and fixed point equations.

Suppose we wish to find the root $\bar{\theta}$ of the function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Newton iteration method

$$
\theta_{n+1}=\theta_{n}-\frac{f\left(\theta_{n}\right)}{f^{\prime}\left(\theta_{n}\right)}
$$

What if we do not have the mathematical model of ' f ' ?

An alternative approach by Robbins and Monro, is to simply use directly the noisy version of ' f ' in a slightly modified version of algorithm.

$$
\theta_{n+1}=\theta_{n}-\gamma_{n} y_{n}
$$

where γ_{n} is a sequence of positive numbers converging to 0

$$
\begin{gathered}
\sum_{n} \gamma_{n}=\infty \\
\text { and } y_{n}=f\left(\theta_{n}\right)+d_{n}
\end{gathered}
$$

is the noisy version of $f\left(\theta_{n}\right)$
The intuition of decreasing step size is that it provides a sort of averaging of the observation.

ODE Approach

- Consider a function we want to minimize.
- The Gradient descent algorithm for this is

$$
x_{n+1}=x_{n}+\gamma_{n}\left[-\nabla f\left(x_{n}\right)+D_{n+1}\right]
$$

- The limiting ODE is then

$$
\dot{x}(t)=-\nabla f(x(t))
$$

- If the noise is martingale, i.e. $\mathbb{E}\left[D_{n+1} \mid D_{n}\right]=0$

$$
\text { and } \quad \sum_{n} \gamma_{n}=\infty, \quad \sum_{n} \gamma_{n}^{2}<\infty
$$

Then, iteration converges almost surely to the fixed point or we can say, the optimal point of the function.

Value iteration with Stochastic approx.

- Let V (i) denotes the Value function/ Cost function correspond to state i.
- Considering the asynchronous Poisson equation, the cost function for each state is updated as[4]

$$
V(i)=f(i)-\beta^{\prime}+\sum_{j \in \mathcal{S}} p(j \mid i) V(j), \quad j \in \mathcal{S}
$$

-The iteration for solving the above equation is

$$
V_{n+1}(i)=f(i)-V_{n}\left(i_{0}\right)+\sum_{j \in \mathcal{S}} p(j \mid i) V_{n}(j)
$$

Refer: Section 6.7, Applied Probability Models with Optimization Application Sheldon M. Ross

Value iteration with Stochastic approx.

- In the above iteration:

$$
V_{n} \rightarrow V \text { and } V_{n}\left(i_{0}\right) \rightarrow \beta
$$

- The Value iteration incremental update

$$
V_{n+1}(i)=V_{n}(i)+a(n)\left[f(i)-V_{n}\left(i_{0}\right)+V_{n}\left(X_{n+1}\right)-V_{n}(i)\right]
$$

- Step size a(n) is chosen in such a way that it satisfies the stochastic approximation properties.

This can be rewritten as

$$
V_{n+1}(i)=V_{n}(i)+a(n) I\left\{X_{n}=i\right\}\left[T_{i}\left(V_{n}\right)-V_{n}\left(i_{0}\right)+M_{n+1}(i)-V_{n}(i)\right]
$$

where $T(\cdot)=\left[T_{1}(\cdot), \ldots, T_{s}(\cdot)\right]^{T}$ is given by

$$
T_{k}(x) \stackrel{\text { def }}{=} f(k)+\sum_{j} p(j \mid k) x_{j}
$$

for $x=\left[x_{1}, \ldots, x_{s}\right]^{T} \in \mathcal{R}^{s}$, and for $n \geq 0$,

$$
M_{n+1}(j) \stackrel{\text { def }}{=} f(j)+V_{n}\left(X_{n+1}\right)-T_{j}\left(V_{n}\right), n \geq 0,1 \leq j \leq s
$$

Analysis of Value iteration method

- Unlike the Monte Carlo method, this iteration uses the incremental mean towards the next update, but still have the same problems as in the case of previous method.
- The variance in the final converged value is less than the Monte Carlo method.
- This method can only be applied to the finite state space Markov chains.

Function Approximation

- We approximates the value function in terms of basis function and then calculates the weights correspond to the basis.

$$
V(i) \approx \phi(i)^{T} r=\sum_{j=1}^{M} r_{j} \phi_{j}(i) \quad \forall i \in \mathcal{S}
$$

- Let the Basis function matrix be

$$
\Phi=\left[\left[\varphi_{i j}\right]\right]_{1 \leq i \leq s, 1 \leq j \leq M}
$$

where, each basis vector is

$$
\left[\phi_{j}\right]_{1 \leq j \leq M}
$$

- Defining $\phi(i)=\left[\varphi_{i 1}, \varphi_{i 2}, \ldots, \varphi_{i M}\right]^{T}$

Function Approximation iterations

- The iteration is given as

$$
\begin{array}{r}
r_{n+1}=r_{n}(1-a(n))+a(n)\left[B _ { n } ^ { - 1 } \phi (X _ { n }) \left(\phi^{T}\left(X_{n+1}\right) r_{n}\right.\right. \\
\left.\left.-\phi^{T}\left(i_{0}\right) r_{n}+f\left(X_{n}\right)\right)\right]
\end{array}
$$

- where, $\quad B_{n}=\frac{1}{N+1} \sum_{m=0}^{n} \phi\left(X_{m}\right) \phi^{T}\left(X_{m}\right)$
- Stationary average $V_{i_{0}}=\phi\left(i_{0}\right)^{T} r^{*}=\sum_{j=1}^{M} r_{j} \phi_{j}\left(i_{0}\right)$

Analysis of Function approx. method

- The convergence of this scheme is dependent on the choice of the basis function. Only the correct set of basis function will lead to convergence.
- The convergence time of this algorithm is independent of the initial state we choose.
- Variance is quite less than the previous method discussed.

Basis Functions

- $M / M / 1$ and $M / G / 1$ queues are been modeled and the basis functions for them is been found.
- There were many basis and all the permutations of those were checked and the correct set was found.
- There can be more than one set of correct basis functions exist for which the iteration will converge.
- Some examples of the basis functions are

$$
\begin{aligned}
& \phi=\left[\begin{array}{llll}
1^{n} & 2^{n} & \ldots & N^{n}
\end{array}\right]^{T},\left[\begin{array}{llllll}
0 & \ldots & 0, & 1 & \ldots & 1
\end{array}\right]^{T} \\
& \text {, }\left[\begin{array}{lllllllll}
0 & \ldots & 0, & 1 & \ldots & 1, & 0 & \ldots & 0
\end{array}\right]^{T} \text {, etc }
\end{aligned}
$$

- Experiment 1 : Comparing the SA, MC, SAFA methods for finite state space Markov chain describing $M / M / 1$ queue

- Experiment 2: Comparing the MC, SAFA methods for infinite state space Markov chain describing M/M/1 queue

- Experiment 3 : Comparing the MC, SAFA methods for infinite state space Markov chain describing M/G/1 queue

- Experiment 4 : Simulate the M/G/1 queue with same parameters as earlier but with wrong set of basis functions.

Split Sampling

- Instead of generating a random variable in the state space, we now generate two random variable in the same state space, keeping the transition probabilities same.

$$
X_{n+1}=Y_{n}+B_{n}-A_{n}
$$

where Y_{n} is any other independent distribution. say, $Y_{n} \sim$ Uniform(S)

- This will improve the convergence, but only for the small state space. For the large state space, it is difficult to use this method and will not give good results.

References

[1] Vivek S. Borkar, Reinforcement Learning - A Bridge Between Numerical Methods and Monte Carlo, Worls scientific review Volume 9in x 6 in , May 7, 2009.
[2] Vivek S. Borkar, Stochastic Approximation- A Dynamical Systems Viewpoint, Hindustan book agency.
[3] Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control, Vol. 2(3rd edition). Athena Scientific, Belmont, Mass.
[4] Sheldon M. Ross, Applied Probability Models with Optimization Applications,

Thank You

