Nonlinear eigenvalue problems - A Review

Namita Behera

Department of Electrical Engineering Indian Institute of Technology Bombay Mumbai

8th March, 2016

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへぐ

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

- Polynomial Eigenvalue Problems
- 3 Rational Eigenvalue Problems
- 4 Eigenvalues of Rational Matrix Functions

5 References

Outline

Nonlinear Eigenvalue Problems

- 2 Polynomial Eigenvalue Problems
- 3 Rational Eigenvalue Problems
- 4 Eigenvalues of Rational Matrix Functions

5 References

Nonlinear Eigenvalue Problems

• Linear and nonlinear eigenvalue problems arise frequently in various problems in science and engineering.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Nonlinear Eigenvalue Problems

- Linear and nonlinear eigenvalue problems arise frequently in various problems in science and engineering.
- Let F(λ) be an m × n nonlinear matrix function. The nonlinear eigenvalue problem: Find scalars λ and nonzero vectors x ∈ Cⁿ and y ∈ C^m such that F(λ)x = 0 and y*F(λ) = 0.

Nonlinear Eigenvalue Problems

- Linear and nonlinear eigenvalue problems arise frequently in various problems in science and engineering.
- Let F(λ) be an m × n nonlinear matrix function. The nonlinear eigenvalue problem: Find scalars λ and nonzero vectors x ∈ Cⁿ and y ∈ C^m such that F(λ)x = 0 and y*F(λ) = 0.
- λ is an eigenvalue, x, y are corresponding right and left eigenvectors.

 In practice, elements of F most often polynomial, rational or exponential functions of λ. • Vibration problems, for example those that occur in a structure such as a bridge, are often modelled by the generalized eigenvalue problem

$$(K - \lambda M)x = 0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

where K is the stiffness matrix and M is the mass matrix.

• Vibration problems, for example those that occur in a structure such as a bridge, are often modelled by the generalized eigenvalue problem

$$(K - \lambda M)x = 0,$$

where K is the stiffness matrix and M is the mass matrix.

• When damping effects are also included, the problem becomes a quadratic eigenvalue problem (QEP)

$$(\lambda^2 M + \lambda C + K)x = 0,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

where C is the damping matrix.

Figure: Millennium Bridge

≣▶ ≣ ∽۹..

- On its opening day in June 2000, the 320-meter-long Millennium footbridge over the river Thames in London started to wobble under the weight of thousands of people.
- So two days later the bridge was closed.
- To explain the connection between this incident and the quadratic eigenvalue problem (QEP), the subject of this survey, we need to introduce some ideas from vibrating systems, resonance.

• More details on the Millennium Bridge and the wobbling problem can be found at http://www.arup.com/MillenniumBridge

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

$(Millenium_Bridge.mp4)$

- Other applications of the QEP include linear stability of flows in fluid mechanics, electrical circuit simulation and in modelling microelectronic mechanical systems.
- The excellent review paper by Tisseur and Meerbergen [2001] describes many of the applications of the quadratic eigenvalue problem.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Review, 43:235-286, 2001.

- Similarly, the polynomial eigenvalue problem $P(\lambda)x = 0$, where $P(\lambda) = \sum_{j=0}^{m} \lambda^{j} A_{j}$ and A_{j} 's are $n \times n$ matrices, arise in the study of the vibration analysis of buildings, machines, and vehicles.
- Lancaster, Lambda-Matrices and Vibrating Systems, 1966 (Pergamon Press), 2002 (Dover).
- Gohberg, Lancaster, Rodman, Matrix Polynomials, 1982, (Academic Press, New York), 2009 (SIAM).
- Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods, Volker Mehrmann and Heinrich Voss.

・ロト・日本・モン・モン・ ヨー りへぐ

Historical Aspects

- In the 1930s, Frazer, Duncan Collar were developing matrix methods for analyzing flutter in aircraft.
- Worked in Aerodynamics Division of National Physical Laboratory (NPL).
- Wrote Elementary Matrices and Some Applications to Dynamics and Differential Equations, 1938.
- Olga Taussky, in Frazers group at NPL, 1940s. 6×6 quadratic eigenvalue problems from flutter in supersonic aircraft.

Flutter.mp4 Flutter.mp4)

Historical Aspects Cont., (Books)

- Peter Lancaster, 1950s solved quadratic eigenvalue problems of dimension 2 to 20.
- Gohberg, Lancaster, Rodman, Indefinite Linear Algebra and Applications, 2005 (Birkhäuser).
- Gohberg, Lancaster, Rodman, Invariant Subspaces of Matrices with Applications, 1986 (Wiley), 2006 (SIAM).

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Rational eigenvalue problems also arise in wide range of applications such as in calculations of quantum dots, free vibration of plates with elastically attached masses, vibrations of fluid-solid structures and in control theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- Rational eigenvalue problems also arise in wide range of applications such as in calculations of quantum dots, free vibration of plates with elastically attached masses, vibrations of fluid-solid structures and in control theory.
- For example, the rational eigenproblem [V. Mehrmann and H. Voss]

$$G(\lambda)x := (K - \lambda M + \sum_{j=1}^{k} \frac{\lambda}{\lambda - \sigma_j} C_j)x = 0,$$

where $K = K^T$ and $M = M^T$ are positive definite and $C_j = C_j^T$ are matrices of small ranks, arises in the study of the vibrations of fluid solid structures.

• A similar problem

$$G(\lambda)x = -Kx + \lambda Mx + \lambda^2 \sum_{j=1}^{k} \frac{1}{\omega_j - \lambda} C_j x = 0,$$

arises when a generalized linear eigenproblem is condensed exactly [V. Mehrmann and H.Voss].

• Another type of rational eigenproblem is obtained for the free vibrations of a structure . A finite element model takes the form

$$G(\lambda)x := (\lambda^2 M + K - \sum_{j=1}^k \frac{1}{1+b_j\lambda} \Delta K_j)x = 0,$$

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

Where K and M are positive definite [V. Mehrmann and H.Voss].

• Consider the delay differential equations (DDEs):

$$\dot{x}(t) = A_0 x(t) + \sum_{i=1}^{m} A_i x(t - \tau_i),$$
(1)

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $x(t) \in \mathbb{R}^n$ is the state variable at time $t, A_i \in \mathbb{R}^{n \times n}, i = 0 : m$ are real entries, and $0 < \tau_1 < \tau_2 \cdots < \tau_m$ represent the time-delays.

• The substitution of a sample solution of the form $e^{\lambda t}v$, with $v \neq 0$, leads us to the characteristic equation

$$H(\lambda)v := (\lambda I - A_0 - \sum_{i=1}^m A_i e^{-\lambda \tau_i})v = 0.$$

where $H(\lambda)$ is holomorphic in λ .

Comments: NEPs Can be very difficult to solve:

- nonlinear,
- large problem size,
- poor conditioning,
- lack of good numerical methods.
 - Motivated by these applications, we consider the following problem.
 - Problem. Let $F(\lambda)$ be an $n \times n$ nonlinear matrix function. Compute $\lambda \in \mathbb{C}$ and nonzero vectors x and y in \mathbb{C}^n such that $F(\lambda)x = 0$ and $y^*F(\lambda) = 0$.

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

NLEVP Toolbox

Collection of Nonlinear Eigenvalue Problems : T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, F. T., 2010.

- Quadratic, polynomial, rational and other nonlinear eigenproblems.
- Provided in the form of a MATLAB Toolbox.
- Problems from real-life applications + specifically constructed problems.
- For example: Loaded string problem gives the EVP

$$G(\lambda)x = \left(A - \lambda B + \frac{\lambda}{\lambda - \sigma}E\right)x = 0.$$

Then using the NLEVP toolbox, we can find out the coefficients A, B, E exactly for our numerical computations.

http://www.mims.manchester.ac.uk/research/numericalanalysis/nlevp.html

Outline

- 2 Polynomial Eigenvalue Problems
 - 3 Rational Eigenvalue Problems
 - Eigenvalues of Rational Matrix Functions

5 References

Example

$$Q(\lambda) = \lambda^2 \begin{bmatrix} 0 & 8 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -6 & 0 \\ 2 & -7 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note that $\det Q = -6\lambda^5 + 11\lambda^4 - 12\lambda^3 + 12\lambda^2 - 6\lambda + 1 \neq 0$, for some λ . Six eigenpairs $(\lambda_m, x_m), m = 1: 6$, given by

Solution Method for PEP

Now consider
$$P(\lambda) = \sum_{i=0}^{m} \lambda^{i} A_{i}, \ A_{i} \in \mathbb{C}^{n \times n}, \ A_{m} \neq 0$$

Regular: if $det(P(\lambda)) \neq 0$ for some $\lambda \in \mathbb{C}$.

Spectrum: $\mathbf{Sp}(P) := \{\lambda \in \mathbb{C} : \det(P(\lambda)) = 0\}.$

 P(λ) has mn eigenvalues. Zero eigenvalues when A₀ is singular and infinite eigenvalues when A_m is singular.

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Solution Method for PEP

Now consider
$$P(\lambda) = \sum_{i=0}^{m} \lambda^{i} A_{i}, \ A_{i} \in \mathbb{C}^{n \times n}, \ A_{m} \neq 0$$

Regular: if $det(P(\lambda)) \neq 0$ for some $\lambda \in \mathbb{C}$.

Spectrum: $\mathbf{Sp}(P) := \{\lambda \in \mathbb{C} : \det(P(\lambda)) = 0\}.$

- P(λ) has mn eigenvalues. Zero eigenvalues when A₀ is singular and infinite eigenvalues when A_m is singular.
- The standard approach for solving and investigating polynomial eigenvalue problem $P(\lambda)x = 0$ is to transform the given polynomial into a linear matrix pencil $L(\lambda) = \lambda X + Y$ with the same eigenvalue and then solve with this pencil.

Definition

Let $P(\lambda)$ be an $n \times n$ matrix polynomial of degree m with $m \ge 1$. A pencil $\lambda X + Y$ with $X, Y \in \mathbb{C}^{mn \times mn}$ is called a linearization of $P(\lambda)$ if their exist unimodular matrix polynomials $E(\lambda), F(\lambda)$ (det $E(\lambda)$ is a nonzero constant, independent of λ) such that $E(\lambda)(\lambda X + Y)F(\lambda) = \text{diag}(P(\lambda), I_{(m-1)n})$ for all $\lambda \in \mathbb{C}$.

Definition

Let $P(\lambda)$ be an $n \times n$ matrix polynomial of degree m with $m \ge 1$. A pencil $\lambda X + Y$ with $X, Y \in \mathbb{C}^{mn \times mn}$ is called a linearization of $P(\lambda)$ if their exist unimodular matrix polynomials $E(\lambda), F(\lambda)$ (det $E(\lambda)$) is a nonzero constant, independent of λ) such that $E(\lambda)(\lambda X + Y)F(\lambda) = \text{diag}(P(\lambda), I_{(m-1)n})$ for all $\lambda \in \mathbb{C}$.

Consider $Q(\lambda) = \lambda^2 A_2 + \lambda A_1 + A_0$. Then we have

$$C(\lambda)z := \left(\lambda \begin{bmatrix} A_2 & 0 \\ 0 & I_n \end{bmatrix} + \begin{bmatrix} A_1 & A_0 \\ -I_n & 0 \end{bmatrix}\right) \begin{bmatrix} x \\ \lambda x \end{bmatrix} =: (\lambda X + Y)z = 0.$$

Definition

Let $P(\lambda)$ be an $n \times n$ matrix polynomial of degree m with $m \ge 1$. A pencil $\lambda X + Y$ with $X, Y \in \mathbb{C}^{mn \times mn}$ is called a linearization of $P(\lambda)$ if their exist unimodular matrix polynomials $E(\lambda), F(\lambda)$ (det $E(\lambda)$) is a nonzero constant, independent of λ) such that $E(\lambda)(\lambda X + Y)F(\lambda) = \text{diag}(P(\lambda), I_{(m-1)n})$ for all $\lambda \in \mathbb{C}$.

Consider $Q(\lambda) = \lambda^2 A_2 + \lambda A_1 + A_0$. Then we have

$$C(\lambda)z := \left(\lambda \begin{bmatrix} A_2 & 0 \\ 0 & I_n \end{bmatrix} + \begin{bmatrix} A_1 & A_0 \\ -I_n & 0 \end{bmatrix}\right) \begin{bmatrix} x \\ \lambda x \end{bmatrix} =: (\lambda X + Y)z = 0.$$

くしゃ 人間 マイボットボット しゃくろう

- $C(\lambda)$ is referred as the first companion linearization of $Q(\lambda)$.
- Solve generalized eigenvalue problem (GEP).
- Recover eigenvectors of $Q(\lambda)$ from those of $\lambda X + Y$.

• One significant drawback of the companion form is that, they usually do not reflect any structure or eigenvalue symmetry that may be present in the original polynomial $P(\lambda)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- One significant drawback of the companion form is that, they usually do not reflect any structure or eigenvalue symmetry that may be present in the original polynomial $P(\lambda)$.
- Infinitely many linearizations exists. Two important classes of linearizations are identified and studied by [Mackey, Mackey, Mehl, and Mehrmann (2006)].

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- One significant drawback of the companion form is that, they usually do not reflect any structure or eigenvalue symmetry that may be present in the original polynomial $P(\lambda)$.
- Infinitely many linearizations exists. Two important classes of linearizations are identified and studied by [Mackey, Mackey, Mehl, and Mehrmann (2006)].
- In fact one can get a large class of structure preserving linearizations from [Mackey thesis, 2006].

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- One significant drawback of the companion form is that, they usually do not reflect any structure or eigenvalue symmetry that may be present in the original polynomial $P(\lambda)$.
- Infinitely many linearizations exists. Two important classes of linearizations are identified and studied by [Mackey, Mackey, Mehl, and Mehrmann (2006)].
- In fact one can get a large class of structure preserving linearizations from [Mackey thesis, 2006].
- Recently, another class of linearizations of a matrix polynomial referred to as Fiedler linearizations has been introduced in [Fernando, Dopico, Mackey, Antoniou, Vologiannidis, (2009, 2010)]

• Linearizations can have widely varying eigenvalue condition numbers.

- Linearizations can have widely varying eigenvalue condition numbers.
- It has been shown in Freiling, Mehrmann Xu (2002) and Ran Rodman (1988, 1989) that the problem may be well-conditioned under structured perturbations, but ill-posed under unstructured perturbations.
- So it is important to study structure preserving linearizations, see D. Steven Mackey Thesis, 2006 and R. Alam and Bibhas Adhikari, 2011.
- Developed theory concerning the sensitivity and stability of linearizations [Higham, Mackey, 2006, Higham, Li, 2007, Grammont, Higham, 2011].

Outline

Polynomial Eigenvalue Problems

Rational Eigenvalue Problems

Eigenvalues of Rational Matrix Functions

5 References

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

- As we have seen Rational Eigenvalue Problems arise in a variety of physical applications, e.g., Vibration of Fluid solid structures, calculations of quantum dots, . . .
- Matrix function takes the form

$$G(\lambda) = P(\lambda) - \sum_{i=1}^{k} \frac{s_i(\lambda)}{q_i(\lambda)} E_i,$$

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $P(\lambda)$ is a matrix polynomial,
- s_i and q_i are scalar polynomials,
- E_i are constant matrices.

Numerical Methods for REP

Iterative Methods: Newton Method, nonlinear Arnoldi, Jacobo-Davidson,...

• Suitable when a few eigenpairs are desired.

Numerical Methods for REP

Iterative Methods: Newton Method, nonlinear Arnoldi, Jacobo-Davidson,...

- Suitable when a few eigenpairs are desired.
- Convergence analysis is a challenging task.

Direct Method: For example consider

$$G(\lambda) := \left[\begin{array}{cc} 1 & \frac{1}{\lambda-2} \\ 0 & 1 \end{array} \right] \text{ and } P(\lambda) = (\lambda-2)G(\lambda) = \left[\begin{array}{cc} \lambda-2 & 1 \\ 0 & \lambda-2 \end{array} \right],$$

 $\operatorname{Eig}(G)=\phi \text{ and }\operatorname{Eig}(P)=\{2\}$

 Not practical, when q_i(λ) has several poles and PEP may introduce spurious eigenvalues.

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Solution via Minimal realization

Linearizations for rational problems: [Su and Bai, Simax[2011]]

Rewrite

$$G(\lambda) = P(\lambda) - \sum_{i=1}^{k} \frac{s_i(\lambda)}{q_i(\lambda)} E_i,$$

as minimal realization of $G(\lambda)$ of the form

$$G(\lambda) = P(\lambda) + C(\lambda E - A)^{-1}B,$$
(2)

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $A, E \in \mathbb{C}^{r \times r}$ and E is nonsingular.

Solution via Minimal realization

Linearizations for rational problems: [Su and Bai, Simax[2011]]

Rewrite

$$G(\lambda) = P(\lambda) - \sum_{i=1}^{k} \frac{s_i(\lambda)}{q_i(\lambda)} E_i,$$

as minimal realization of $G(\lambda)$ of the form

$$G(\lambda) = P(\lambda) + C(\lambda E - A)^{-1}B,$$
(2)

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $A, E \in \mathbb{C}^{r \times r}$ and E is nonsingular.

• Example: if $P(\lambda) = \lambda A_1 + A_0$, $G(\lambda)x = 0$ becomes a linear eigenproblem

$$\mathcal{C}(\lambda) := \left(\lambda \begin{bmatrix} A_1 & 0 \\ 0 & -E \end{bmatrix} + \begin{bmatrix} A_0 & C \\ B & A \end{bmatrix} \right) \begin{bmatrix} x \\ (\lambda E - A)^{-1} Bx \end{bmatrix} = 0.$$

シック 単 (中学)(中学)(日)

$$\mathcal{C}(\lambda) := \left(\lambda \begin{bmatrix} A_1 & 0 \\ 0 & -E \end{bmatrix} + \begin{bmatrix} A_0 & C \\ B & A \end{bmatrix} \right) \begin{bmatrix} x \\ (\lambda E - A)^{-1} Bx \end{bmatrix} = 0.$$

The pencil $C(\lambda)$ is referred to as a companion form of $G(\lambda)$ and the eigenvalues and eigenvectors of $G(\lambda)$ could be computed by solving the generalized eigenvalue problem for the pencil.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

$$\mathcal{C}(\lambda) := \left(\lambda \begin{bmatrix} A_1 & 0 \\ 0 & -E \end{bmatrix} + \begin{bmatrix} A_0 & C \\ B & A \end{bmatrix} \right) \begin{bmatrix} x \\ (\lambda E - A)^{-1} Bx \end{bmatrix} = 0.$$

The pencil $C(\lambda)$ is referred to as a companion form of $G(\lambda)$ and the eigenvalues and eigenvectors of $G(\lambda)$ could be computed by solving the generalized eigenvalue problem for the pencil.

• An advantage of realization based approach to solving problem is that the size of the companion form $C(\lambda)$ of $G(\lambda)$ could be much smaller than that of a pencil obtained by converting the REP to PEP followed by linearization especially when the coefficient matrices of $G(\lambda)$ have low ranks see, Su Bai, 2011 paper.

Outline

- 1 Nonlinear Eigenvalue Problems
- 2 Polynomial Eigenvalue Problems
- 3 Rational Eigenvalue Problems
- 4 Eigenvalues of Rational Matrix Functions

5 References

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

• Recall the example, $G(\lambda) = \begin{bmatrix} 1 & 1/\lambda - 2 \\ 0 & 1 \end{bmatrix}$ has no eigenvalue. Therefore, it is necessary to enlarge the spectrum of a rational matrix function so that the spectrum is nonempty.

Eigenvalues and Eigenpoles

 Suppose that the Smith-McMillan form SM(G(λ)) of G(λ) is given by

$$\mathbf{SM}(G(\lambda)) = \operatorname{diag}\left(\frac{\phi_1(\lambda)}{\psi_1(\lambda)}, \cdots, \frac{\phi_k(\lambda)}{\psi_k(\lambda)}, 0_{n-k,n-k}\right),$$

where the scalar polynomials $\phi_i(\lambda)$ and $\psi_i(\lambda)$ are monic, are pairwise coprime and, $\phi_i(\lambda)$ divides $\phi_{i+1}(\lambda)$ and $\psi_{i+1}(\lambda)$ divides $\psi_i(\lambda)$, for $i = 1, 2, \ldots, k - 1$.

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Eigenvalues and Eigenpoles

 Suppose that the Smith-McMillan form SM(G(λ)) of G(λ) is given by

$$\mathbf{SM}(G(\lambda)) = \operatorname{diag}\left(\frac{\phi_1(\lambda)}{\psi_1(\lambda)}, \cdots, \frac{\phi_k(\lambda)}{\psi_k(\lambda)}, 0_{n-k,n-k}\right),$$

where the scalar polynomials $\phi_i(\lambda)$ and $\psi_i(\lambda)$ are monic, are pairwise coprime and, $\phi_i(\lambda)$ divides $\phi_{i+1}(\lambda)$ and $\psi_{i+1}(\lambda)$ divides $\psi_i(\lambda)$, for $i = 1, 2, \ldots, k - 1$.

Define the zero polynomial φ_G(λ) and the pole polynomial ψ_G(λ) of G(λ) are given by

$$\phi_G(\lambda) := \prod_{j=1}^k \phi_j(\lambda) \text{ and } \psi_G(\lambda) := \prod_{j=1}^k \psi_j(\lambda).$$
 (3)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Definition (Zeros and poles, Vardulakis)

A complex number λ is said to be a **zero** (**pole**) of $G(\lambda)$ if $\phi_G(\lambda) = 0$ ($\psi_G(\lambda) = 0$).

• We denote the normal rank of $G(\lambda)$ by $\operatorname{nrank}(G)$. Then $\operatorname{nrank}(G) = \max_{\lambda} \operatorname{rank}(G(\lambda))$ where the maximum is taken over all λ which are not poles.

Eigenvalues $\operatorname{Eig}(G) := \{\lambda_0 \in \mathbb{C} : \operatorname{rank}(G(\lambda_0)) < \operatorname{nrank}(G).\}$

Eigenpoles Eip $(G) := \{\lambda_0 \in \mathbb{C} : \lambda_0 \text{ is a pole of } G(\lambda) \text{ and there exists } v(\lambda) \in \mathbb{C}^n[\lambda] \text{ with } v(\lambda_0) \neq 0 \text{ such that } \lim_{\lambda \to \lambda_0} G(\lambda)v(\lambda) = 0. \}$

シック・ 川 ・ ・ 川 ・ ・ 一 ・ シック

• For example, consider

$$G(\lambda) := \begin{bmatrix} 1 & \frac{1}{\lambda - 2} \\ 0 & 1 \end{bmatrix}.$$

Then $G(\lambda)$ is proper and $\operatorname{Eig}(G) = \{\emptyset\}$. However, $\lambda = 2$ is an eigenpole of $G(\lambda)$, since $u(\lambda) = \begin{bmatrix} 1 & -(\lambda - 2) \end{bmatrix}^T$ and $\lim_{\lambda \to 2} u(\lambda) = e_1$ and $G(\lambda)u(\lambda) \to 0$ as $\lambda \to 2$. Note that 2 is a pole of G. So $\operatorname{Eip}(G) = \{2\}$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• For example, consider

$$G(\lambda) := \begin{bmatrix} 1 & \frac{1}{\lambda - 2} \\ 0 & 1 \end{bmatrix}.$$

Then $G(\lambda)$ is proper and $\operatorname{Eig}(G) = \{\emptyset\}$. However, $\lambda = 2$ is an eigenpole of $G(\lambda)$, since $u(\lambda) = \begin{bmatrix} 1 & -(\lambda - 2) \end{bmatrix}^T$ and $\lim_{\lambda \to 2} u(\lambda) = e_1$ and $G(\lambda)u(\lambda) \to 0$ as $\lambda \to 2$. Note that 2 is a pole of G. So $\operatorname{Eip}(G) = \{2\}$.

 On the other hand, considering G(λ) := diag(λ, 1/λ), it follows that G(λ) is nonproper Eig(G) = {∅}. However, Eip(G) = {0,∞}.

シック・ 川 ・ ・ 川 ・ ・ 一 ・ シック

• For example, consider

$$G(\lambda) := \begin{bmatrix} 1 & \frac{1}{\lambda - 2} \\ 0 & 1 \end{bmatrix}.$$

Then $G(\lambda)$ is proper and $\operatorname{Eig}(G) = \{\emptyset\}$. However, $\lambda = 2$ is an eigenpole of $G(\lambda)$, since $u(\lambda) = \begin{bmatrix} 1 & -(\lambda - 2) \end{bmatrix}^T$ and $\lim_{\lambda \to 2} u(\lambda) = e_1$ and $G(\lambda)u(\lambda) \to 0$ as $\lambda \to 2$. Note that 2 is a pole of G. So $\operatorname{Eip}(G) = \{2\}$.

On the other hand, considering G(λ) := diag(λ, 1/λ), it follows that G(λ) is nonproper Eig(G) = {∅}. However, Eip(G) = {0,∞}.

シック・ 川 ・ ・ 川 ・ ・ 一 ・ シック

- Spectrum $Sp(G) := Eig(G) \cup Eip(G)$.
- Note that $\operatorname{Eig}(G) \subsetneq \operatorname{Sp}(G)$.

Theorem

Let $G(\lambda) \in \mathbb{C}(\lambda)^{n \times n}$. Then we have

$$\mathbf{Eig}(G) = \{\lambda \in \mathbb{C} : \phi_G(\lambda) = 0 \text{ and } \psi_G(\lambda) \neq 0\},\$$
$$\mathbf{Eip}(G) = \{\lambda \in \mathbb{C} : \phi_G(\lambda) = 0 \text{ and } \psi_G(\lambda) = 0\}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへ⊙

Thus $\mathbf{Sp}(G) = \{\lambda \in \mathbb{C} : \phi_G(\lambda) = 0\}$ and $\mathbf{Eip}(G) = \mathbf{Sp}(G) \cap Poles(G)$.

- For finding out the pencils and linearizations for rational matrix function we need LTI State Space System, Rosenbrock system matrix and the linearizations for Rosenbrock system matrix.
- For this purpose, in my Ph.D, thesis I introduced three classes of linearizations, which we refer to as Fiedler pencils, Generalized Fiedler pencils and Generalized Fiedler pencils with repetition of the Rosenbrock system polynomial.
- Then under some conditions one can show that the pencils of Rosenbrock system matrix are also linearization of rational matrix function G(λ).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Outline

- 1 Nonlinear Eigenvalue Problems
- 2 Polynomial Eigenvalue Problems
- 3 Rational Eigenvalue Problems
 - Eigenvalues of Rational Matrix Functions

5 References

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

[1], A. I. G. VARDULAKIS, Numerical methods for linear control systems: design and analysis,

John Wiley & Sons Ltd, 1991.

[1], A. I. G.VARDULAKIS, Numerical methods for linear control systems: design and analysis,

John Wiley & Sons Ltd, 1991.

[2], B.N.DATTA, Linear multivariable control, Elsevier Academic Press, 2004.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

[1], A. I. G.VARDULAKIS, Numerical methods for linear control systems: design and analysis,

John Wiley & Sons Ltd, 1991.

[2], B.N.DATTA, Linear multivariable control, Elsevier Academic Press, 2004.

V. MEHRMANN AND H. VOSS,

Nonlinear Eigenvalue Problems : A Challenge for Modern Eigenvalue Methods, GAMM Mitt. Ges, 27 (2004), pp. 121-152.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへ⊙

[1], A. I. G.VARDULAKIS, Numerical methods for linear control systems: design and analysis,

John Wiley & Sons Ltd, 1991.

[2], B.N.DATTA, Linear multivariable control, Elsevier Academic Press, 2004.

V. MEHRMANN AND H. VOSS.

Nonlinear Eigenvalue Problems : A Challenge for Modern Eigenvalue Methods, GAMM Mitt. Ges, 27 (2004), pp. 121-152.

NAMITA BEHERA.

Fiedler Linearizations for LTI state-space systems and for Rational eigenvalue problems,

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへ⊙

PhD Thesis, IIT Guwahati, 2014.

[1], A. I. G.VARDULAKIS, Numerical methods for linear control systems: design and analysis,

John Wiley & Sons Ltd, 1991.

[2], B.N.DATTA, Linear multivariable control, Elsevier Academic Press, 2004.

V. MEHRMANN AND H. VOSS.

Nonlinear Eigenvalue Problems : A Challenge for Modern Eigenvalue Methods, GAMM Mitt. Ges, 27 (2004), pp. 121-152.

NAMITA BEHERA.

Fiedler Linearizations for LTI state-space systems and for Rational eigenvalue problems,

PhD Thesis, IIT Guwahati, 2014.

R. ALAM AND N. BEHERA,

Fiedler Linearizations for Rational matrix functions.

accepted to appear in SIMAX, Feb, 2016.

D.steven Mackey,

Structured Linearizations for Matrix Polynomials (PhD Thesis),

MIMS, April, 2006.

D.steven Mackey,

Structured Linearizations for Matrix Polynomials (PhD Thesis), *MIMS*, April, 2006.

Y.SU AND ZHAOJUN BAI,

Solving Rational Eigenvalue Problems Via Linearization, SIAM J.Matrix Anal.Appl.,32(1):pp. 201–216, 2011.

D.steven Mackey,

Structured Linearizations for Matrix Polynomials (PhD Thesis), *MIMS*, April, 2006.

Y.SU AND ZHAOJUN BAI,

Solving Rational Eigenvalue Problems Via Linearization, SIAM J.Matrix Anal.Appl.,32(1):pp. 201–216, 2011.

FERNANDO DE TERAN, FROILAN M. DOPICO, AND D.STEVEN MACKEY, *Fiedler companion linearizations and the recovery of minimal indices*, SIAM J. MATRIX ANAL. APPL., 31(4):pp. 2181–2204, 2010.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへ⊙

D.steven Mackey,

Structured Linearizations for Matrix Polynomials (PhD Thesis), *MIMS*, April, 2006.

Y.SU AND ZHAOJUN BAI,

Solving Rational Eigenvalue Problems Via Linearization, SIAM J.Matrix Anal.Appl.,32(1):pp. 201–216, 2011.

FERNANDO DE TERAN, FROILAN M. DOPICO, AND D.STEVEN MACKEY, Fiedler companion linearizations and the recovery of minimal indices, SIAM J. MATRIX ANAL. APPL., 31(4):pp. 2181–2204, 2010.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへ⊙

HEINRICH VOSS,

A rational spectral problem in fluid-solid vibration, Electron. Trans. Numer. Anal., (16):pp. 93105, 2003.

D.steven Mackey,

Structured Linearizations for Matrix Polynomials (PhD Thesis), *MIMS*, April, 2006.

Y.SU AND ZHAOJUN BAI,

Solving Rational Eigenvalue Problems Via Linearization, SIAM J.Matrix Anal.Appl.,32(1):pp. 201–216, 2011.

FERNANDO DE TERAN, FROILAN M. DOPICO, AND D.STEVEN MACKEY, *Fiedler companion linearizations and the recovery of minimal indices*, SIAM J. MATRIX ANAL. APPL., 31(4):pp. 2181–2204, 2010.

HEINRICH VOSS,

A rational spectral problem in fluid-solid vibration, Electron. Trans. Numer. Anal., (16):pp. 93105, 2003.

F. TISSEUR AND K. MEERBERGEN

The quadratic eigenvalue problem. SIAM Rev., 43(2):pp. 235-286, 2001.

K. Meerbergen,

The quadratic Arnoldi method for the solution of the quadratic eigenvalue problem,

SIAM J. Matrix Anal. Appl., 30(4): pp. 1463-1482, 2008.

K. Meerbergen,

The quadratic Arnoldi method for the solution of the quadratic eigenvalue problem,

SIAM J. Matrix Anal. Appl., 30(4): pp. 1463-1482, 2008.

D. S. MACKEY, N. MACKEY, C. MEHL, AND V. MEHRMANN,

Structured polynomial eigenvalue problems: Good vibrations from good linearizations,

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < つ >

SIAM J. Matrix Anal. Appl., 28(4): pp.1029-1051, 2006.

K. Meerbergen,

The quadratic Arnoldi method for the solution of the quadratic eigenvalue problem,

SIAM J. Matrix Anal. Appl., 30(4): pp. 1463-1482, 2008.

D. S. MACKEY, N. MACKEY, C. MEHL, AND V. MEHRMANN,

Structured polynomial eigenvalue problems: Good vibrations from good linearizations,

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへ⊙

SIAM J. Matrix Anal. Appl., 28(4): pp.1029-1051, 2006.

D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann,

Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl., 28(4):971-1004, 2006.

K. Meerbergen,

The quadratic Arnoldi method for the solution of the quadratic eigenvalue problem,

SIAM J. Matrix Anal. Appl., 30(4): pp. 1463-1482, 2008.

D. S. MACKEY, N. MACKEY, C. MEHL, AND V. MEHRMANN,

Structured polynomial eigenvalue problems: Good vibrations from good linearizations,

SIAM J. Matrix Anal. Appl., 28(4): pp.1029-1051, 2006.

- D. S. MACKEY, N. MACKEY, C. MEHL, AND V. MEHRMANN, Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl., 28(4):971-1004, 2006.
- T. BETCKE, N. J. HIGHAM, V. MEHRMANN, C. SCHRÖDER, AND F. TISSEUR, NLEVP: A collection of nonlinear eigenvalue problems, 2010.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへ⊙

K. Meerbergen,

The quadratic Arnoldi method for the solution of the quadratic eigenvalue problem,

SIAM J. Matrix Anal. Appl., 30(4): pp. 1463-1482, 2008.

D. S. MACKEY, N. MACKEY, C. MEHL, AND V. MEHRMANN,

Structured polynomial eigenvalue problems: Good vibrations from good linearizations,

SIAM J. Matrix Anal. Appl., 28(4): pp.1029-1051, 2006.

D. S. MACKEY, N. MACKEY, C. MEHL, AND V. MEHRMANN, Vector spaces of linearizations for matrix polynomials,

SIAM J. Matrix Anal. Appl., 28(4):971-1004, 2006.

T. BETCKE, N. J. HIGHAM, V. MEHRMANN, C. SCHRÖDER, AND F. TISSEUR, NLEVP: A collection of nonlinear eigenvalue problems, 2010.

Z. BAI AND Y. SU

a second-order Arnoldi method for the solution of the quadratic eigenvalue problem.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへ⊙

SIAM J. Matrix Anal. Appl., 26(3):640-659, 2005

W. Weaver, Jr., S. P. Timoshenko, D. H. Young *Vibration Problems in Engineering,* John Wiley Sons, 1990.

W. Weaver, Jr., S. P. Timoshenko, D. H. Young *Vibration Problems in Engineering,* John Wiley Sons, 1990.

I. Gohberg, P. Lancaster, and L. Rodman, *Matrix Polynomials, Academic* Press, New York, 1982

W. Weaver, Jr., S. P. Timoshenko, D. H. Young Vibration Problems in Engineering, John Wiley Sons, 1990.

I. Gohberg, P. Lancaster, and L. Rodman, *Matrix Polynomials, Academic* Press, New York, 1982

S. Hammarling, C. J. Munro, and F. Tisseur, An algorithm for the complete solution of quadratic eigenvalue problems, ACM Trans. Math. Software, 39(3):18:118:19, 2013.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへで

W. Weaver, Jr., S. P. Timoshenko, D. H. Young Vibration Problems in Engineering, John Wiley Sons, 1990.

I. Gohberg, P. Lancaster, and L. Rodman, *Matrix Polynomials, Academic* Press, New York, 1982

S. Hammarling, C. J. Munro, and F. Tisseur, An algorithm for the complete solution of quadratic eigenvalue problems, ACM Trans. Math. Software, 39(3):18:118:19, 2013.

W. Michiels, and S. Niculescu,

Stability and Stabilization of Time-Delay Systems. An Eigenvalue-Based Approach,

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへで

Chapman Academic Press, Philadelphia, 2007.
Nonlinear Eigenvalue Problems Polynomial Eigenvalue Problems Rational Eigenvalue Problems Eigenvalues of Rational Matrix Fu

Thank You

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□