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Example of NE in Bimatrix Games

Sibling rivalry

A(lan) =

Cricket Movie

[ ]
Cricket 2 0

Movie 0 1

B(eth) =

Cricket Movie

[ ]
Cricket 1 0

Movie 0 2
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Bimatrix Games

A simultaneous game between two players P1 and P2

Finite set of actions A1 and A2 of cardinalities n and m
respectively

Let A = [aij] and B = [bij] be their (n ×m) payoff1 matrices:
aij is the gain of P1, if P1 plays i ∈ S1 and P2 plays j ∈ S2

bij is the gain of P2, if P1 plays i ∈ S1 and P2 plays j ∈ S2

P1 and P2 play by a strategy x ∈ ∆n and y ∈ ∆m respectively,
which are p.m.f.2 over action spaces A1 and A2

Their respective expected payoffs are x⊺Ay and x⊺By

A strategy profile (x∗, y∗) is called a Nash equilibrium (NE) if
neither player benefits by unilaterally deviating from it

1or loss matrices
2∆n and ∆m are the respective spaces of mixed strategies
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Nash equilibria of Bimatrix games

A pair of vectors (x∗, y∗) ∈ ∆n ×∆m is a NE is equivalent to,

(x∗)⊺Ay∗ ≤ x⊺Ay∗, ∀ x ∈ ∆n, (x∗)⊺By∗ ≤ (x∗)⊺By , ∀ y ∈ ∆m,

Let x ′ = x∗/(x∗)⊺By∗ y ′ = y∗/(x∗)⊺Ay∗

It can be shown that if (x∗, y∗) is a NE [2, p. 6] then,

x ′, y ′ ≥ 0,

w = [
0 A

B⊺ 0
] [

x ′

y ′] − e ≥ 0,

w⊺
[

x ′

y ′] = 0,

Conversely, if (x ′, y ′) satisfy these equations then
x∗ = x ′/(∑i x ′i ) and y∗ = y ′/∑j y ′j is a Nash equilibrium.

5 / 26



../Mylatexfiles/iitblogo.jpg

The Linear Complementarity Problem (LCP)

Given M ∈Rn×n and q ∈Rn, LCP(M,q) is the following problem,

Find x ∈R
n such that x ≥ 0, (1)

y = Mx + q ≥ 0, (2)

y⊺x = 0. (3)

Linear complementarity problems arise naturally through the
modelling of several problems in optimization and allied areas

Complementarity constraints (3) implies xiyi = 0, i.e.,
xi = 0 ∨ yi = 0, since x and y are non-negative vectors.

x ≥ 0, y = Mx + q ≥ 0, xj = 0, ∀j ∉ S and yj = 0, ∀j ∈ S .

Structure of the solution set of LCP(M,q) is the union of 2n

polyhedra corresponding to every subset S ⊆ {1,2, . . . ,n}

Although an LCP is a continuous optimization problem, it
implicitly encodes a problem of combinatorial character
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LCP and Convex quadratic programming

Given a symmetric positive semidefinite matrix Q, a matrix A and
vectors b and c of appropriate dimensions, consider the following

QP minimize
x

1
2 x⊺Qx + c⊺x

subject to
Ax ≥ b, ∶ λ

x ≥ 0,

Let λ denote the vector of Lagrange multipliers corresponding
to the constraint “Ax ≥ b”.

From the KKT conditions, x solves QP iff ∃ λ such that,

(
x
λ
) ≥ 0, (

Qx + c −A⊺λ
Ax − b

) ≥ 0, (
x
λ
)

⊺
(

Qx + c −A⊺λ
Ax − b

) = 0.

This is clearly an LCP in the (x , λ)-space.
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Graphs

A simple undirected graph G = (V ,E) consists of vertices V
and edges E which are unordered 2-tuples of distinct vertices.
Adjacency matrix of a graph is the ∣V ∣ × ∣V ∣ matrix A = [aij],
with aij = 1 iff (i , j) ∈ E
Trees, Cycles (Cn) and Cliques (Kn)

Figure : Graphs and Adjacency Matrices.

The complement of a graph (Ḡ ) the graph with the same
vertex set but Edges swapped with non-edges
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Independent sets and Cliques

A set of vertices S ⊆ V is independent if its elements are
pairwise disconnected. Independent set S is maximal if it is
not a subset of a larger independent set. Maximal independent
sets (MIS) can be arrived at using a greedy algorithm.

Figure : Arrondissements of Paris. 4-colour theorem

A clique is a complete subgraph of the graph, i.e. an
independent set of the complement graph.
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Independence number

The maximum and minimum cardinalities of maximal
independent sets of a graph G are denoted by α(G)3 and
β(G)4 respectively. The clique number of a graph is the size
of the largest clique, i.e., ω(G) ∶= α(Ḡ)

Figure : Maximum Independent set of a Petersen graph.
Given a vector of vertex weights w . Find αw(G) – the
maximum of sum of vertex weights of independent sets

3It is called the independence number
4Referred to as independent domination number of a graph
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Independence number in Coding theory

Figure : Graph of an asymmetric error channel5 in F3
2 with d = 1.

Consider a finite block length communication system Cnq,d with
symbols as strings in Fn

q and vulnerable to d possible errors

Consider the following graph G = (Fn
q,E

n
d ) such that for

x , y ∈ Fn
q, (x , y) ∈ End iff “decoder can mistake x as y”

Let Mn
q,d denote the size of the optimal error-correcting code

over the channel. Then, Mn
q,d = α(G)

5P(0→ 1) = 0
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Complexity of LCP and Independence number

For rational matrices M and q, solving LCP(M,q) is
NP-complete [1]

For a general graph G , finding α(G) and β(G) are
NP-complete problems

For a general graph with n vertices, there exists no polynomial
algorithm6 that can approximate the independence number
within the interval [n1−εα(G), α(G)] [3], unless P = NP

6polynomial in n and ε
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Previous Work

Independence number is an NP-hard discrete optimization
problem to which continuous optimization formulations exist:

1 Motzkin Strauss theorem (1965)

1

α(G)
= min{x⊺(A + I )x ∣ e⊺x = 1, x ≥ 0}

2 Harant et al.

α(G) = max{e⊺x − 1
2

x⊺Ax ∣ 0 ≤ x ≤ e}
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Our contributions

MAIN RESULT:

LCP based characterization for w -weighted independence
number αw(G) and β(G)

APPLICATIONS:

New ILP for finding α(G) and β(G)

SDP based upper bound for independence number stronger
than Lovász theta.

A new sufficient condition for a graph to be well-covered.

Inapproximability result about linear programs with
complementarity constraints (LPCC)
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Main LCP

Find x ∶ xi ≥ 0, Ci(x) ≥ 1, xi(Ci(x) − 1) = 0, ∀ i ∈ V . (4)

For a graph G = (V ,E), we study the problem LCP(A + I ,−e),
where A is the adjacency matrix of G , I is the identity matrix and
e is the vector of ones

Let C(x) ∶= (A + I )x whereby,

Ci(x) ∶= xi + ∑
j∈N(i)

xj

Hence LCP(A + I ,−e) is (4),

For x ∈R∣V ∣, let σ(x) ∶= {i ∈ V ∣ xi > 0}, the support of x .

Let GS denote the subgraph of G induced by S ⊆ V and xS
denote the subvector of x indexed by the set S
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Does the LCP(A + I ,−e) have a game theoretic
interpretation?

YES.
LCP(A + I ,−e) and the Public Goods Game

Let there exist
a social network G = (V ,E) of people. And let every
player put in effort xi with marginal cost c and obtain
a benefit b(xi +∑j∈Ni

xj) = b(Ci(x)), i.e. players
benefit from their neighbours and their own efforts

Eg: Going to EE office to submit assignment :
xi ∈ {0,1}

Payoff of player i is Ui(x) = b(Ci(x)) − cxi

Let b ∶R→R, be concave monotone7, i.e.,
b(0) = 0, b′ > 0, b′′ < 0. Let b′(1) = c , w.l.o.g.

Solutions to LCP(A + I ,−e) correspond to NE in this
game

7reasonable assumption
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Intermediate Lemmas

Lemma

For a graph G = (V ,E), if x ∈Rn solves LCP(A + I ,−e) then,

1 x ≠ 0 and 0 ≤ x ≤ e,

2 x ∈ {0,1}n iff σ(x) is a maximal independent set,

3 If G is a forest, then σ(x) = V only if K1 ∪K2,

4 If x solves LCP(G), then xS solves LCP(GS). Exit of
free-riders doesn’t affect the equilibrium.

5 If S is a maximal independent set of G , and x is a solution
such that S ⊆ σ(x), then e⊺x ≤ ∣S ∣,
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Main Result

Let M(G) and m(G) indicate the maximum and minimum `1

norm of solutions of LCP(G).

From Lemma 3, characteristic vectors maximal independent
sets are solutions to LCP(G). Hence we have

α(G) ≤ M(G), β(G) ≥ m(G)

Theorem

For a graph G = (V ,E), if w ∈R∣V ∣ is a non-negative vector

αw(G) = Mw(G) = max{w⊺x ∣ x solves LCP(A + I ,−e)}.

β(G) ≥ m(G) = min{e⊺x ∣ x solves LCP(A + I ,−e)},

equality for β(G) is achieved if G is a forest.
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Proof by Induction

M(G) ≤ α(G)

We prove this using induction on the number of vertices n of G .

For the graph G1 consisting of a single vertex, the adjacency
matrix is the scalar 0 and SOL(G1) = {1}. Thus the
statement holds for the base case.

Assume the induction hypothesis for all graphs with n < k
vertices
For n = k , let x∗ be the LCP solution with maximum `1 norm

Case I: σ(x∗) = V . From Lemma 5, we have e⊺x ≤ ∣S ∣ for any
maximal independent set of G , whereby M(G) ≤ α(G)

Case II: x∗i = 0 for some i . Consider the subgraph G−i by
omitting i and its edges. Using Lemma 4, we have that x−i
solves LCP(G−i) whereby

M(G) = e⊺x = e⊺
−ix−i ≤ M(G−i) ≤ α(G−i) ≤ α(G)

This concludes the proof for α(G) = M(G). The weighted case
follows in a similar manner.
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Application I

NEW ILP for α(G) and β(G)

We derive a new integer linear program (ILP) for α(G) which
is more efficient than the previously known formulation.

α(G) = max
{0,1}n

{∑
i∈V

xi ∣ xi + xj ≤ 1,∀ (i , j) ∈ E}, (edge − ILP)

α(G) = max
{0,1}n

{∑
i∈V

xi ∣ 0 ≤ Ci(x) − 1 ≤ r(1 − xi),∀i ∈ V}, (ILP∗)

where r = di − 1 is an upper bound on Ci(x) − 1.

The constraint in the ILP∗ above is a proxy for i th

complementarity constraint for binary vectors

The number of constraints in the ILP∗ is invariant to number
of edges which could be O(n2) for densely connected graphs.
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Application II

BOUNDS ON α(G)

Semidefinite programs are convex optimization problems
which are solvable in polynomial time

min
X⪰0

{C ●X ∣ Ai ●X ≤ bi , i = 1,2, . . . ,m},

where C ●X ∶= tr(C⊺X )

SDP relaxation of max
x∈{0,1}

{c⊺x ∣ Ax ≥ b} is obtained as follows

Multiply every equation by xi and 1 − xi .
Replace product terms xixj by Xij and x2

i by xi
8.

∴ X = xx⊺ and diag(X ) = x
ILP is now of the form

min{C ●X ∣ Ai ●X ≤ bi , i = 1,2, . . . ,m; rank(X ) = 1}

Relaxing the rank constraint gives a semidefinite program

8since xi ∈ {0,1}
21 / 26
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Application II

BOUNDS ON α(G)

Lovasz theta (ϑ(G)) is perhaps the most famous SDP bound
for α(G)

ϑ(G) =max
X⪰0

ee⊺ ●X

s.t. tr(X ) = 1,

Xij = 0, (i , j) ∈ E(G),

(ϑ-SDP)

SDP relaxation of the ILP∗ using Lift-and-Project method
gives a new variant of the Lovász theta ϑ∗(G) ≤ ϑ(G).

α(G) ≤ ϑ∗(G) ≤ ϑ(G),

where equality is attained for perfect graphs.
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Application III

WELL-COVEREDNESS

A graph is well-covered if all its maximal independent sets are
of the same cardinality, i.e., α(G) = β(G).

Clearly, we have that a graph G is well covered if e⊺x is
constant for all vectors x that solve LCP(G).

Moreover, this is also necessary condition if the graph is a
well-covered forest since if G is a forest then,

β(G) = min{e⊺x ∣ x solves LCP(G)}
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Examples of Well covered graphs

Figure : A well covered graph

Figure : Rooks graph: A non-attacking placement of 8 rooks on a
chessboard. If fewer than 8 rooks are placed in a non-attacking way on
the board, they can always be extended to 8 rooks that are non-attacking.

24 / 26



../Mylatexfiles/iitblogo.jpg

Application IV

Complexity of Linear programs with complementarity
constraints (LPCC)

LPCC maximize
x ,y

c⊺x + d⊺y

subject to

Bx + Cy ≥ b,
Mx +Ny + q ≥ 0,

x ≥ 0,
x⊺(Mx +Ny + q) = 0.

Haastad in 1996 showed that for a graph G , there is no
polynomial time algorithm that can approximate the
independence number within a factor of n1−ε of the actual
value, unless P = NP

Theorem 1 reduces the independence number to an LPCC
with d ,B,C ,N = 0, M = A and c, −q = e. Hence LPCCs are
inapproximable even if the data matrices are binary
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Current Work

Non-constructive lower bounds on Error Correcting Codes

Existence of Specialized equilibria in Public Goods Games
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