Molecular Monolayers for Conformal doping on vertical transistors

Reshma Krishnan Under the Guidance of Prof. V.R. Rao

February 11, 2016

Reshma Krishnan Under the Guidance of Prof. V.R. Rao Molecular Monolayers for Conformal doping on vertical transistors

I will take you through....

- Need for conformal doping on state-of-the-art transistors
- Self Assembled Monolayers (SAM) : a brief introduction
- Characterizing SAM
- Method of doping using SAM
- Characterization of doping : techniques
 - Electrical
 - Material
- Pros and cons of this method

State-of-the-art transistors ON-current improvement in conformal doping Doping source and drain: Implantation challenge

State-of-the-art transistors

Figure: Planar MOSFET vs FinFETs

source : realworldtech.com

State-of-the-art transistors ON-current improvement in conformal doping Doping source and drain: Implantation challenges

Simulations showing improved ON current

Figure: Top Only source drain extension - Conformal extension

State-of-the-art transistors ON-current improvement in conformal doping Doping source and drain: Implantation challenges

Simulations showing improved ON current

Figure: ON current comparison of the two devices

Source : Bartek J. Pawlak, Doping Strategies for finfets, Materials, Science Forum Vols. 573-574, 2008, pp. 333-338.

State-of-the-art transistors ON-current improvement in conformal doping Doping source and drain: Implantation challenges

Pitch : Shadowing effects

Figure: Tilted ion implantation, improvement in conformal doping

Source : Damien Lenoble et al., The junction challenges in the FinFET device, IEEE IWJT , 2006.

State-of-the-art transistors ON-current improvement in conformal doping Doping source and drain: Implantation challenges

Energy of implantation: Recrystallization defects

Figure: Amorphous Silicon: Recrystallization defects for narrow fins

Source : Bartek J. Pawlak, Doping Strategies for finfets, Materials Science Forum Vols. 573-574, 2008, pp. 333-338.

Self-Assembly on any substrate: How is it achieved?

Self assembly is achieved in two steps

- Functionalizing the surface to aid the covalent bonding
- Growth phase: Exposing the functionalized surface to the organic molecules

Figure: One way of achieving hydroxyl functionalization on silicon followed by SAM formation

8/22

Examples of prominent self assembly systems

- Gold-thiol self assembly: investigated for work function tuning in OFETs, for sensing applications etc.
- Alumina-phosphonate SAMs used as dielectric in OFETs, better layer for an organic semiconductor growth compared to the alumina surface

Methods of forming a SAM

Two ways of achieving this

- Liquid phase/ Solution phase SAM growth : SAM formed by dipping in a solution
- Vapour phase SAM : A carrier gas takes this compound in vapour phase

Characterization techniques for SAM

- Elemental analysis tools such as XPS
- Bond energy measurement such as FTIR

Figure: XPS data for As in PAO

The method of doping Characterization techniques for doping

The 2 step process

Figure: Various steps involved in doping

э

・ロン ・得 と ・ 言 と ・ 言 と

The method of doping Characterization techniques for doping

Why the method leads to a conformal doping

Since the SAM forms uniformly all over the substrate surface, there would be maximum step coverage on the 3D structures too!

Figure: Motivation behind this work for fin like structures

3

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

The method of doping Characterization techniques for doping

Electrical characterization techniques

Measuring Sheet Resistance after doping

Figure: Sheet resistance measurements on bare wafers a set \mathbb{R}^{2} , \mathbb{R}^{2}

The method of doping Characterization techniques for doping

Electrical characterization techniques

Type Conversion in CVs

Figure: P type to N type conversion

э

The method of doping Characterization techniques for doping

A∎ ►

Material characterization techniques

• SIMS measurement to study the doping profile

Figure: Arsenic doping profile in Silicon

3.5 3

The method of doping Characterization techniques for doping

SAM on fins

Figure: Growth on 3D structures

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

The method of doping Characterization techniques for doping

EDS spectral analysis on this sample

Figure: EDS analysis on the previous surface

The method of doping Characterization techniques for doping

State-of-the-art fin structures

27

メロト メポト メヨト メヨト 三日

The method of doping Characterization techniques for doping

AFM characterization

Figure: AFM scans on bulk silicon fins

э

The method of doping Characterization techniques for doping

Conclusion

- A different approach towards defect free doping is expeimented
- Doping on bare wafers with As dopants are studied
- The dopant distribution on fin structures are currently being looked at
- Objective is to demonstrate successful doping on these structures uniformly with minimum defects

The method of doping Characterization techniques for doping

:-D

Thanks a ton for being patient listeners!!