A Novel SRAM-Noise-Margin Analysis Technique

Sainath Kurude

Sushant Mittal

M. Tech. 3rd year

Department of Electrical Engineering, IIT Bombay Guide : Prof. Udayan Ganguly 10 March 2016

- Motivation
- SRAM
- Proposed method
- Validation
- Application
- Conclusion

- Motivation
- SRAM
- Proposed method
- Validation
- Application
- Conclusion

Motivation

- Benchmarking New proposed devices.
 - Device level (σV_T , I_{ON} , SS)
 - Circuit level (SRAM-SNM)
- SPICE simulations with Compact model: [1]
 - Compact model needed.
- Full TCAD mix-mode simulation:[2]
 - Time consuming , Computationally expensive

- 1. T. Hiramoto, *et. al.* "Direct Measurement of Correlation Between SRAM Noise Margin and Individual Cell Transistor Variability by Using Device Matrix Array," *IEEE Trans. Electron Devices*, vol. 58, no. 8, pp. 2249–2256, Aug. 2011
- 2. V. P.-H. Hu, *et. al.* "FinFET SRAM Cell Optimization Considering Temporal Variability Due to NBTI/PBTI, Surface Orientation and Various Gate Dielectrics," *IEEE Trans. Electron Devices*, vol. 58, no. 3, pp. 805–811, Mar. 2011

Motivation

* References for data points are not shown

- 4+ years needed for compact model after device proposal.
- Further 4+ years needed for commercial models.
- Need of new method.

- Motivation
- SRAM
- Proposed method
- Validation
- Application
- Conclusion

- SRAM consumes 90% area of SoCs and microprocessors. [1]
- To increase memory density, SRAM bitcell area is reduced 50% each technology node. [2]
- Aggressively scaled devices → more variability → less SNM
 → higher instability

- 1) A. Allan, D. Edenfeld, W. H. Joyner, A. B. Kahng, M. Rodgers, and Y. Zorian, "2001 technology roadmap for semiconductors," *Computer* (*Long. Beach. Calif*)., vol. 35, no. 1, pp. 42–53, Jan. 2002
- 2) Hiroyuki Yamauchi, "Embedded SRAM circuit design technologies for a 45nm and beyond," in 2007 7th International Conference on ASIC, 2007, pp. 1028–1033.

SRAM - Basics

- **SRAM**: Cross coupled CMOS inverters with two access transistor.
- SNM: "Minimum noise voltage needed to flip the state."
- Getting SNM Square fit method
- Modes of operation \rightarrow
 - Hold Mode: V(BL) = V(BLB) = V(WL) = 0V
 - **Read Mode:** $V(BL) = V(BLB) = V(WL) = V_{DD}$
 - Write Mode: $V(WL) = V_{DD}$, $V(BL) = \sim V(BLB)$

SRAM Basics – Read mode

- P_1 and N_2 in Linear
- Pre-charge C_{BL}, C_{BLB} to VDD.
- WL = VDD, turns on access transistors.
- $I(N_3) = 0.$

BLB

VDD

N4

- $V(N_2)$ starts increasing.
- Pull down should be stronger than access transistor.
- Sense amplifier compares values and gives stored value.

→ Non Destructive Read operation: (WL = BL = BLB = VDD)

0

N2

BL

ЪЗ

VDD

WL VDD

Ρ

VDD

Vdd

SRAM Basics – Write mode

- P_2, N_1 in Cut off.
- P_1 and N_2 in Linear.
- Pre-charge C_{BLB} to VDD.
- WL = VDD, turns on access transistors.
- V_{P1} discharges through N3 and turns on P2.
- VN2 increases and turns on N1.
- New values gets stored.
- Access transistor should be stronger than pull up transistor.

\rightarrow Error less Write operation: (WL = VDD)

N > NA > P

- Motivation
- SRAM
- Proposed method
- Validation
- Application
- Conclusion

Proposed Method

- For VTC, (V₁, V₂) pairs are needed.
- Two inverters interact in terms of voltages only.
- They can be analyzed separately.
- Kirchhoff's law ($\mathbf{I}_{N} = \mathbf{I}_{P} + \mathbf{I}_{A}$)

- $I_P = I (V_{GS} = V_1 V_{DD}, V_{DS} = V_2 V_{DD})$
- $I_N = I (V_{GS} = V_1, V_{DS} = V_2)$
- $I_A = I (V_{GS} = V_{DS} = V_{DD} V_2)$

 $\rightarrow \qquad I_{P} = f(V_{1}, V_{2}) \\ \rightarrow \qquad I_{N} = f(V_{1}, V_{2}) \\ \rightarrow \qquad I_{A} = f(V_{2})$

Proposed Method – Getting VTC

- Fix value of V₂
 - $I_P = f(V_1)$ $I_N = f(V_1)$ and $I_A = const.$
- Plot the functions
 - $[I_P(V_1) + I_A]$ and $I_N(V_1)$
- Find Value of V₁, such that
 - $[I_P(V_1) + I_A] = I_N(V_1) \rightarrow \text{intersection point}$
- Hence we get V₁ for a given V₂.
- Similarly, Get all (V₁,V₂) pairs for complete range.

Proposed Method – Getting VTC

Variability Effect Study

Process variations

 \rightarrow Random Dopant Fluctuations (RDF)

- \rightarrow Line Edge Roughness (LER)
- \rightarrow Gate Edge Roughness (GER)
- \rightarrow Metal gate granularity (MGG)
- Random lines from Langevin Equation.

 $\rightarrow \Lambda = 30$ nm and $3\sigma = 2$ nm.

Sketch demonstrating LER & GER in FinFET.

Kedar Patel, et.al. "IEEE TED VOL. 56, NO. 12,

Proposed Method – Adding Variability

Proposed Method – Process Flow

- Motivation
- SRAM
- Proposed method
- Validation
- Application
- Conclusion

Validation of Method – Process flow

→ Validating against industry standard HSPICE circuit simulator

Validation - Results

*GKLS method is proposed method.

→SNM distribution matches with acceptable marginal error.
→ Method is Validated

- Motivation
- SRAM
- Proposed method
- Validation
- Application
- Conclusion

EdFinFET vs FinFET – Butterfly plots vs VDD

FinFET $\sigma VT = 33 \text{ mV}$

EdFinFET $\sigma VT = 22 \text{ mV}$

EdFinFET vs FinFET – SNM vs VDD

→ Mean should be 5 times 1σ value for 1Mb SRAM to function [1]
→ 44% power can be saved by EdFinFET.

1) K.Fujita. *et. al.* "Advanced channel engineering achieving aggressive reduction of VT variation for ultra-low-power applications," in *Electron Devices Meeting (IEDM), 2011 IEEE International*, vol., no., pp.32.3.1-32.3.4, 5-7 Dec. 2011

- Motivation
- SRAM
- Proposed method
- Validation
- Application
- Conclusion

Conclusion

- Fast and accurate
- No need for compact models
- 1000X reduction in run time compared to TCAD mixed mode simulations
- EdFinFET can be used for low power applications (V_{DD}=0.3V)

THANK YOU