A Maximum Likelihood Based Offline Estimation of Student Capabilities and Question Difficulties

Shana Moothedath
Prasanna Chaporkar &
Madhu N. Belur,
Department of Electrical Engineering,
Indian Institute of Technology Bombay

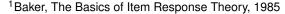
15-Mar-16

Introduction

- Exam based assessment
 - subjective exam
 - objective exam
 - 3 Computerized adaptive exam (CAT) and offline exam
- Psychometric test analysis
 - Olassical test theory (CTT)→ true score.
 - ② Item response theory $(IRT)^1 \rightarrow examinee$ and item characteristics

Introduction

- Exam based assessment
 - subjective exam
 - objective exam
 - Omputerized adaptive exam (CAT) and offline exam
- Psychometric test analysis
 - Olassical test theory (CTT)→ true score.
 - 2 Item response theory $(IRT)^1 \rightarrow$ examinee and item characteristics



Item response theory (IRT)

- Item based test theory
- 2 Start marked in 1916 by Binet-Simon.
- Item characteristic curve (ICC):
 Functional relationship between probability of correct response to an item and a criterion variable.
 - Normal ogive model
 - 2 Logistic ogive mode
- Maximum likelihood estimates of the parameters of ICC².

Item response theory (IRT)

- Item based test theory
- Start marked in 1916 by Binet-Simon.
- Item characteristic curve (ICC): Functional relationship between probability of correct response to an item and a criterion variable.
 - Normal ogive model
 - 2 Logistic ogive model
- Maximum likelihood estimates of the parameters of ICC².

Item response theory (IRT)

- Item based test theory
- Start marked in 1916 by Binet-Simon.
- Item characteristic curve (ICC): Functional relationship between probability of correct response to an item and a criterion variable.
 - Normal ogive model
 - 2 Logistic ogive model
- Maximum likelihood estimates of the parameters of ICC².

Motivation

- CAT
 - Pre-caliberated pool of questions
 - Self-tailored set of questions
 - optimal test.
- Offline exams
 - All examinees answer same set of questions

 - 3 Long exam \rightarrow fatigue, guessing \rightarrow skewed result
 - Multiple session exam → students answer different question paper for same discipline
 - Score comparison across years and disciplines.

Motivation

- CAT
 - Pre-caliberated pool of questions
 - Self-tailored set of questions
 - optimal test.
- Offline exams
 - All examinees answer same set of questions
 - Few questions → erroneous estimation
 - Stewed result to long exam → fatigue, guessing → skewed result
 - Multiple session exam → students answer different question paper for same discipline
 - Score comparison across years and disciplines.

IRT Model

Logistic ogive model

$$P_i(c_j) = P(d_i, a_i, c_j) = \frac{e^{a_i(c_j - d_i)}}{1 + e^{a_i(c_j - d_i)}},$$
 (1)

- Parameters:
 - Capability c_j
 - Difficulty d_i
 - Discrimination ai
- Objective: Given the response matrix, estimate C, D

IRT Model

Logistic ogive model

$$P_i(c_j) = P(d_i, a_i, c_j) = \frac{e^{a_i(c_j - d_i)}}{1 + e^{a_i(c_j - d_i)}},$$
 (1)

- Parameters:
 - Capability c_j
 - Difficulty d_i
 - Discrimination ai
- Objective: Given the response matrix, estimate C, D

raw marks _____ Algorithm _____ capability.

IRT Model

Logistic ogive model

$$P_i(c_j) = P(d_i, a_i, c_j) = \frac{e^{a_i(c_j - d_i)}}{1 + e^{a_i(c_j - d_i)}},$$
 (1)

- Parameters:
 - Capability c_j
 - Difficulty di
 - Discrimination ai
- Objective: Given the response matrix, estimate C, D

Item characteristic curve (ICC)

Question difficulty d_i

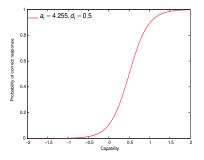


Figure : ICC for correct response with $d_i = 0.5$ and $a_i = 4.255$

Item characteristic curve (ICC)

Student capability c_i

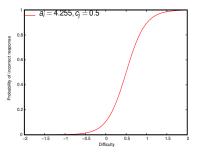


Figure : ICC for incorrect response with $a_i = 4.255$ and $c_i = 0.5$.

Item characteristic curve (ICC)

Question discrimination a_i

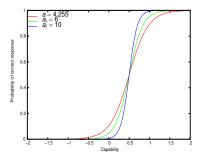


Figure : ICC for correct response with $c_i = 0.5$ and $d_i = 0.5$.

• Likelihood of a set of parameter values, θ , given outcomes X, is the probability of those observed outcomes given those parameter values.

$$L(\theta|X) = P(X|\theta). \tag{2}$$

- Maximum likelihood
 - Given the response matrix R, estimate capability vector $C = [c_1 \dots c_{n_S}]$, difficulty vector $D = [d_1 \dots d_{n_Q}]$ and discrimination vector $A = [a_1 \dots a_{n_Q}]$.
 - ② Likelihood function:

 $L = \text{Prob}(R|C, D, A). \tag{3}$

• Likelihood of a set of parameter values, θ , given outcomes X, is the probability of those observed outcomes given those parameter values.

$$L(\theta|X) = P(X|\theta). \tag{2}$$

- Maximum likelihood
 - Given the response matrix R, estimate capability vector $C = [c_1 \dots c_{n_S}]$, difficulty vector $D = [d_1 \dots d_{n_Q}]$ and discrimination vector $A = [a_1 \dots a_{n_Q}]$.
 - 2 Likelihood function:

$$L = \text{Prob}(R \mid C, D, A). \tag{3}$$

- Assumptions
 - All examinees are independent
 - All test items are modelled by ICC of the same family
- 2 Likelihood function for the exam:

$$Prob(R) = \prod_{j=1}^{n_S} \prod_{i=1}^{n_Q} P_{ij}^{m_{ij}} (1 - P_{ij})^{1 - m_{ij}}$$
(4)

Log-ikelihood function:

$$L(c_j, a_i, d_i) = \sum_{j=1}^{n_S} \sum_{i=1}^{n_Q} [m_{ij} a_i (c_j - d_i) - \log(1 + e^{a_i (c_j - d_i)})]$$
 (5)

- Assumptions
 - All examinees are independent
 - All test items are modelled by ICC of the same family
- 2 Likelihood function for the exam:

$$Prob(R) = \prod_{j=1}^{n_S} \prod_{i=1}^{n_Q} P_{ij}^{m_{ij}} (1 - P_{ij})^{1 - m_{ij}}$$
 (4)

Log-ikelihood function:

$$L(c_j, a_i, d_i) = \sum_{j=1}^{n_S} \sum_{i=1}^{n_Q} [m_{ij} a_i (c_j - d_i) - \log(1 + e^{a_i (c_j - d_i)})]$$
 (5)

- Assumptions
 - All examinees are independent
 - All test items are modelled by ICC of the same family
- 2 Likelihood function for the exam:

$$Prob(R) = \prod_{j=1}^{n_S} \prod_{i=1}^{n_Q} P_{ij}^{m_{ij}} (1 - P_{ij})^{1 - m_{ij}}$$
 (4)

Log-ikelihood function:

$$L(c_j, a_i, d_i) = \sum_{j=1}^{n_S} \sum_{i=1}^{n_Q} [m_{ij} a_i (c_j - d_i) - \log(1 + e^{a_i (c_j - d_i)})]$$
 (5)

Is marks a good estimate of capability?

Lemma

If all questions are of same discrimination a, then total marks is the maximum likelihood estimate of student capability.

$$\sum_{i=1}^{n_Q} m_{ij} = \sum_{i=1}^{n_Q} \frac{e^{a(c_j - d_i)}}{(1 + e^{a(c_j - d_i)})}$$
 (6)

Alternating optimization

Alternating optimization

$$\max_{U,V,W} f(U,V,W) \tag{7}$$

- $\max_{U,V,W} f(U,V,W)$ fix U, V, optimize for W $\rightarrow \underset{W}{arg} \max_{W} f(U^t,V^t,W)$
- fix U, W, optimize for V \rightarrow arg $\max_{V} f(U^t, V, W^t)$
- fix V, W, optimize for U \rightarrow arg $\max_{l} f(U, V^{l}, W^{l})$

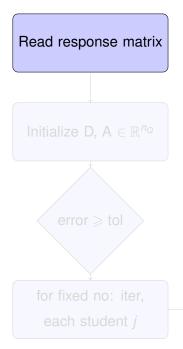
Maximum Likelihood based alternating optimization algorithm

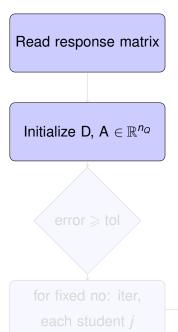
Response matrix:

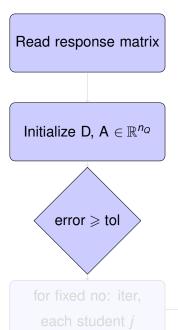


$$d_1 \quad d_2 \quad d_3$$

Stronger S







Initialize D, $A \in \mathbb{R}^{n_Q}$

error ≽ tol

for fixed no: iter, each student *i*

With D and A find $c \in [0,1] \mid L$ is max $c_i \leftarrow c$

Using C and A find $d \in [0,1] \mid L$ is max

a_j \ a

Using C and D find $a \in [0,1] \mid L$ is max $a_i \leftarrow a$

Initialize D, $A \in \mathbb{R}^{n_Q}$

error ≽ tol

for fixed no: iter, each student *i*

With D and A find $c \in [0,1] \mid L$ is max

$$c_i \leftarrow c$$

Using C and A find $d \in [0,1] \mid L$ is max

$$u_i \leftarrow u$$

Using C and D find $a \in [0,1] \mid L$ is max $a_i \leftarrow a$

Initialize D, $A \in \mathbb{R}^{n_Q}$

error ≽ tol

for fixed no: iter, each student *i*

With D and A find $c \in [0,1] \mid L$ is max

 $c_i \leftarrow c$

Using C and A find $d \in [0,1] \mid L$ is max

 $d_i \leftarrow d$

Using C and D find $a \in [0,1] \mid L$ is max $a_i \leftarrow a$

Initialize D, $A \in \mathbb{R}^{n_Q}$

error ≽ tol

for fixed no: iter, each student *i*

With D and A find

$$c \in [0,1] \mid L \text{ is max}$$

$$c_j \leftarrow c$$

Using C and A find

$$d \in [0,1] \mid L \text{ is max}$$

$$d_i \leftarrow d$$

Using C and D find

$$a \in [0,1] \mid L \text{ is max}$$

$$a_i \leftarrow a$$

Initialize D, $A \in \mathbb{R}^{n_Q}$

error ≽ tol

for fixed no: iter, each student *i*

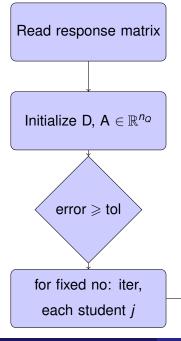
With D and A find $c \in [0,1] \mid L$ is max $c_i \leftarrow c$

Using C and A find $d \in [0,1] \mid L$ is max $d_i \leftarrow d$

Using C and D find $a \in [0,1] \mid L$ is max $a_i \leftarrow a$

Optimized C, D, A

14/22



With D and A find $c \in [0, 1] \mid L \text{ is max}$ $c_i \leftarrow c$ Using C and A find $d \in [0,1] \mid L \text{ is max}$ $d_i \leftarrow d$ Using C and D find $a \in [0, 1] \mid L \text{ is max}$ $a_i \leftarrow a$ Optimized C, D, A

Convergence of the proposed algorithm

Lemma

The log-likelihood function $L = \sum_{j=1}^{n_S} \sum_{i=1}^{n_Q} [m_{ij} a_i (c_j - d_i) - log(1 + e^{a_i (c_j - d_i)})]$ is concave individually in C, D and A.

Lemma

The log-likelihood function

 $L = \sum_{j=1}^{n_S} \sum_{i=1}^{n_Q} [m_{ij} a_i (c_j - d_i) - \log(1 + e^{a_i (c_j - d_i)})]$ is jointly concave in C, D.

Results for fixed n_S and n_Q varied

	n _S = 20000									
Parameters	$n_Q = 20$		$n_Q = 30$		$n_Q = 50$		$n_Q = 70$			
	CA	MA	CA	MA	CA	MA	CA	MA		
qualified	2001	2205	2001	2699	2001	2555	2001	2197		
crashers	1093	1288	1465	2068	875	1307	774	965		
desired	908	916	536	631	1126	1248	1227	1232		
90	0.38787	0.38982	0.40384	0.40163	0.39325	0.39053	0.39065	0.39205		
99	0.38886	0.39102	0.40583	0.40231	0.39104	0.38740	0.39345	0.39213		

Results for fixed n_Q and n_S varied

	$n_Q = 30$									
Parameters	n _S = 2000		$n_S = 5000$		$n_{S} = 10000$		$n_S = 20000$			
	CA	MA	CA	MA	CA	MA	CA	MA		
qualified	201	225	501	691	1001	1203	2001	2699		
crashers	115	137	272	423	513	692	1465	2068		
desired	86	88	229	268	489	511	536	631		
90	0.39116	0.39253	0.38588	0.38805	0.38681	0.38916	0.40384	0.40163		
99	0.39568	0.39512	0.38253	0.38853	0.38675	0.39048	0.40583	0.40231		

Results for different question distributions

Parameters	$n_S = 5000, n_Q = 30$									
	beta		gamma		uniform		triangular			
	CA	MA	CA	MA	CA	MA	CA	MA		
qualified	501	534	501	794	501	691	501	576		
crashers	214	254	288	514	272	423	241	310		
desired	287	280	213	280	229	268	260	266		
90	0.38772	0.39331	0.38546	0.38731	0.38588	0.38805	0.38426	0.39272		
99	0.38822	0.39927	0.38264	0.38750	0.38253	0.38853	0.38842	0.38385		

Results for multiple session exam

Parameters	$n_S = 5000, n_Q = 30$									
	session 1		session 2		session 3		session 4			
	CA	MA	CA	MA	CA	MA	CA	MA		
qualified	501	689	501	706	501	562	501	553		
crashers	280	429	239	389	286	351	274	321		
desired	221	260	249	311	215	211	227	232		
90	0.38601	0.38791	0.37494	0.38001	0.41180	0.40426	0.39201	0.39073		
99	0.38287	0.388591	0.36767	0.38217	0.40573	0.40247	0.39161	0.39077		

Results for multiple session exam

Parameters	$n_S = 5000, n_Q = 30$									
	session 1		session 2		session 3		session 4			
	CA	MA	CA	MA	CA	MA	CA	MA		
qualified	501	689	501	706	501	562	501	553		
crashers	280	429	239	389	286	351	274	321		
desired	221	260	249	311	215	211	227	232		
90	0.38601	0.38791	0.37494	0.38001	0.41180	0.40426	0.39201	0.39073		
99	0.38287	0.388591	0.36767	0.38217	0.40573	0.40247	0.39161	0.39077		

Summary

ML based alternating optimization algorithm
$$C = [c_1 \dots c_{n_S}]$$

$$D = [d_1 \dots d_{n_Q}]$$

Conclusion

- Convergence of the proposed algorithm to the unique optimum value is guaranteed.
- Algorithm outperforms the conventional marks based scheme in filtering out the most deserving candidates.
- The number of qualified candidates is atmost one extra than cutoff percentage.
- The performance is better than normalized marks based method in case of multiple session exam.
- Algorithm is invariant of the type of question paper distribution.

Thank You