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Introduction to Optimization

Simply said an optimization problem can be thought of a
mathematical tool for making decisions.

It will not be an understatement to claim that optimization has been
done by all of us from a quite young age.
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Introduction to Optimization(Contd..)

Let us consider a very simple example.
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Introduction to Optimization(Contd..)

Let P be the number of pizzas and B the number of burgers you will have.

Max 3P + 2B (1)

s.t. 0 6 P 6 2 ,P ∈ Z (2)

0 6 B 6 2 ,B ∈ Z (3)

100P + 50B = 200 (4)

Decision variables: P and B
(1): Objective function of the optimization problem
(2) - (4): The constraints of the problem.

Soumya Dutta TRAINS ON TIME 5 / 22



Examples

Sources: S1(100.5 gallons), S2(250 gallons)
Destination: D(200 gallons)

S1→ D: | 950/gallon

S2→ D: | 1000/gallon

Objective Function: Minimize transportation cost

xs1: Amount of oil from S1 to D
xs2: Amount of oil from S2 to D

Min 950xs1 + 1000xs2

s.t. 0 6 xs1 6 100.5

0 6 xs2 6 250

xs1 + xs2 = 200

This is an example of a linear program
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Examples(Contd..)

Sources: S1(100 pieces), S2(150 pieces)
Destination: D(200 pieces)

S1→ D: | 20,000/piece

S2→ D: | 25,000/piece

Objective Function: Minimize procurement cost

xs1: Number of microscopes from S1 to D
xs2: Number of microscopes from S2 to D

Min 20, 000xs1 + 25, 000xs2

s.t. 0 6 xs1 6 100; xs1 ∈ Z
0 6 xs2 6 150; xs2 ∈ Z
xs1 + xs2 = 200

This is an example of integer linear program
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Examples(Contd..)

A motorist has to travel at a speed of 50 km/hr for a particular amount of
time with the minimum amount of fuel usage

x:Speed of the motorist in km/hr
u:Amount of fuel used

Min

∫ ..

0
(2(x − 50)2 + 4u2)

s.t. ẋ = 1.5u

x > 0

u > 0

This is an example of a linear quadratic regulator problem
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Types of Optimization problems

Type of prob-
lem

Objective
function

Type of con-
straints

Decision vari-
ables

Method of
solving

Linear Pro-

gram
Linear Linear Equal-

ities and In-
equalities

Real Simplex
Method

Linear Integer

Program
Linear Linear Equal-

ities and In-
equalities

Integers Heuristic
Method

Quadratic

Program
Quadratic Linear Equal-

ities and In-
equalities

Real Dynamic
Programming
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Periodic Constraints

Cyclic timetables: Arrival/departure times of trains repeat every hour.

Periodically recurring events demand periodic constraints

All events have times lying in [0,60)

For denoting the crossing of the hour mark between these two events,
we introduce modulo T operations, where T denotes the time period.

An example of a periodic constraint is as follows:-
d: any departure event
a: any arrival event

d − a + Tp∈[3, 5]

p∈Z
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The Cyclic Railway Timetabling Problem (CRTP)

This is a problem with the aim of creating a feasible schedule of trains.
The problem includes the following constraints:-

Headway Time constraints:- leads to periodic constraints between
departures from a single station

Dwell Time constraints:- leads to periodic constraints between
arrival and departure of trains at any particular station

Traversal constraints:- leads to periodic constraints between arrival
and departure of trains at adjacent stations
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CRTP(Contd..)

Synchronization constraints:- Depending on the requirement of
number of services between a pair of stations, the services should be
appropriately spread out over an hour. For example if there are 5
services from stations A to B, the trains should be spread out by
approximately 10 to 14 minutes in an hour

Depending on these constraints the CRTP formulation aims at scheduling
trains matching all the constraints.
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Problems with CRTP

Let us consider the terminal stations. Arrival and departure of trains
at these stations are not constrained. Thus trains arriving at a station
may have to wait for a long time before leaving. This might lead to
an increase in rake requirement

If the trains wait at terminals for a long time, then the terminus may
not be able to house so many trains at once

These problems leads to another important type of constraints called
Assignment Constraints.
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Assignment constraints

D: Set of departure events
A: Set of arrival events

Xij ,i ∈ A,j ∈ D ∈ [0, 1],∈ Z
Every arrival event has to be linked with a departure event∑

j∈D
Xij = 1 ∀i ∈ A

Every departure event has to be linked with an arrival event∑
i∈A

Xij = 1 ∀j ∈ D

Soumya Dutta TRAINS ON TIME 14 / 22



Assignment constraints

D: Set of departure events
A: Set of arrival events
Xij ,i ∈ A,j ∈ D ∈ [0, 1],∈ Z

Every arrival event has to be linked with a departure event∑
j∈D

Xij = 1 ∀i ∈ A

Every departure event has to be linked with an arrival event∑
i∈A

Xij = 1 ∀j ∈ D

Soumya Dutta TRAINS ON TIME 14 / 22



Assignment constraints

D: Set of departure events
A: Set of arrival events
Xij ,i ∈ A,j ∈ D ∈ [0, 1],∈ Z

Every arrival event has to be linked with a departure event∑
j∈D

Xij = 1 ∀i ∈ A

Every departure event has to be linked with an arrival event∑
i∈A

Xij = 1 ∀j ∈ D

Soumya Dutta TRAINS ON TIME 14 / 22



Assignment constraints

D: Set of departure events
A: Set of arrival events
Xij ,i ∈ A,j ∈ D ∈ [0, 1],∈ Z

Every arrival event has to be linked with a departure event∑
j∈D

Xij = 1 ∀i ∈ A

Every departure event has to be linked with an arrival event∑
i∈A

Xij = 1 ∀j ∈ D

Soumya Dutta TRAINS ON TIME 14 / 22



Assignment constraints(Contd..)

Using these variables Xij , we define two constraints to specify
turnaround constraints at terminal stations.

dj − ai + Tp > −57 + 60Xij

dj − ai + Tp 6 65− 60Xij

The way Mixed Integer Linear Programs are solved, the search space
for ”unlinked” arrival-departure events gets quite huge as the bounds
are between -57 and 65
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Assignment constraints(Contd..)

Solving the MILP using the above constraints the solver is unable to
solve CRTP

We thus reduce the search space by slightly modifying the constraints
as below:-

dj − ai + Tp > 3Xij

dj − ai + Tp 6 65− 60Xij

With search space reduced the solver is now able to solve the problem
satisfactorily
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Modeling using AMPL

Such an optimization problem requires to be modeled quite carefully.
The modeling language that has been used is AMPL( A
Mathematical Programming Language)

Modeling any problem consists of first denoting the decision variables,
defining objective functions and then constraints

For solving the AMPL model we need to call a solver (in this case
Gurobi), which returns the optimal value of the decision variables and
minimum value of the objective function
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Modeling using AMPL(Contd..)

An example of modeling in AMPL is shown:-

Our old problem was:-

Max 3P + 2B

s.t. 0 6 P 6 2 ,P ∈ Z
0 6 B 6 2 ,B ∈ Z
100P + 50B = 200

An equivalent AMPL model is shown:-
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Modeling using AMPL(Contd..)

The solution of the above model looks like this:-

We thus confirm our previous solution.
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Future work

As of now we have no objective function in our CRTP formulation. We
will add the following to our formulation:-

Increase robustness of the timetable

Reduce traveling time between source-destination pairs
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Conclusion

Optimization provides a flexible framework for creating railway
time-tables

Often when stuck with an optimization problem, tweaking the model
slightly can help us. For this however, knowledge of the problem at
hand is essential.
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