TRAINS ON TIME

Optimizing and Scheduling of railway timetables

Soumya Dutta
IIT Bombay
Students' Reading Group

July 27, 2016

Outline

- Introduction to Optimization
- Examples
- Types of Optimization problems
- Periodic Constraints
- The Cyclic Railway Timetabling Problem (CRTP)
- Assignment Constraints
- Modeling using AMPL
- Future Work
- Conclusion
- References

Introduction to Optimization

Introduction to Optimization

- Simply said an optimization problem can be thought of a mathematical tool for making decisions.

Introduction to Optimization

- Simply said an optimization problem can be thought of a mathematical tool for making decisions.
- It will not be an understatement to claim that optimization has been done by all of us from a quite young age.

Introduction to Optimization(Contd..)

Introduction to Optimization(Contd..)

Let us consider a very simple example.

You have to spend ₹ 200			
	Each slice costs ₹100	() :) :)	
**			

* Source: http://www.istockphoto.com/vector/pizza-slice-gm165646066-9184739
**Source: https://www.123rf.com/stock-photo/beef cartoon.html

Introduction to Optimization(Contd..)

Let P be the number of pizzas and B the number of burgers you will have.

$$
\begin{align*}
\text { Max } & 3 P+2 B \tag{1}\\
\text { s.t. } & 0 \leqslant P \leqslant 2 \quad, P \in \mathbb{Z} \tag{2}\\
& 0 \leqslant B \leqslant 2 \quad, B \in \mathbb{Z} \tag{3}\\
& 100 P+50 B=200 \tag{4}
\end{align*}
$$

Decision variables: P and B
(1): Objective function of the optimization problem
(2) - (4): The constraints of the problem.

Examples

Examples

Sources: S1(100.5 gallons), S2(250 gallons) Destination: D(200 gallons)

Examples

Sources: S1(100.5 gallons), S2(250 gallons)
Destination: D(200 gallons)

- $S 1 \rightarrow$: ₹ $950 /$ gallon
- $S 2 \rightarrow$: ₹ $1000 /$ gallon
- Objective Function: Minimize transportation cost

Examples

Sources: S1(100.5 gallons), S2(250 gallons)
Destination: D(200 gallons)

- $S 1 \rightarrow$: ₹ $950 /$ gallon
- $S 2 \rightarrow$: ₹ $1000 /$ gallon
- Objective Function: Minimize transportation cost
$x_{s 1}$: Amount of oil from $S 1$ to D
$x_{s 2}$: Amount of oil from $S 2$ to D

Examples

Sources: S1(100.5 gallons), S2(250 gallons)
Destination: $\mathrm{D}(200$ gallons $)$

- $S 1 \rightarrow$: ₹ $950 /$ gallon
- $S 2 \rightarrow$: ₹ $1000 /$ gallon
- Objective Function: Minimize transportation cost
$x_{s 1}$: Amount of oil from $S 1$ to D
$x_{s 2}$: Amount of oil from $S 2$ to D

$$
\begin{array}{cl}
\text { Min } & 950 x_{s 1}+1000 x_{s 2} \\
\text { s.t. } & 0 \leqslant x_{s 1} \leqslant 100.5 \\
& 0 \leqslant x_{s 2} \leqslant 250 \\
& x_{s 1}+x_{s 2}=200
\end{array}
$$

Examples

Sources: S1(100.5 gallons), S2(250 gallons)
Destination: D(200 gallons)

- $S 1 \rightarrow$: ₹ 950/gallon
- $S 2 \rightarrow$: ₹ $1000 /$ gallon
- Objective Function: Minimize transportation cost
$x_{s 1}$: Amount of oil from $S 1$ to D
$x_{s 2}$: Amount of oil from $S 2$ to D

$$
\begin{array}{cl}
\text { Min } & 950 x_{s 1}+1000 x_{s 2} \\
\text { s.t. } & 0 \leqslant x_{s 1} \leqslant 100.5 \\
& 0 \leqslant x_{s 2} \leqslant 250 \\
& x_{s 1}+x_{s 2}=200
\end{array}
$$

This is an example of a linear program

Examples(Contd..)

Examples(Contd..)

Sources: S1(100 pieces), S2(150 pieces) Destination: D(200 pieces)

Examples(Contd..)

Sources: S1(100 pieces), S2(150 pieces)
Destination: $\mathrm{D}(200$ pieces $)$

- S1 \rightarrow D: ₹ 20,000/piece
- $S 2 \rightarrow$: ₹ $25,000 /$ piece
- Objective Function: Minimize procurement cost

Examples(Contd..)

Sources: S1(100 pieces), S2(150 pieces)
Destination: $\mathrm{D}(200$ pieces $)$

- S1 \rightarrow D: ₹ 20,000/piece
- $S 2 \rightarrow$: ₹ $25,000 /$ piece
- Objective Function: Minimize procurement cost
$x_{s 1}$: Number of microscopes from $S 1$ to D
$x_{s 2}$: Number of microscopes from $S 2$ to D

Examples(Contd..)

Sources: S1(100 pieces), S2(150 pieces)
Destination: $\mathrm{D}(200$ pieces $)$

- $S 1 \rightarrow$: ₹ 20,000/piece
- $S 2 \rightarrow$: ₹ $25,000 /$ piece
- Objective Function: Minimize procurement cost
$x_{s 1}$: Number of microscopes from $S 1$ to D
$x_{s 2}$: Number of microscopes from $S 2$ to D

$$
\begin{array}{cl}
\text { Min } & 20,000 x_{s 1}+25,000 x_{s 2} \\
\text { s.t. } & 0 \leqslant x_{s 1} \leqslant 100 ; \quad x_{s 1} \in \mathbb{Z} \\
& 0 \leqslant x_{s 2} \leqslant 150 ; \quad x_{s 2} \in \mathbb{Z} \\
& x_{s 1}+x_{s 2}=200
\end{array}
$$

Examples(Contd..)

Sources: S1(100 pieces), S2(150 pieces)
Destination: $\mathrm{D}(200$ pieces $)$

- $S 1 \rightarrow$: ₹ 20,000/piece
- $S 2 \rightarrow$: ₹ $25,000 /$ piece
- Objective Function: Minimize procurement cost
$x_{s 1}$: Number of microscopes from $S 1$ to D
$x_{s 2}$: Number of microscopes from $S 2$ to D

$$
\begin{array}{cll}
\text { Min } & 20,000 x_{s 1}+25,000 x_{s 2} \\
\text { s.t. } & 0 \leqslant x_{s 1} \leqslant 100 ; \quad x_{s 1} \in \mathbb{Z} \\
& 0 \leqslant x_{s 2} \leqslant 150 ; \quad x_{s 2} \in \mathbb{Z} \\
& x_{s 1}+x_{s 2}=200 &
\end{array}
$$

This is an example of integer linear program

Examples(Contd..)

A motorist has to travel at a speed of $50 \mathrm{~km} / \mathrm{hr}$ for a particular amount of time with the minimum amount of fuel usage

Examples(Contd..)

A motorist has to travel at a speed of $50 \mathrm{~km} / \mathrm{hr}$ for a particular amount of time with the minimum amount of fuel usage
x :Speed of the motorist in $\mathrm{km} / \mathrm{hr}$ u :Amount of fuel used

Examples(Contd..)

A motorist has to travel at a speed of $50 \mathrm{~km} / \mathrm{hr}$ for a particular amount of time with the minimum amount of fuel usage
x :Speed of the motorist in $\mathrm{km} / \mathrm{hr}$ u :Amount of fuel used

$$
\begin{array}{ll}
\text { Min } & \int_{0}^{\cdots}\left(2(x-50)^{2}+4 u^{2}\right) \\
\text { s.t. } & \dot{x}=1.5 u \\
& x \geqslant 0 \\
& u \geqslant 0
\end{array}
$$

Examples(Contd..)

A motorist has to travel at a speed of $50 \mathrm{~km} / \mathrm{hr}$ for a particular amount of time with the minimum amount of fuel usage
x :Speed of the motorist in $\mathrm{km} / \mathrm{hr}$ u:Amount of fuel used

$$
\begin{array}{ll}
\text { Min } & \int_{0}^{\cdots}\left(2(x-50)^{2}+4 u^{2}\right) \\
\text { s.t. } & \dot{x}=1.5 u \\
& x \geqslant 0 \\
& u \geqslant 0
\end{array}
$$

This is an example of a linear quadratic regulator problem

Types of Optimization problems

Types of Optimization problems

Type of prob- lem	Objective function	Type of con- straints	Decision vari- ables	Method of solving
Linear Pro- gram	Linear	Linear Equal- ities and In- equalities	Real	Simplex Method
Linear Integer Program	Linear	Linear Equal- ities and In- equalities	Integers	Heuristic Method
Quadratic Program	Quadratic	Linear Equal- ities and In- equalities	Real	Dynamic Programming

Periodic Constraints

Cyclic timetables: Arrival/departure times of trains repeat every hour.

- Periodically recurring events demand periodic constraints
- All events have times lying in $[0,60$)
- For denoting the crossing of the hour mark between these two events, we introduce modulo T operations, where T denotes the time period.

Periodic Constraints

Cyclic timetables: Arrival/departure times of trains repeat every hour.

- Periodically recurring events demand periodic constraints
- All events have times lying in $[0,60)$
- For denoting the crossing of the hour mark between these two events, we introduce modulo T operations, where T denotes the time period.
An example of a periodic constraint is as follows:-
d: any departure event
a: any arrival event

$$
\begin{gathered}
d-a+T p \in[3,5] \\
p \in \mathbb{Z}
\end{gathered}
$$

The Cyclic Railway Timetabling Problem (CRTP)

This is a problem with the aim of creating a feasible schedule of trains. The problem includes the following constraints:-

The Cyclic Railway Timetabling Problem (CRTP)

This is a problem with the aim of creating a feasible schedule of trains. The problem includes the following constraints:-

- Headway Time constraints:- leads to periodic constraints between departures from a single station

The Cyclic Railway Timetabling Problem (CRTP)

This is a problem with the aim of creating a feasible schedule of trains. The problem includes the following constraints:-

- Headway Time constraints:- leads to periodic constraints between departures from a single station
- Dwell Time constraints:- leads to periodic constraints between arrival and departure of trains at any particular station

The Cyclic Railway Timetabling Problem (CRTP)

This is a problem with the aim of creating a feasible schedule of trains. The problem includes the following constraints:-

- Headway Time constraints:- leads to periodic constraints between departures from a single station
- Dwell Time constraints:- leads to periodic constraints between arrival and departure of trains at any particular station
- Traversal constraints:- leads to periodic constraints between arrival and departure of trains at adjacent stations

CRTP(Contd..)

CRTP(Contd..)

- Synchronization constraints:- Depending on the requirement of number of services between a pair of stations, the services should be appropriately spread out over an hour. For example if there are 5 services from stations A to B, the trains should be spread out by approximately 10 to 14 minutes in an hour

Depending on these constraints the CRTP formulation aims at scheduling trains matching all the constraints.

Problems with CRTP

Problems with CRTP

- Let us consider the terminal stations. Arrival and departure of trains at these stations are not constrained. Thus trains arriving at a station may have to wait for a long time before leaving. This might lead to an increase in rake requirement

Problems with CRTP

- Let us consider the terminal stations. Arrival and departure of trains at these stations are not constrained. Thus trains arriving at a station may have to wait for a long time before leaving. This might lead to an increase in rake requirement
- If the trains wait at terminals for a long time, then the terminus may not be able to house so many trains at once

Problems with CRTP

- Let us consider the terminal stations. Arrival and departure of trains at these stations are not constrained. Thus trains arriving at a station may have to wait for a long time before leaving. This might lead to an increase in rake requirement
- If the trains wait at terminals for a long time, then the terminus may not be able to house so many trains at once

These problems leads to another important type of constraints called Assignment Constraints.

Assignment constraints

\mathbb{D} : Set of departure events
A: Set of arrival events

Assignment constraints

\mathbb{D} : Set of departure events
A: Set of arrival events
$\mathbb{X}_{i j}, i \in \mathbb{A}, j \in \mathbb{D} \quad \in[0,1], \in \mathbb{Z}$

Assignment constraints

\mathbb{D} : Set of departure events
A: Set of arrival events
$\mathbb{X}_{i j}, i \in \mathbb{A}, j \in \mathbb{D} \quad \in[0,1], \in \mathbb{Z}$

- Every arrival event has to be linked with a departure event

$$
\sum_{j \in \mathbb{D}} \mathbb{X}_{i j}=1 \quad \forall i \in \mathbb{A}
$$

Assignment constraints

\mathbb{D} : Set of departure events
A: Set of arrival events
$\mathbb{X}_{i j}, i \in \mathbb{A}, j \in \mathbb{D} \quad \in[0,1], \in \mathbb{Z}$

- Every arrival event has to be linked with a departure event

$$
\sum_{j \in \mathbb{D}} \mathbb{X}_{i j}=1 \quad \forall i \in \mathbb{A}
$$

- Every departure event has to be linked with an arrival event

$$
\sum_{i \in \mathbb{A}} \mathbb{X}_{i j}=1 \quad \forall j \in \mathbb{D}
$$

Assignment constraints(Contd..)

- Using these variables $\mathbb{X}_{i j}$, we define two constraints to specify turnaround constraints at terminal stations.

$$
\begin{gathered}
d_{j}-a_{i}+T p \geqslant-57+60 \mathbb{X}_{i j} \\
d_{j}-a_{i}+T p \leqslant 65-60 \mathbb{X}_{i j}
\end{gathered}
$$

- The way Mixed Integer Linear Programs are solved, the search space for "unlinked" arrival-departure events gets quite huge as the bounds are between - 57 and 65

Assignment constraints(Contd..)

- Solving the MILP using the above constraints the solver is unable to solve CRTP
- We thus reduce the search space by slightly modifying the constraints as below:-

$$
\begin{gathered}
d_{j}-a_{i}+T p \geqslant 3 \mathbb{X}_{i j} \\
d_{j}-a_{i}+T p \leqslant 65-60 \mathbb{X}_{i j}
\end{gathered}
$$

- With search space reduced the solver is now able to solve the problem satisfactorily

Modeling using AMPL

- Such an optimization problem requires to be modeled quite carefully. The modeling language that has been used is AMPL(A Mathematical Programming Language)
- Modeling any problem consists of first denoting the decision variables, defining objective functions and then constraints
- For solving the AMPL model we need to call a solver (in this case Gurobi), which returns the optimal value of the decision variables and minimum value of the objective function

Modeling using AMPL(Contd..)

An example of modeling in AMPL is shown:-

- Our old problem was:-

$$
\begin{array}{cl}
\text { Max } & 3 P+2 B \\
\text { s.t. } & 0 \leqslant P \leqslant 2 \quad, P \in \mathbb{Z} \\
& 0 \leqslant B \leqslant 2 \quad, B \in \mathbb{Z} \\
& 100 P+50 B=200
\end{array}
$$

- An equivalent AMPL model is shown:-

```
#Decision variables
var p integer >=0,<=2;
var b integer >=0,<=2;
#Objective function
maximize happiness: 3*p+2*b;
#Constraint
subject to con1:100*p+50*b=200;
```


Modeling using AMPL(Contd..)

The solution of the above model looks like this:-

```
Gurobi 6.5.0: optimal solution; objective 7
happiness = 7
p = 1
b}=
soumyadutta@kanjur:~$ \square
```

We thus confirm our previous solution.

Future work

As of now we have no objective function in our CRTP formulation. We will add the following to our formulation:-

- Increase robustness of the timetable
- Reduce traveling time between source-destination pairs

Conclusion

- Optimization provides a flexible framework for creating railway time-tables
- Often when stuck with an optimization problem, tweaking the model slightly can help us. For this however, knowledge of the problem at hand is essential.

References

围 Peeters，L．W．P．（2003）．Cyclic Railway Timetable Optimization， Erasmus Research Institute of Management（ERIM），Erasmus University Rotterdam．
直 Serafini，P．，\＆Ukovich，W．（1989）．A mathematical model for periodic scheduling problems．SIAM Journal on Discrete Mathematics， 2（4），550－581．

围 Wolsey，Laurence．A．（1998）Integer Programming，John Wiley and Sons，INC．
冨 http：／／www．istockphoto．com／vector／pizza－slice－gm165646066－ 9184739
目 http：／／www．123rf．com／stock－photo／beef－cartoon．html

