Touching distant objects is not a fiction anymore!

Presenter:

Vineet Gokhale

Vision and Image Processing Lab IIT Bombay

Human Senses

- Capture surroundings
- Stimulate through synthetic objects
- Eyes animations, ears music instruments, digital scent and taste

Courtesy: www.waysofperception.com

Touch

Can we synthesize touch? - Yes! Ex: mobile vibration

Image courtesy: www.audiworld.com, en.wikipedia.org, www2.pacific.edu, cornell-students.blogspot.com

Haptics Technology

Real Touch Virtual Touch Touch – active sensing mechanism

• Virtual world – mesh model

- Action position and velocity; reaction force
- Haptic device input/output interface

- Three classes
 - Machine haptics: mechanical design of haptic devices
 - Computer haptics: rendering objects, communication
 - -Human haptics: human perception

Haptic Devices

Single point of contact

– Novint Falcon

3 DoF I/O Max force: 8 N

– Phantom Omni

6 DoF I, 3 DoF O Max force: 3 N

Image courtesy: www.giantbomb.com, www.dentsable.com

• Multiple point of contact

Cybergrasp

Max force: 12 N per finger

Image courtesy: www.cyberglovesystems.com

- Kinesthetic devices: Force
 - Ex: Novint Falcon, Phantom Omni, Cybergrasp
- Tactile devices: Texture, heat
 - -Ex: Cybergrasp

Reaction Force

- Haptic interaction Point (HIP) or Avatar
- Reaction Force F: Hooke's law + Newton's 3rd law

Courtesy: K Salisbury et. al

Haptic Interaction

Courtesy: Chai3D

Components of haptic system

- Software
 - Simulation engine (collision detection response)
 - Rendering algorithms (response -> human perceivable form)
- Hardware interfaces
 - Haptic device, speaker, monitor.

Courtesy: K Salisbury et al.

• Perception of haptic objects

- Weight, texture, shape, size etc.

- Manipulation of haptic objects
- Higher degree of immersion
- Accurate control of task
- Applications: virtual reality gaming, touchenabled digital museum, medical training, prosthetic organ, medical diagnostics.

Telehaptics

Telehaptics

- Remote haptic interaction
- User and object physically separated
- Perceive/manipulate remote objects
- Faithful replication of human actions
- Faithful delivery of interaction forces

Standalone to Telehaptics

- Remote object
- Communication network
- Actions to remote end
- Reactions from remote end
- Audio-visual feedback from remote end
- Robotic device for physical interaction

Telehaptics

Courtesy: Dr. Julius Kammerl, TUM, Munich

- Forward channel ---- Backward channel

P: position, V: velocity, F: force, A: audio, Vi: video

Courtesy: V. Gokhale et al., 2016

Applications

- Surgical training
- Tele-manipulation

-Space, hazardous environments

• Tele-medicine

Telesurgery, tele-touch therapy

- Haptic-enabled teleconferencing
- Collaborative tasks
- Networked games

Telehaptics Video Demo

Telehaptic Environment

• Media

-Heterogeneous

Data flow

-Bi-directional

- -Asymmetric traffic
- Haptic global control loop
 Update rate: 1 kHz
- UDP
- Human (OP) involved

Quality of Service (QoS)

• Promise by underlying resources

Media	Delay (ms)	Jitter (ms)
Haptic	30	10
Audio	150	30
Video	400	30

- Haptic most sensitive media
- Violation causes perceptual degradation

Effects of Haptic QoS Violation

• Haptic delay > 60 ms

- Perceptual degradation of object

• Example: hard object perceived as soft

-Instability in control loop

• Haptic jitter > 10 ms

-Object of variable mass

Telehaptic Challenges and Proposed Solutions

Transmission scheduling

• Round-robin (Cizmeci et al., 2014)

- Larges audio/video frames fragmentation
- QoS-wise priority
- Packetization
 - Separate packets for each fragment: high overhead
 - Merge different media types augmentation
 - 1 packet per milli-second

Backward Channel Scheduling

Backward channel traffic – 1.1 Mbps!

V. Gokhale et al., 2015

Haptic compression

- Reduce telehaptic source rate
- DPCM, DCT induce delay
- *Being human -* tolerance to certain level of distortion
- Adaptive sampling
 - Subsampling based on perceptual significance
 - Choose **N** samples/sec out of 1000
 - Example: Weber's law, level crossings
 - Backward channel
 - Lossy, yet perceptually similar

-

• Weber's law of perception

Small relative force changes are unnoticeable

$$- \left| \frac{X(t) - X_{n-1}}{X_{n-1}} \right| \ge \delta \quad \text{(Hinterseer et al., 2008)}$$

$$\underbrace{ \begin{array}{c} & 90\% \\ \text{reduction!} \\ & & \\ &$$

- Visual-haptic multiplexing (Cizmeci et al., 2014)
- Adaptive sampling
- Multiplexing video and haptic data
- Buffered scheduling
- Zero haptic jitter
- Network-oblivious

Lossless Compression

- Forward channel
- Robotic device has no deadband
- Payload: 192 kbps, header: 528 kbps (74%)
- Curtail header
- Bunch multiple haptic samples
 - -Ex: bunching 2 samples halves header rate

- Packetization interval (Fujimoto et al., 2005)
 - -Bunched 8 samples per packet (call it k)
 - -Huge overhead reduction
 - -Suboptimal
 - -No rationale for no. of bunched samples
 - Network-oblivious

V. Gokhale et al., 2016

- Dynamic packetization (V. Gokhale et al., 2016)
 - Estimate network condition
 - End-to-end delay based, not RTT
 - Dynamic selection of k
 - *− k* <= 4
 - Follows additive-increase-multiplicative-decrease
 - Jitter upper bound << 10 ms</p>
 - Coarse quantization of source rate
 - Over-friendly to TCP

Thank You

References

- K. Salisbury, F. Barbagli, F. Conti, 'Haptic Rendering: Introductory Concepts'.
- V. Gokhale, J. Nair, S. Chaudhuri, 'Traffic Adaptive Telehaptic Communication over Shared Networks', submitted to ACMTOMM.
- V. Gokhale, S. Chaudhuri, O. Dabeer, 'HoIP: A Point-to-Point Haptic Data Communication Protocol and Its Evaluation', IEEE National Conference on Communications 2015.
- P. Hinterseer, S. Hirche, S. Chaudhuri, E. Steinbach, M. Buss, 'Perceptionbased Data Reduction and Transmission of Haptic Data in Telepresence and Teleaction Systems', IEEE Transactions on Signal Processing, 2008.
- M. Fujimoto, Y. Ishibashi, 'Packetization interval of haptic media in networked virtual environments', ACM SIGCOMM, 2005
- B. Cizmeci, R. Chaudhari, X. Xu, N. Alt, E. Steinbach, 'A Visual-Haptic Multiplexing Scheme for Teleoperation Over Constant-Bitrate Communication Links', Proceedings of Eurohaptics, 2014