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Knowing the Air ...

Delhi pollution: Air quality dips sharply ahead of Diwali
(Business Today 06 Nov)

Not just Delhi, 70 Indian cities reel under air pollution
(Down To Earth 05 Nov)

Clean air is a human right: WHO
(Down To Earth 02 Nov)



Investments in Engineering

I Centre of Excellence for Research on Clean Air (CERCA) set
up in IIT Delhi

I Number of ground based air quality (AQ) stations increased
by Pollution Control Boards

I Sprinklers and artificial rains sought as options to help settle
particulate matter (PM)

I Deficits in present AQ measurement/sensing
I Ground station equipments require regular repair
I Stations mostly concentrated in industrial belts
I Average error in PM monitoring between 10-26 %



Signal Analytics for Rescue

I With emergence of IoT devices, shift has been from ’ground
to the cloud’
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Graph SP : Basics
I Each station is a node on

graph

I G(V,E,W ); edges
represents correlation
(distance)

I At any time t, graph signal

is a vector f⃗

I f⃗ represents and snapshot of (say) PM 2.5 measurement

I An example of the edge weights is;

Wi,j =

{
exp

(
dist(i,j)2

2θ2

)
if dist(i, j) ≤ κ

0 otherwise.
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Spectral is better?

I Like in classical signal processing, we can define a Graph
Fourier Transform
[Shuman-Narang-Frossard-Ortega-Vandergheynst’13]

I (The Graph Laplacian) L := D −W

I Laplacian is positive semi-definite

I Eignenvalues are bounded 0 := λ0 ≤ λ1 ≤ · · · ≤ λN−1 := λmax

I Corresponding eigenvectors are frequency vectors (increasing
zero crossings); u⃗0, u⃗1, · · · , u⃗N−1

I GFT is defined as;
f̂(λl) :=

⟨
f⃗ , u⃗l

⟩



Recent trends...

I Graph Filtering: helps in denoising, ensuring sparsity,
localization (zooming)

I Graph Wavelet Transforms : multiresolution analysis of
graphs, sparse representations [Narang-Ortega’12]

I Spatio-Temporal Processing : deals with time variation of the
graph signal. Joint space-time transforms are studied

I Graph Learning : learning graph weights from (training) data
[Dong-Thanou-Frossard-Vandergheynst’16]



Roadmap to the cloud



Sampling Spatial Fields

I Sensors are mounted on vehicles or birds to collect large
amounts of data

I Mobile Sampling comes with measurement noise/ delay, but a
large number of samples would come to the rescue !



A familiar Bandlimited model
I To start, model assumes time-invariance and limited

bandwidth [Unnikrishnan-Vetterli’13]

I Let sampling vehicle have uniform velocity; r(t) = u+ vt

I 1-D Field: BW ∈ [−ρ, ρ]; time domain signal will see a
bandwidth of [−vρ, vρ]

I (Nyquist-Shannon Sampling):

f̂(x) =
∑
j∈Z

s(jT )
vTρ

π
sinc

(
ρ(x− jvT )

π

)



More into practice

I 2-D Field: BW: [−ρ, ρ]× [−ρ, ρ].

I 2-D mobile sampling results in lower
mean-square error than static
sampling approach

Other Extensions:
I Sampling high dimensions using lower dimension manifolds

[Unnikrishnan-Vetterli’13]

I Location unaware sampling [A. Kumar’17]

I Sampling of spatio-temporal fields [ongoing]



Roadmap to the cloud



Envelope to the cloud
I Traditional mean square error quantizer (a.k.a Lloyd-Max

quantizer) will not provide reliable approximation

I A comparative picture:

I Envelope quantization applicable in protection region
database (TV whitespace), weather monitoring



Drive using Model

I Model driven approaches assumes the probability density is
known

I Cost function (mean square error) optimization

min
Q(.)

MSE(Q(X), X) subject to Q(X) ≥ X

I 1-parameter/ scalar quantization [Anavangot-Kumar’18]

I Using localized MSE optimization a recursive algorithm is developed

I In low computational settings, using piecewise-linear approx can be applied

I Algorithm is shown to have exponential (error) decay rate and global optimality



Alternating Recurrence

Algorithm details on the board



In simulation

I Approximate Lloyd-Max (ALM) uses MSE cost
(unconstrained)

I Approximate Envelope Quantizer (AEQ) uses envelope
constrained MSE



Driven by data

I For traditional MSE; Learning Vector Quantization (LVQ) and
K-means are popular

I Data driven envelope quantization approaches are not
straight extensions

I High-dimensional quantization can be challenging



Summary... On cloud 9

I We discussed three state-of-the-art signal
processing methods for analyzing sensor data

I Statistical learning tools are expected to
dominate in each case

I Modern sensor technology and signal acquisition
need to be reliable and power efficient

Thank you!
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