Evolution of DSP Processors

Kartik Kariya EE, IIT Bombay

- Expected features of DSPs
- Brief overview of early DSPs
- Multi-issue DSPs
- Case Study: VLIW based Processor (SPXK5) for Mobile Applications

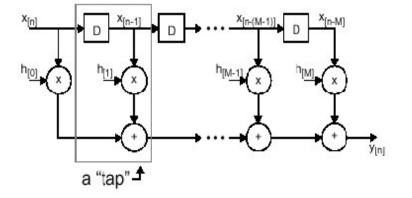
Most DSP tasks require:

- Real- time processing
- Repetitive numeric computations
- Attention to numeric fidelity

Processors must perform these tasks efficiently while minimizing:

- Cost
- Power
- Memory use
- Development time

Features of DSPs

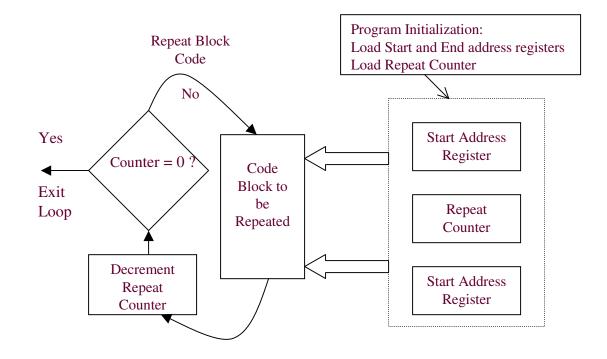

- DSPs architecture is driven by algorithms
- Algorithms puts requirement for exhaustive computations eg. Consider FIR filter example

$$Y(n) = \sum_{K=0}^{M-1} h(n) x(n-k)$$

Each tap (M taps total) requires:

- Two data fetches
- Multiply
- Accumulate

Kartik Kariya


Features of DSPs

Features Common to Most DSP Processors

- Specialized hardware performs all key arithmetic operations in 1 cycle.
- Specialized addressing modes for efficient Memory access
 - **e. g.**
 - -Auto increment
 - -Circular addressing
 - -Bit- reversed (for FFT)
- Hardware support for managing numeric fidelity
 - Guard bits
 - Saturation

Features of DSPs Conti..

- Zero-Overhead Looping
 - specialized hardware for "test and branch"
 - loop nesting

Kartik Kariya

Evolution Of DSPs

Features of DSPs Conti..

- Specialized, complex instructions
 - To make maximum advantage of processor hardware
 - Minimize the memory space required for storing data
- Multiple operations per instruction
- I/O handling mechanism with no intervention to computational units
- Other features like on chip ADC, DAC, DMA controller etc.

Brief Overview Of Early DSPs

- First Generation DSPs :
 - e.g Texas Instruments TMS32010
 - 16 Bit Multiplier, and 32 bit Accumulator
 - Issue and execute one instruction per clock cycle
 - Performance 6-8 MHz (390 ns MAC instruction)
- Second Generation DSPs :
 - e.g ADSP-21xx, TMS320C2xx, DSP560xx
 - Pipelined to some extent
 - 20-50Mhz (75 ns MAC)
 - 16/24/32bit instructions
 - Makes Instruction set complicated, irregular
- Typically used in consumer and telecom products that have modest DSP performance requirements

Brief Overview Of Early DSPs contd...

- Mid Range/Third Generation DSPs :
 - Higher clock speeds 100-150Mhz
 - Parallel execution units- multipliers, adders
 - Deeper pipelines, parallelism
 - Wider data buses, wider instruction words
 - Increase in cost and power consumption offset by performance
 - 20ns MAC

Used in higher performance DSP tasks

- Wireless Telecom, high-speed modems

Examples : TMS320C54x, DSP16xxx (Lucent) etc.

Problems : Difficult assembly, compiling

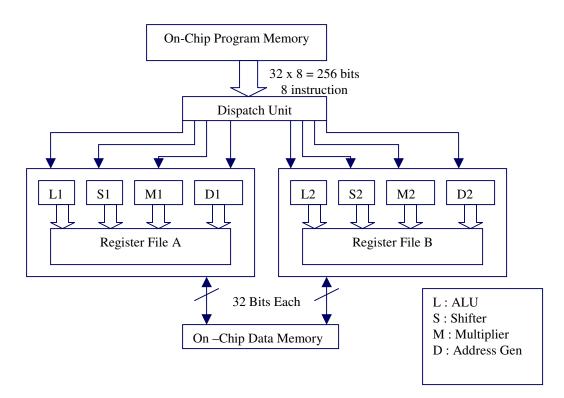
Multi-issue DSPs

- Goals
 - High Performance
 - Compiler friendly architecture
- Simple instructions, 1 operation/instruction
- Issue/execute instructions in parallel groups
- 3ns MAC throughput
- Targeted at demanding computational requirements

Two classes of multi-issue

- VLIW
- Superscalar

Multi-issue DSPs Contd...


- Very Long Instruction Word (VLIW) Class
 - TMSC62xx, first multi-issue (VLIW), introduced in 1996
 - Large number of parallel execution unit
 - Typically issue 4-8 instructions / cycle (VLIW)
 - Assembly programmer / compiler decide parallel instruction grouping depending on data dependencies and resource contention.
 - Instruction groups do not change in execution
 - Large number of instruction decoders, buses, registers and hence memory bandwidth

Problems : High-Energy consumption

Usage : high computational applications e.g. Cellular base station

Multi-issue DSPs Cont...

TMS320C6xx Execution Unit

Multi-issue DSPs Cont...

- Superscalar Class
 - Special hardware decides parallel instruction grouping considering data dependency, resource contention
 - Instruction groups can change in execution depending on data access, loop execution etc.

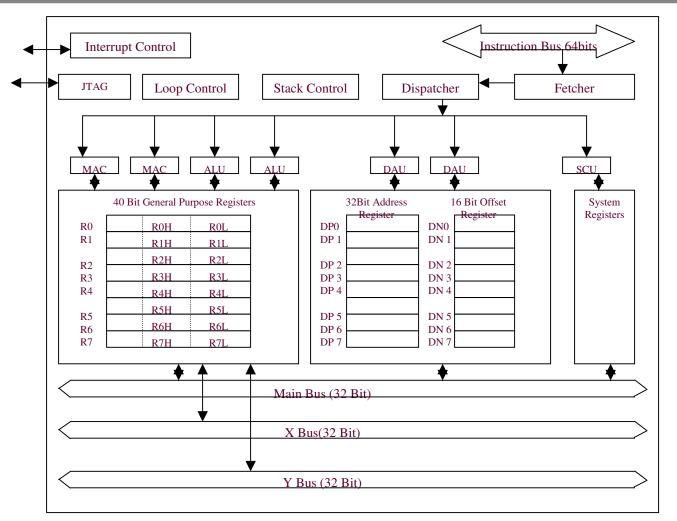
Problems :

- Difficult to predict execution times hence not suitable for real time applications
- High energy, memory usage

Single Instruction Multiple Data Technique

Single Instruction Multiple Data technique (SIMD)

- Execute multiple instances of the same operation in parallel using different data.
- Combined with VLIW / Superscalar / Conventional
- Boosts performance in vector heavy operations such as multimedia applications.
- Based on added parallel execution units(e.g. ADSP-2116x) or logical split of existing execution units(e.g TigerSharc)


Problems :

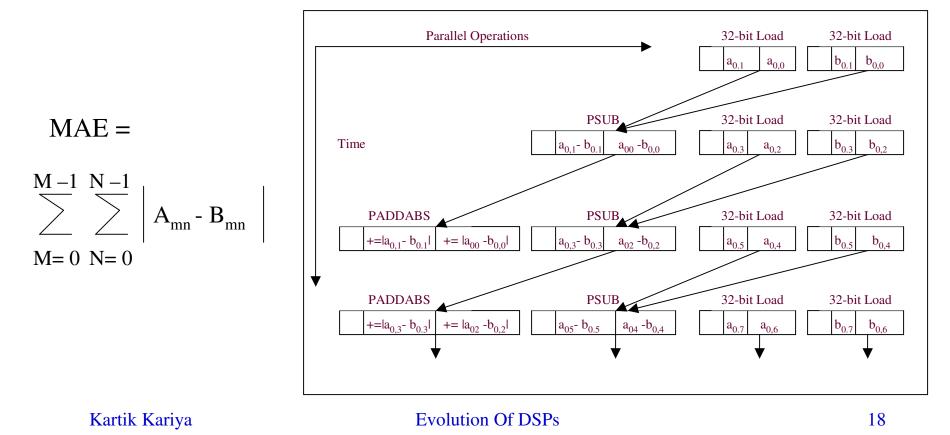
- Must arrange data in memory
- Algorithm re-organization to use processor resources
- Not effective for algos that are inherently serial

Case Study: VLIW based Processor (SPXK5) for Mobile Applications

- Requirements
 - Higher Processing Power for multimedia applications like video codecs, Speech codecs, speech recognition systems etc executing simultaneously
 - Fast beat rate.
 - Minimum Power consumption.
- Architectural overview
 - In incorporates customized VLIW approach as well as SIMD features to give better performance.
 - The functional units consist of Two multiply-accumulate (MAC), two arithmetic units (ALU), two data address units (DAU) for load and store and System control unit (SCU) for branch, zero overhead looping, and conditional execution.

Case Study: VLIW based Processor (SPXK5) for Mobile Applications contd.

Kartik Kariya


Case Study: VLIW based Processor (SPXK5) for Mobile Applications contd.

Features

- Operational Frequency 250 MHz; Avg. power Consumption 0.15 mW/MIPS at 1.5 V
- Maximum four functional units work simultaneously.
- 16 Kbyte instruction cache. Six-stage pipeline: Instruction fetch, dispatch queue, decode, DP register update, Execution phase I and II.
- Instruction: 16 or 32 bits long; Instruction packet size 16 to 64 bits. gives higher code density.
- Eight special SIMD instructions (PADD, PSUB, PSHIFT, PADDABS, PACKV etc) to take advantage of data-level parallelism.
- SIMD Instructions useful to implement DSP algorithms such as video encoding/decoding,FFT etc.

Case Study: VLIW based Processor (SPXK5) for Mobile Applications contd.

e.g. Implementation of mean absolute error (MAE) required in Motion Estimation for video codec

Conclusion

- DSP Processor performance has increased substantially over the years
- Drivers for evolution of DSPs: speed, energy, memory usage, cost
- Focus is on compiler-friendly architectures
- DSP processor architectures is increasingly being specialized for specific applications.