M.Tech credit seminar report, Electronic Systems Group, EE Dept, IIT Bombay,
submitted November 2002

Hardware Configurations for DSP-based Real Time
Simulators

Arup Chakraborty (02307015)
Supervisor: Prof. Mukul Chandorkar

Abstract

This report discusses the hardware interconnection mechanisms of the multiple
processors used for real time simulations, Hardware-in-Loop simulation for example.
Real-time simulations are required for testing systems under real working conditions.
Hardware-in-Loop simulation is an example of a such a simulation, in which the input
and output behaviour of a process is simulated in real time and used for testing
embedded controllers. Real-time simulations are computationally intensive and often
require multiple DSPs. Traditional approaches of tightly coupled and loosely coupled
multiprocessing systems are first discussed. Then, a survey of some practical real time
multiprocessor systems is presented. The techniques used by these practical systems
to improve upon both traditional approaches are also discussed.

1 Introduction

Simulation is the reproduction of reality and all its complexity through the design and
execution of a model of the reality. When this simulation is to be done within the time
constraints imposed by the reality itself, it is known real time simulation. Let us consider
that we have a physical system, and we want to test its behaviour under different input
conditions. One approach to do so is to develop a mathematical model of the system and to
execute this model on a computer and hence observe the system behaviour. This approach
is better than testing the physical system itself in the sense that one can apply all ranges
of input to gain an insight to the system without risking any hazard on the system and
the user. In many cases it is simply more economical to test using a simulator instead of
the actual system.

All the events and processes taking place inside the actual system are bound by certain
laws governing it. Let T be a time interval in which a certain process is completed in
the actual system. A real time simulator, simulating this process, must accept inputs,
perform the computations necessary and keep the output ready within a time less than
or equal to T, the simulated time. This time interval between reading the inputs and
producing the corresponding outputs is known as time step, which is a critical factor.
Real time simulations are useful as interaction of the system under the study, for example
functioning of a control and protection system with the outside world can be analyzed
critically with respect to time. Also statistical studies requiring thousands of operations
can be carried without wear and tear of the system and in much less time.

Since simulation requires computations based on the mathematical model of the sys-
tem and for real time simulation these have to be done within specific time limits, real
time simulators must have large computational power, especially for complex systems.
Solving differential equations of a somewhat complex system within a small time step of

50 microseconds with high precision arithmetic requires computational power of range of
gigaflops. A normal microprocessor cannot be used for this purpose since they have un-
acceptably large bus and peripheral device latencies, are unable to perform high precision
floating point arithmetic and do not have hard and fast time constraints.

At this point Digital Signal Processors come into picture. DSPs are necessary because

e they provide lot of computational power
e operate on continuous flow of data in real time in a deterministic manner

e can carryout very fast I/O operations and data shifts between various parts of the
system

However simulation of some complex systems for example a spacecraft or an aeroplane
demand such a great performance that single DSP-based systems are unable to comply
with. In those cases one has to go for multi-DSP system.

But apart from the increased computational capability, there are other reasons to go
for multiprocessing for real time applications . One of them is that in some cases smaller
processors are cheaper per unit power and therefore a multiple processor based system will
provide power more cheaply than a single processor of equivalent power.

For systems which are required to respond to various kinds of events in real time, it
is better to dedicate different processors for handling different events, than using a single
processor. In very sophisticated systems, where these different tasks are very specialized in
nature, specialized heterogeneous processors may be used. In such system, each processor
behaves as if the rest of the system is a smart peripheral device.

Another important motivation behind the use of multiprocessing systems is that they
can be designed to be scalable. This means that the performance of a multi-processor
based real-time system can be enhanced simply by adding more processors to it. That way
it will be more flexible and cost effective than upgrading to faster single processor. This
means that it gives the user the flexibility of trading off between the number of processors
required for his application and the cost involved.

In earlier days multiple processors were used so as to ensure the functioning of the
system even if one processor fails. But nowadays with the increased reliability of the
processors this point is no longer significant.

There is one special kind of real time simulation known as Hardware-in-Loop simulation,
explained in the next section. The aim of this work is to make a survey of hardware
configurations in which these multiple Digital Signal Processors can be connected for real
time simulation, especially Hardware-in-Loop simulation.

1.1 Hardware-in-Loop Simulation

Embedded controllers are being used for the control of various kinds of systems which can
be as complex as unmanned aircrafts and automobiles. Such embedded systems operate in
safety critical situations. These embedded systems tend to consist of multiple controllers
interacting with each other. There may be numerous inputs to such a control system and as
also numerous outputs. Hence detailed testing of such embedded control system hardware
and software needs to be carried out to ensure fail-proof high performance of the product.
The response of the control system to emergency situations and its behaviour in extreme
regions of operations must be determined accurately. And such testing contributes to a

major portion of development cycle and cost. It allows the embedded controller to be
tested under various real working loads and conditions.

Hardware-in-Loop Simulator (HILS) is tool that is used for testing such embedded
systems in real time. The system (for example an aeroplane or an automobile) to be
controlled is simulated in real time and interfaced with the controller under test. In other
words, HILS accepts outputs from the controller and drive inputs to it, and behaves as the
world external to the controller in real time.

Let us take an example of the an autopilot controller[4]. Typical inputs to an autopilot
controller are current airspeed, pitch angle (the angle of the nose of the plane with respect
to horizontal), pitch rate (the rate at which the nose is diving/rising), gravitational force,
etc. These are acquired by the controller using some sensors. The control law implemented
in the software calculates the required deflection of the elevator and acts on an actuator.
While testing this controller, HIL simulator is designed to take the outputs of the controller
and computes the resultant airspeed, pitch angle and pitch rate, according to the physical
laws governing the motion of the aeroplane and directly feeds the inputs of the controller.
The whole process must be done as fast as the real aeroplane does. This eliminates the
requirement of a real plant (in this case, the aeroplane) for testing of the controller. It is
to be noted unlike other kinds of simulation here the system under test is not simulated
but its external environment.

simulator inputs simulator outputs

HIL
simulator

controller

controller outputs controller inputs

user command

Figure 1: A controller connected with Hardware-in-Loop Simulator (adapted from|4])

The motivations behind using HILS are various[5].

e Any alternative testing procedure may be very difficult and in some cases, impossible.
For example, suppose a control system for a satellite is to be tested. A satellite works
under weightless condition. So instead of trying to simulate such a condition on earth,
it is much easier to simulate the satellite behaviour based on its mathematical model
and interface the simulator with the controller.

e Control and maintenance of the testing environment may be difficult and too costly.

e Often safety considerations disallow any kind of direct testing on the actual system.

e In some cases HILS is simply the most economical testing procedure.

Another advantage that HILS offers over workstation/PC-based simulation is that the
control software runs on the actual hardware which would be built into the end-product,
and not on a workstation.

Earlier, in the absence of HILS, in the development of the product with inbuilt control
system (for example a car with a control system to correct skid on icy road condition),
a prototype of the product was first constructed , then the control system was built and
whole unit was tested. If the performance was not desirable, the design was modified and
the whole procedure was repeated. However currently using HILS, the controller hardware
and software need to be developed only, and not a full prototype of the end-product and
the rest of it is simulated. The result is used to fine tune the controller. Thus development
of the controller and the system to be controlled goes on parallelly. When the prototype
of the end-product with the controller is ready, it is right the first time. This reduces the
development cycle significantly[13].

The rate of iteration of the HILS must be far greater than that of the controller under
test to the order of 5 to 10 times[4]. The inputs and outputs of the HILS are respectively
outputs and inputs of the the controller. But the resolution of the signals for a typical
HILS are about 3 to 4 times that of controller. The range of the HILS signals are slightly
higher. These considerations are necessary for ensuring real time high performance of the
simulator.

Thus it is evident that HILS is a specialized real time system which is to be specially
designed taking into consideration the features and characteristics of the the system to be
simulated. However since this is a real time systems, principles of other real time systems
will also be applicable here.

1.2 Structure of HILS

A structure of a typical Hardware-in-Loop simulator can be divided into the following
general components|4,6].

e The input hardware required for acquisition of the signal generated by the controller.

e The software responsible for handling the input hardware, reading the input signals
and keeping them ready for the following stage of the software

e The software part which represents the model of the simulated system. It accepts
inputs from input software , computes the outputs according to the mathematical
model and characteristics of the system of the system and supplies these output
values to last stage of the software.

e The last stage of the software is responsible for driving the output peripheral devices
and generation of the output signals in a form acceptable to the controller

e The output hardware consists of these output peripheral devices which are interfaced
with the controller.

The output and input signals may be analog in which case the input and output blocks
require A/D and D/A converters. The signals can also be in digital form and serial and
parallel communication can be used. In some cases HIL simulator are designed with the
input, output stages as reconfigurable. This is required when the same design is to be used

ouput software

[[

/ /
y y

input software

outputs : inputs

\ \ \

\

\ L _ input hadware
ouput hardware computational
model

Figure 2: Components of a Hardware-in-Loop Simulator|[4]

to test different kinds of controllers with different kinds of inputs and outputs. Thus it is
worth money and time to be able to reconfigure the inputs and output blocks accordingly.
This is usually done by using FPGAs in input/output stages and table driven software.

Another aspect of HILS design is that, sometimes instead of simulating a sensor or a
actuator, it is physically put between the controller and simulator. This is because the
model for sensors/actuators may be too complex to be simulated.

2 Multiprocessing Systems

As mentioned earlier, multiprocessing systems are absolutely necessary for complex real
time systems and hence for most HIL simulators. To understand the hardware architecture
that can be used for HIL simulator application, a look into general multiprocessing system
is necessary.

Computing systems can be classified as|2]

1. Single Instruction Single Data(SISD) system, in which case at a time a single instruc-
tion stream operates over a single data stream. This does not require multiprocessors.

2. Single Instruction Multiple Data(SIMD) system. A single instruction stream oper-
ates on a multiple data stream. Individual processors do not have large local memory.
There is a master processor which feeds the other processors with the program in-
structions and data and execute them in lock step.

3. Multiple Instruction Multiple Data(MIMD) system. Many instruction streams op-
erate over multiple data streams simultaneously. Each processor executes different
program and act on different data set.

MIMD systems can further be classified into Tightly Coupled Systems and Loosely Coupled
Systems.

Tightly Coupled Systems consist of several multiprocessors having access to a common
memory space. This common memory can be used for communication between the pro-
cessors and also accessing the program instructions and data. Tightly coupled systems are
of following types|[1]:

1. shared bus based system

2. multiported memory based system
3. bus window based system

4. crossbar switch based system

In shared bus system the processors are connected to the same bus which is also connected
to the memory and I/O. The bus is used by the individual processors to access the memory
and the input/output devices. The bus may include lines for interrupt processing. The
devices connected to a bus can be classified as master or slave. Master devices can request
the bus for communication with other devices. Slaves are those which cannot communicate
on their own and are accessed by the masters. A processor is always a master while a
memory is always a slave. In a shared memory architecture, at a time, there can be only
one master. Hence comes the requirement of resolving bus requests coming from more than
one devices

A counterpart of the shared bus system is multiported memory in exchange of the
common bus. This eliminates the need for bus arbitration but calls for the design of
multiported memory. Dual-ported memory is commonly used for multiprocessing systems.
Here two processors can access the same memory space at the same time, timing conflict, if
any, being resolved by the device itself. This provides a very fast way of transferring data
between the processors and also sharing common code. Multiported memory can be used
with memory segmentation and some segments may be kept with read/write protection.
An individual processor can use such a segment to keep data, which is not to be modified
by other processors.

In a bus window multiprocessing system, a part of the memory of one processor is
mapped to that of the other. For a specified address range, memory access request of one
processor is transferred to memory device connected to other processor. This means each
processor can read/write into a part of the memory of the other processors. Data can be
transferred between processors very fast. This mechanism can be extended for accessing
I/0O devices as well. However this leads to a loss in local memory space for each processor.

Crossbar Switch connects the processors with other system resources like memory and
I/0O devices using multiple switches in the matrix form. The multiple processors can still
share the memory modules provided no two processors try to access the same device at
the same time. The switching establishes temporary links between the memory or I/O and
processors.

Before proceeding further in discussing the advantages and disadvantages of the above
system it is necessary to consider certain issues relating the performance of the multipro-
cessor systems. They are

e Overhead. It is a measure of the the time and processor cycles wasted to estab-
lish communication between different system components before processing the user
application.

e Latency. It is the time elapsed between issue of a control command and initiation of
the appropriate response to it.

e Skew. It is a measure of the time interval between the occurrence of the events in
the different processors when they are intended to occur concurrently.

e Determinism is the ability of the system to respond with a consistent and predictable
delay to the input.

The real time systems are intended to have low overhead, latency, skew and highly deter-
ministic.

In a tightly coupled system it is possible for very high speed data transfer between
processors. Large blocks of data can be transferred with almost no software overhead.
This allows for a tight control of the system resources. On the other hand, at a time,
only one processor can get the control of the bus or memory. Memory is required by the
processor for both fetching the program instructions and inter-processor communication.
As the number of processors go on increasing, bus requests at any given time will also
increase correspondingly. This limits the improvement in system performance gained from
using multiple processors. Thus this system works well with smaller multiprocessor systems
but is not very scalable.

A workaround can be achieved by arranging for each processor a local memory to store
private data and code and using the shared memory only for inter-processor communica-
tion. This attempts to improve system performance by decreasing the overall bus requests.
Tightly coupled systems permit only limited physical separation between the processors.

In a Loosely Coupled System each processor node represents an autonomous system
with its own memory and I/O subsystem. They do not share any common address space.
Hence there is no need for memory or I/O access conflict resolution. The processors are
connected by means of some input/output devices. These connections can be through par-
allel or serial links and data is exchanged using some communication protocol. Processors
are interconnected using several schemes as loop, cubes etc.

The communication is very slow with respect to tightly coupled systems due to soft-
ware overhead involved. The CPU cycles are lost due to these overhead. Maintaining tight
control of the system resources is very difficult. As a result such systems lack determinism.
Hence they are not suitable for real time application. Another disadvantage of this kind
of subsystems is that each processor is connected to expensive system resources as mem-
ory and I/O, which remain idle most of the time. Thus commercially made systems are
generally tightly coupled. However, a large number of processors can be connected with a
large physical separation in loosely coupled system.

3 Real Time Multiprocessor Systems in Use

It is evident that both tightly coupled system and loosely coupled systems has their ad-
vantages and disadvantages. Actual implemented systems are between these two extreme
ends of the spectrum. While designing, attempt is made to keep the best of both and avoid
their disadvantages. There are some systems which are designed and implemented in the
light of this philosophy. A survey of some such systems is given below.

3.1 Hardware Coordinated Multiprocessor System

One approach that is used to get around problems of both kinds of systems is to make
the control and communication between the processors hardware-coordinated. Ixthos,Inc
has developed such a system|[7]. Hardware devices are used for providing a dedicated path
for all coordination activities. This allows deterministic behaviour of the system with
minimum latency and skew.

The hardware control circuit known as MPR (MultiProcessor Resources) is imple-
mented in each circuit board . They consist of set of state registers known as Coherent
State Registers(CSRs) which store the state bits. These bits as well other MPR signals like
clock signal, are connected from one processor board to another through what is known as
MPR Connection (MPC). MPC is a dedicated bus for command and control that provides
the hardware signals but does not act as a general purpose data bus. MPR distributes
copies of CSRs to different processor board through MPC. This makes a deterministic up-
date of any local change of content of these registers throughout the whole system within
a very short time (within 500 ns). There are certain monitor circuits in each board that
watches these constantly updated CSRs and may interrupt the processor when some action
is necessary.

It is to be noted that apart from the MPC, there may be a general purpose data bus
with shared memory. This approach improves the system performance by off loading the
control activities from the general data bus.

Software overhead in communication, latency, and skew are very low in hardware coor-
dinated multiprocessor systems. Adding more processors to the system, i.e., scaling does
not degrade system performance. However the disadvantage is that extra hardware is
required which makes the system expensive.

3.2 The Concurrent Computer Corporation’s Approach

In recent times, there has been a tendency towards implementing large multiprocessor
systems by connecting several single board systems instead of having a single board for
all processors. This is because single board system is less expensive and this approach is
flexible regarding the number of processors required for a particular application[12].

It is to be noted that each of these single board systems may itself consist of more than
one processor in a tightly coupled manner. Each board have memory and I/O devices and
is a autonomous system by itself. It can run a user’s task by itself using single or multiple
processors available on the board. The data transfers within a board are very fast because
of its tightly coupled nature. On-board local bus contention is not significant since number
of processors on board is limited to two or three.

However for the overall functioning of the multiprocessor systems, the tasks running
on each board must properly communicate with each other and must be synchronized. For
this, the boards are connected on a common bus. The VMEDbus is a popular standard bus
used for this purpose. The features of VMEbus are explained later on.

A range of communication facilities are provided for inter-board communication. The
simplest of them is shared memory between the boards. A part of memory space of one
board can be accessed by another by means of programmed I/O through the VMEbus.
This allows the task executing on one board to communicate with another task running on
a second board by reading/writing in the physical memory of the second board and vice
versa. The size of memory can be pre-determined or varied between two extreme limits.
Large amount of data can be transferred very fast between boards though direct memory
access.

VMEDbus is also used as a networking medium. Standard networking protocols can be
used for data communication, however with much less efficiency.

For real time performance and determinism, it is essential to provide real time synchro-
nization between the processes running on different boards. For example a task running
on one board is required to send a interrupt to a task running on another board signaling

that some data is ready in the shared memory region or to begin a predefined action.

A process on one board can interrupt a process on another board by means of what is
known as mailbox interrupts. These interrupts are generated locally when specific on-board
registers are accessed by a remote board.

The VMEDbus itself has several interrupt lines, which may be used for control and
communication.

A VME clock board can be connected to the system, which can be directly read by
different processes to coordinate occurrence of events through out the system.

Additional hardware module can be plugged into each board and the modules of each
board are connected by another shared bus. Such modules as also the whole multiprocessor
systems using them have been developed by Concurrent Computer Corporation[8]. Such
modules are called Real- Time Clock and Interrupt Module(RCIM). Block diagram of such
a system is shown in figure 3. The name summarizes its functions. RCIMs are connected
to each other by a standard bus, namely PCI bus. Each RCIM consists of a clock that is
synchronized with the clocks on all other RCIMs, four programmable real-time clocks that
can also generate interrupts, and four input and four output interrupts, which are edge-
triggered . These interrupts can also be configured as distributed which means that an
interrupt occurring on one board can cause interrupts to occur simultaneously on all other
boards. All these facilities can be used to provide a deterministic event synchronization,
like a tightly coupled system.

ethernet connection to other clusters

P M P M
/O RCIM RCIM /O
shared bus
| | |
A/D M 1/0
D/A

shared devices

P: processor M: memory

Figure 3: Concurrent’s solution(adapted form [8])

3.3 Replicated Shared Memory Network

The Replicated Shared Memory Network is yet another attempt to retain the advantages
of both tightly and loosely coupled systems and keeping out their weaknesses[9]. This

system is a very suitable alternative for a multiprocessing system having large number of
processors, a situation in which the tightly coupled systems will not work.

Physically, it is a serial ring network with replicated memory at each node. But to the
software it appears as a shared memory architecture.

Each processor has a network card. These network cards are connected through a serial
ring network, forming a ordinary LAN between the processors. But no kind of complicated
message passing or network protocol that eats up CPU time is used by the system. No
packets with lengthy protocol information circulates through the ring. This minimizes
software overhead for data communication and does not permit non-determinism to creep
into the system.

Memory for each processor is divided into the local memory for the processor’s own
use and shared memory. When a processor writes at a location within it’s shared memory
region, the value of the corresponding memory locations at all other processor nodes are
also changed. For example one processor changes the memory location 0036H to some
value A. This value A and the location address are transmitted in the network through the
network card. Every other computer, on receiving these data, updates the content of the
same relative shared memory location to 0036H. Thus the system functions as a shared
memory network although it is physically not so.

Similarly interrupts generated at one processor node can be transmitted to all other
using the network in order to achieve control and coordination of the events occurring
in the system. The transmissions in the the network is short and of fixed length and no
non-deterministic software routines are necessary for this purpose. Data communication is
possible within time interval in the order of microseconds and tight control over the system
resources are maintained by passing interrupts, all like a tightly coupled system. On the
other hand, the processors can be separated over a large physical distance and number of
processors that can be connected to the system can be large.

Shared Common Random Access Memory Network (SCRAMnet)[9] is an implementa-
tion of the replicated shared memory network and in addition to real time simulation, it
has find its application in other real time systems in data acquisition, telemetry, etc.

3.4 Switched Network Interconnect

RACEway is another very high speed interconnection between multiple processors us-
ing crossbar switches. It is developed by Mercury Computer Systems[10]. RACEway is
switched network of processors. It uses 32-bit parallel data path. It consists of 6-port cross-
bar switches with processors being connected at the ports. Thus upto 6 processors can be
connected to each other using one crossbar switch. Each switch is capable of maintaining 3
parallel data communication paths, each at the rate of 160 MB/s, giving a total throughput
of 480 MB/s. On demand, a point to point communication channel is established between
any two processors, provided none of them is already in communication with some other
processor. End points need not be a processor only, but can also be an I/O node. Systems
of higher complexity requiring more than 6 number of processors requires cascading of
more than one crossbar switch. Latency in the data path per crossbar switch is also very
low.

An improved version of RACEway known as RACE++ has also been developed. It
consists of a 8-port switch allowing 4 simultaneous data paths each at the rate of 267 MB/s
between the end point. RACE++ also supports priority-based connection.

10

Port 6 Port 5

Port 1 Port 4

Port 2 Port 3

Figure 4: RACEway Crossbar Switch(adapted form [14])

3.5 Interprocessor Communication using multiple dual-ported RAMs

An efficient method of interprocessor communication using dual-ported RAM for three or
more processor elements has been developed by Jagadish, Mohan Kumar and Patnaik|[11].
The efficiency of the data communication in this method is due to that a memory module
is shared by no more than two processors. Hence the conflict in accessing the memory is
minimum.

A dual-ported RAM (DPR) has two independent left and right ports. It has separate
address bus and data bus and busy signal for each port. The memory space can be
independently accessed from each port. On chip arbitration logic handles the address
contention to allow maximum speed of operation. In case, the processors connected at two
port tries to access the same memory location at the same time, one of the processor has
to wait until the other’s access is over and a busy signal is generated to indicate this.

In this scheme, there is a DPR between any two neighbouring processors. Apart from
this there is processor node acting as network controller. Every other processor shares a
DPR with the network controller. Communication between nodes which are not directly
connected, takes place through the network controller.

Suppose there are 4 processors PEO, PE1, PE2, PE3 connected in an ring. A DPR
is connected between PEQ and PEl and another DPR between PEO and PE3. So PE0
can communicate with PE1 and PE3 without any contention at all. There is a network
controller node and each processor shares a DPR along with the network controller. If
PEO wants to communicate with PE2, with which it is not connected directly, it can write
the data on DPR it shares with the controller. The controller then block transfers the
data into the shared memory of PE2. Thus , without having a common memory between
all processors, this approach provides multiple interprocessor connection to be established
eliminating the need for conflict resolution. Another advantage of this approach is the low
cost of this solution.

3.6 Application Specific Topology

The systems which have been described so far are general systems, which can be used
for any real time system, in general. However, if the nature of an application is known

11

é S_ PEO DPR PE1 DPR PE2 _S %

DPR

Network
Controller

N
\J‘\

Figure 5: Dual-ported RAM based Interprocessor Communication(adapted from [11])

DPR DPR

beforehand, a custom interconnection mechanism can be designed to achieve optimum
performance for that particular application[1].

Usually in real time applications, the different parallel tasks can be identified. These
parallel tasks can be assigned to different processors. Processors executing tasks which need
to communicate with each other may be provided with a direct link. For example, suppose,
in a particular application, there may be 4 tasks assigned to four different processors—
P1,P2,P3,P4. The nature of the application demands communication between P1 and P4,
P2 and P3, P1 and P2. In that case, direct links can be provided between these pairs.
This kind of system works well with small systems. But for complex systems where there
are many processors , each need to communicate with several of others, this topology can
turn out to be a mesh, very difficult to manage.

3.7 The Ordered Memory Access Architecture

This architecture is based on the fact that for real time applications, often, the sequence in
which different processors need to communicate with each other can be pre-determined. A
controller is then used to grant access to the shared bus or shared memory or I/O devices
according to the pre-determined order.

Based on this concept of ordered interprocessor transactions, the Ordered Memory
Access(OMA) Architecture has been developed|3]. During the compilation of the code,
the sequence of the accesses of shared resources by different processors is prepared and
this access ordered list is downloaded to the memory of a “central transaction controller”,
which acts a bus access controller. The transaction controller then steps through this list
and grants the bus access to the processor first in the list, by asserting a bus grant signal

12

to the concerned processor. The processor takes the control of the bus, performs the read
or write operation on a shared memory location and then releases bus. The transaction
controller waits for the bus release signal, and then grants the bus access to the processor
next in the list. When it reaches the end of the list, it loops back to the beginning of the
list.

Again, in real time applications, inputs are accepted and outputs are required after
fixed periodic intervals. The I/O operations are managed by including the bus accesses
for shared I/O devices in the access order list and granting those bus accesses accordingly
during execution.

Bus Access
Schedule Information

Local Memnry.il

] £ v

DSPo60n2 r- P - | 5 PORN2 J Transaction Contraller
. Bus

]

! Fevanr T
SREE A fewan Bus
] | i Relaase 1
T e e e u

|

|

i

i

1

Shared
Memory

Local Memory

DEP96O02 T =
l Local Mamary

i

1 e o

Figure 6: Block Diagram of the OMA prototype(|3])

3.8 The VMEDbus

Real time multiprocessor systems generally use a standard bus, so as to make systems and
modules made by different companies compatible. In this respect the VME(Versa Module
Europa)bus is a very popular bus widely used in many real time applications. In most of
the multiprocessor systems described above, namely the Ixthos solution, the Concurrent
Computer Corporation solution, the RACEway all uses VMEbus. An improved version of
SCRAMnet, named SCRAMnet+ supports VMEDbus.

VMEDbus is an industrial open standard system. The VMEbus boards can be plugged
into a backplane having 21 different slots. The VMEbus specification includes the physical
dimensions of boards and backplane as well as electrical specifications of the bus and
various communication protocol. Physically VMEbus board can be of two sizes— smaller
one is known as 3U and the larger is known as 6U. Each of them has a 96-pin connector
known as P1, arranged in three rows. The board is plugged to the backplane using P1
connector. 6U boards may also have an optional 96-pin connector, named P2.

8-bit, 16-bit, 32-bit data transfers are possible. Address bus can be 16-bit, 24-bit, 32-
bit wide. The boards connected to the VME backplane can act as controller or master or
slave. The VMEbus can also be divided into (a)arbitration bus required the bus arbitration
logic, (b)data transfer and address bus, (c)interrupt bus, (d)utility bus to supply power to
the boards, system clock, system reset etc.

The controller always sits in the first slot in the backplane. After receiving a bus request

13

signal from a master, if the controller finds the bus free, it sends the bus grant signal to
the requesting master. While the bus is busy it indicates the bus busy condition by driving
the bus busy line low. The controller also manages the interrupts on the bus. There can
be only one controller in the VMEbus

The master reads and writes data to or from a slave. When the master gets the bus
grant signal, it uses the address and the data busses for accessing a slave. There can be
any number of master and slave in the bus, but at a time only master have the control of
the bus.

A VMEDbus slave watches the address bus, to determine whether it is being addressed.
Once a particular slave device is addressed by the master, the slave receives information
from or outputs data on the data bus as requested by the master

The VMEDbus can provide a maximum data transfer rate of 40 Mbyte/s, and improved
versions like VME64x can give upto 160 Mbyte/s, and VME320 upto 500 Mbytes/sec.

Further information regarding VMEDbus is available in [15,16].

4 Conclusion

Hardware in Loop is a very effective tool in testing real time controllers. However it has its
limitations[4]. It can only read the outputs of the device under test and supply appropriate
inputs to it. It does not know and cannot tell what goes on inside the controller. If the
hardware or the software is not functioning properly, the information obtained from reading
the outputs of the controller may not be sufficient to tell which part of hardware in not
working and why, or what are the values of the variables used. Thus it is not a replacement
of the instruments like oscilloscope, logic analyzer or software debuggers

Since both the simulator and the controller is running in the real time, it is very
difficult to study the process going inside the latter without interfering into both of them
simultaneously. This however defeats the purpose of HIL, since, in that case, it is no longer
acting in real time. To solve this problem, a synchronization feature can be built between
the two concurrently running entities. This allows us to expand the time scale, such that
both the controller and its external world run in slow motion, giving us ample time to
check critical transactions.

Traditional approaches of tightly coupled and loosely coupled systems are valid, in
general, for any multiprocessing systems. To suit the need of real time applications, these
concepts are extended or modified and are used to built practical systems. The key is to
maximize data transfer rate, provide very precise synchronization with minimum conflict
and overhead. Some practical systems do this by going for the shared bus architecture and
then modifying it by providing alternative interprocessor communication channels apart
from the shared bus. Ixthos’ MPR, MPC, Concurrent’s RCIM connected by PCI bus are
examples of such alternatives. SCRAMnet and the scheme by Jagadish, Mohan Kumar,
Patnaik minimize or eliminate contention by arranging for physically separate memory de-
vices. Data are transferred to and from these devices either through a networking medium
or by means of a processor dedicated for this function. RACEway crossbar switch estab-
lishes multiple communication channels simultaneously and thus reducing conflicts. Ap-
plication specific topologies solve this problem by providing physical interprocessor links
wherever necessary. In the OMA architecture, each processor gets access to the bus, when
it’s turn comes.

The hardware configurations are discussed in this report in context of general real

14

time systems. However, as mentioned in the beginning, an HIL simulator is nothing but
a specialized real time system, to be designed specially considering the characteristics of
the simulated system, these configurations can be used for making an HIL. Real time
simulators like HIL, based on the systems such as SCRAMnet, and that of Concurrent
Computer Corporation, have been developed and are available in the market. Others like
hardware coordinated system developed by Ixthos, RACEway, OMA architecture are useful
for any real time systems ,and are also applicable for HIL applications.

References

[1] Y. Paker, “Multi-microprocessor Systems”, Academic Press, 1983.
[2] Ben Catanzaro, “Multiprocessor System Architectures”, Prentice Hall, 1994

[3] Sundararajan Sriram, Shuvra S. Bhattacharyya, “Embedded Multiprocessors-
Scheduling And Synchronization”, Marcel Dekker, Inc, 2000

[4] Martin Gomez, “Hardware-in-the-Loop Simulation”, Embedded Systems Program-
ming, http://www.embedded.com/story /OEG2001112950054, November 2002

[5] John Boyd, Roger Theyyunni, “Development Of A Real-Time Simulation System”,
Embedded Systems Programming, available on Applied Dynamics International
HTTP site, http://www.adi.com/pdfs/dev_real time.pdf, November 2002.

[6] Macro A. A. Sanvido, Walter Schaufelberger, “Design Of A Framework For
Hardware-in-the-Loop Simulations And Its Application To A Model. Helicopter”,
http://www.aut.ee.ethz.ch/sanvido/HIL/eurosim2001 _paper.pdf, November 2002.

[7] Ixthos, Inc., “Overview of Real-Time DSP Multiprocessing”,
http://www.insyst.fr /Ixthos/mutiprocessing.pdf, November 2002

[8] Concurrent Computer Corporation’s HTTP site, http://www.ccur.com/realtime/,
November 2002

[9] Systran Corporation, “Shared-Memory Computing Architec-
tures For Real-time Simulation—Simplicity And Elegance”
http://www.systran.com /ftp/literature/sc/sande.pdf, November 2002.

[10] Mercury Computer Systems, Inc. HTTP site, http://www.mc.com, November 2002.

[11] N. Jagadish, J. Mohan Kumar, L.M. Patnaik, "An Efficient Interprocessor Communi-
cation Using Dual-Ported RAMs”, IEEE Micro, October 1989.

[12] Stephen Brosky, “Closely-coupled Single Board Computers”,
http://www.ccur.com/realtime/closelycoupled.htm, November 2002.

[13] Edward C. Jenning, “Birth of the Virtual Car”, International Sympo-
sium on Automotive Technology and Automation, 1999, available on,

http://www.ccur.com /realtime/Jennings-VirtualCarAmerformat.htm, November
2002.

15

[14| “Digital Signal Processor Subsystem”, http://www.nssl.noaa.gov/orda/dspsys.htm,
November 2002.

[15] VMEDbus Industry Trade Association’s HTTP site, http://www.vita.com/, November
2002.

[16] Leroy Davis, “VME Bus”, http://www.interfacebus.com/Design Connector VME.html,
November 2002.

16

