
M.Tech. credit seminar report,
Electronic Systems Group, EE Dept, IIT Bombay,

 Submitted in November 2002.

Embedded Operating Systems for Real-Time Applications

Sagar P M (02307406)
Supervisor: Prof. Vivek Agarwal

Abstract : The advent of microprocessors has opened up several product opportunities
that simply did not exist earlier. These intelligent processors have invaded and
embedded themselves into all fields of our lives be it the kitchen (food processors,
microwave ovens), the living rooms (televisions, airconditioners) or the work places (fax
machines, pagers, laser printer, credit card readers) …etc.
 As the complexities in the embedded applications increase, use of an operating
system brings in lot of advantages. Most embedded systems also have real-time
requirements demanding the use of Real time Operating Systems (RTOS) capable of
meeting the embedded system requirements. Real-time Operating System allows real-
time applications to be designed and expanded easily. The use of an RTOS simplifies the
design process by splitting the application code into separate tasks. An RTOS allows one
to make better use of the system recourses by providing with valuable services such as
semaphores, mailboxes, queues, time delays, time outs…etc.
 This report looks at the basic concepts of embedded systems, operating systems and
specifically at Real Time Operating Systems in order to identify the features one has to
look for in an RTOS before it is used in a real-time embedded application. Some of the
popular RTOS have been discussed in brief, giving their salient features, which make
them suitable for different applications.

I. INTRODUCTION

 Last few decades have seen the rise of computers to a position of prevalence in human
affairs. It has made its mark in every field ranging personal home affairs, business, process
automation in industries, communications, entertainment, defense etc...
 An embedded system is a combination of hardware and software and perhaps other
mechanical parts designed to perform a specific function. Microwave oven is a good example
of one such system. This is in direct contrast to a personal computer. Though it is also
comprised of hardware and software and mechanical components it is not designed for a
specific purpose. Personal computer is general purpose and is able to do many different
things.
 An embedded system is generally a system within a larger system. Modern cars and
trucks contain many embedded systems. One embedded system controls anti-lock brakes,
another monitors and controls vehicle’s emission and a third displays information on the
dashboard. Even the general-purpose personal computer itself is made up of numerous
embedded systems. Keyboard, mouse, video card, modem, hard drive, floppy drive and sound
card are each an embedded system.
 Tracing back the history, the birth of microprocessor in 1971 marked the booming of
digital era. Early embedded applications included unmanned space probes, computerized
traffic lights and aircraft flight control systems. In the 1980s, embedded systems brought
microprocessors into every part of our personal and professional lives. Presently there are
numerous gadgets coming out to make our life easier and comfortable because of advances in
embedded systems. Mobile phones, personal digital assistants and digital cameras are only a
small segment of this emerging field [2].

 One major subclass of embedded systems is real-time embedded systems. A real time-
system is one that has timing constraints. Real-time system’s performance is specified in
terms of ability to make calculations or decisions in a timely manner. These important
calculations have deadlines for completion. A missed deadline is just as bad as a wrong
answer. The damage caused by this miss will depend on the application. For example if the
real-time system is a part of an airplane’s flight control system, single missed deadline is
sufficient to endanger the lives of the passengers and crew.

II. INSIDE AN EMBEDDED SYSTEM

All embedded systems contain a processor and software. The processor may be 8051
micro-controller or a Pentium-IV processor (having a clock speed of 2.4 GHz). Certainly , in
order to have software there must be a place to store the executable code and temporary
storage for run-time data manipulations. These take the form of ROM and RAM respectively.
If memory requirement is small, it may be contained in the same chip as the processor.
Otherwise one or both types of memory will reside in external memory chips. All embedded
systems also contain some type of inputs and outputs (Fig. 1). For example in a microwave
oven the inputs are the buttons on the front panel and a temperature probe and the outputs are
the human readable display and the microwave radiation. Inputs to the system generally take
the form of sensors and probes, communication signals, or control knobs and buttons. Outputs
are generally displays, communication signals, or changes to the physical world.

Fig. 1 Generic Embedded system

 Within the exception of these few common features, rest of the embedded hardware is
usually unique and varies from application to application. Each system must meet a
completely different set of requirements. The common critical features and design
requirements of an embedded hardware include

i. Processing power: Selection of the processor is based on the amount of processing
 power to get the job done and also on the basis of register width required.

ii. Throughput: The system may need to handle a lot of data in a short period of time.
iii. Response: the system has to react to events quickly
iv. Memory: Hardware designer must make his best estimate of the memory requirement

 and must make provision for expansion.
v. Power consumption: Systems generally work on battery and design of both software

 and hardware must take care of power saving techniques.
vi. Number of units: the no. of units expected to be produced and sold will dictate the

 Trade-off between production cost and development cost
vii. Expected lifetime: Design decisions like selection of components to system

 development cost will depend on how long the system is expected to run.
viii. Program Installation: Installation of the software on to the embedded system needs
 special tools.

ix. Testability & Debugability: setting up test conditions and equipment will be difficult

 and finding out what is wrong with the software will become a difficult task without a
 keyboard and the usual display screen.

x. Reliability: is critical if it is a space shuttle or a car but in case of a toy it doesn’t
 always have to work right.

III. WHAT IS AN OPERATING SYSTEM?

 The operating system organizes and controls the hardware and it is that piece of
software that turns the collection of hardware blocks into a powerful computing tool. Broadly
the tasks of the Operating system are:
Processor Management: The main tasks in processor management are ensuring that each
process and application receives enough of the processor's time to function properly, using
maximum processor cycles for real work as is possible and switch between processes in a
multi-tasking environment.
Memory and Storage Management: The tasks include allotting enough memory required for
each process to execute and efficiently use the different types of memory in the system.
Device Management: The operating system manages all hardware not on the computer's
motherboard through driver programs. Drivers provide a way for applications to make use of
hardware subsystems without having to know every detail of the hardware's operation. The
driver's function is to be the translator between the electrical signals of the hardware
subsystems and the high-level programming languages of the operating system and
application programs. One reason that drivers are separate from the operating system is for
upgradability of devices.
Providing Common Application Interface: Application program interfaces (APIs) let
application programmers use functions of the computer and operating system without having
to directly keep track of all the details in the CPU's operation. Once the programmer uses the
APIs, the operating system, connected to drivers for the various hardware subsystems, deals
with the changing details of the hardware.
Providing Common User Interface: A user interface (UI) brings a formal structure to the
interaction between a user and the computer. Recently all developments in user interfaces
have been in the area of the graphical user interface (GUI). Apple's Macintosh and Microsoft's
Windows are the popular GUIs.
Four types of Operating systems, based on the kind of applications they support are:

i) Single-user, single task - This operating system is designed to manage the computer
 so that one user can effectively do one thing at a time. The Palm OS for Palm
 hand-held computers is a good example .

ii) Single-user, multi-tasking - This is the type of operating system most of us use on our
 desktop and laptop computers today. Windows 98 and the MacOS are examples of
 OS that let a single user have several programs in operation at the same time.

iii) Multi-user - A multi-user operating system allows many different users to take
 advantage of the computer's resources simultaneously. The operating system must
 make sure that the requirements of the various users are balanced, and that each of the
 programs they are using has sufficient and separate resources so that a problem with
 one user doesn't affect the other users. Unix is an example of multi-user operating
 system.

iv) Real-time operating system (RTOS) – The main task of a RTOS is to manage the
 resources of the computer such that a particular operation executes in precisely the
 same amount of time every time it occur. “In a complex machine, having a part move
 more quickly just because system resources are available may be just as catastrophic as
 having it not to move at all because the system is busy [8].”

IV. REAL-TIME OPERATING SYSTEMS

Real-time computing is where system correctness not only depends on the correctness of
logical result but also on the result delivery time. So the operating system should have
features to support this critical requirement to render it to be termed a Real-time operating
System (RTOS). The RTOS should have predictable behavior to unpredictable external
events. “A good RTOS is one that has a bounded (predictable) behavior under all system load
scenario i.e. even under simultaneous interrupts and thread execution [4].”A true RTOS will
be deterministic under all conditions. These operating systems occupy little space from 10 KB
to 100KB as compared to the General Operating systems which take hundreds of megabytes
[11].Real-time systems in which missing a deadline is catastrophic are called Hard Real time
systems. If systems allow deadlines to be missed at times and still can be recovered they are
called Soft Real-time systems.

V.WHY OPERATING SYSTEMS FOR REAL-TIME APPLICATIONS

Operating system is not a required component of any computer system. A simple
microwave oven does not require an operating system. But as the complexity of applications
expands beyond simple tasks the benefits of an operating system far outweighs the associated
costs. Since embedded systems (PDAs, cell phones, VCRs, industrial robot control, or even
the toaster) are becoming more complex hardware-wise with every generation, and more
features are put into them in each iteration, applications they run require more and more to
run on actual operating system code in order to meet the system response requirements and to
keep the development time reasonable [2].
 Real-time Operating System allows real-time applications to be designed and expanded
easily. Functions can be added without major changes to the software. The use of an RTOS
further simplifies the design process by splitting the application code into separate tasks. With
a pre-emptive RTOS all time critical events are handled as quickly and efficiently as possible.
An RTOS allows one to make better use of the system resources by providing valuable
services such as semaphores, mailboxes, queues, time delays, time outs…etc.
 The price we pay for these benefits is the extra cost of the RTOS, the royalties per unit,
more RAM and ROM and around 2 to 4 % additional CPU overload.

VI. FEATURES YOU NEED IN A GOOD EMBEDDED RTOS

A closer look at some of the RTOS concepts is necessary to identify the features
required for embedded real-time applications.
Operating System Architectures: Monolithic Operating System:

 Fig. 2 Monolithic Operating System- from [4]

Hardware

System
Services

Application
Programs

Application
Programs

User mode

Kernel mode

 In this case the OS is just one piece of code composed of different modules. One module
calls the other in one or more ways (Fig. 2). Here more the modules, more will be the
interconnections and more complex the software becomes
Layered Operating System: this is a better approach compared to a monolithic OS. A system
call goes directly to each individual layer. Here an application can access the BIOS or even
the hardware (Fig. 3). In an RTOS even going directly to the hardware is desirable.

Fig. 3 Layered Operating System – from [4]

Client –server operating system: The basics of OS limited to a strict minimum (scheduler and
synchronization primitive) and all other functionality is on another level implemented as
system threads or tasks (Fig. 4). A lot of these server tasks are responsible for different
functions or system calls. This structure allows making the OS scalable.

 User Mode

 Kernel Mode

 Fig. 4 Client-Server Operating System- from [4]

This feature is required in embedded systems where scalability is a prime requisite. This
makes debugging easier and distribution over multiple processors simpler. One module crash
does not necessarily crash the whole system resulting in more robustness. Implementing
redundancy in OS is more achievable using this architecture. Dynamic loading and unloading
of modules also becomes possible.
 The major problem here is the overhead due to memory protection. Every time a service
is requested the system has to switch from applications memory space to servers memory
space. The switching time will increase when processes are protected from each other. On the
other hand if the protection is removed, a bug in the application might affect the system
processes compromising the system stability.

Process -Thread -Task model [4]
 A multi-tasking concept is essential if one wants to develop a good real time application.
Indeed an application has to be capable of responding in a predictable way to multiple
simultaneous external events arriving in uncontrolled way. If only one processor is used we
have to introduce pseudo parallelism called multitasking [4]. The application running on a
system is subdivided into multiple tasks. In complex systems like UNIX, the system is

Client application

Memory Server
Network Server Process Server

File Server

Microkernel

Hardware

Display Server

considered to be consisting of different processes. Here the context in each process is very
heavy resulting in large switching times. This approach was changed due to:

i) Implementing multitasking approach, which is a requirement in complex distributed
 software, is too heavy in a process model.

ii) Bringing Real-Time and non-Real-Time world together, which the POSIX standards
 were aiming at, is not easy using a process concept.
 Thus, the concept of thread was brought in , which is like a light-weight process. A
thread inherits the context of the process but uses only a subset of it so that switching between
threads can be done quickly [4]. Today in a Real-time environment a process is an application
subdivided into tasks or threads.
Task & Task States:
 Task is the basic building block of software written under an RTOS. Each task in RTOS
is in one of the following three states (Fig. 5) [1].

1. Running: The microprocessor is executing the instruction that make up this task. In
single processor systems only one task is running at a time.

2. Ready: means that some other task is running but this task has things that it could do
if processor becomes available.

3. Blocked: this task has nothing to do right now even if microprocessor becomes
available. Tasks get into this state because they are waiting for some external event.
For example a task that handles data coming from a network will have nothing to do
when there is no data.

 Fig. 5 Task States

Scheduler: The heart and soul of any operating system is its scheduler [2]. This piece of the
operating system decides which of the ready tasks has the right to use the processor (go into
running state) at a given time. Some of the common scheduling algorithms used in
mainstream operating systems are first-in-first-out (FIFO), shortest job first and round robin.
First-in-first-out [FIFO] scheduling is used in DOS, which is not a multitasking operating
system. Here each task runs until it is finished and only after that next task is started. In
shortest job first scheduler each time a running task completes or blocks itself, next task
selected is one that will require the least amount of processor time to complete. Round robin
is the only scheduling algorithm of the three in which the running task can be pre-empted, that
is, interrupted while it is running. In this case, each task runs for some predetermined amount
of time. After that interval has elapsed, the running task is preempted by the operating system
and the next task in line gets its chance to run.

Unfortunately embedded operating systems cannot use any of these simple scheduling
algorithms. Embedded systems, particularly real-time systems, almost always require a way to
share the processor that allows the most important tasks to grab the control of processor as
soon as they need it. A deadline driven scheduling mechanism is the ideal one. However, the
current state of technology does not allow this. Therefore most embedded operating systems
utilize a priority based scheduling algorithm that supports pre-emption [2]. We also need that
interrupt handling in case of different simultaneous interrupts should be handled in a pre-
emptive way.

A good embedded RTOS should have provision for lot of priority levels. A number of
high priority levels have to be dedicated to the system processes and threads. And in a

Blocked Ready

Running

complex application with large number of threads, it is essential to be able to place all the
real-time threads on a different priority level above the non real-time threads.

There is also necessary to have a backup scheduling policy. This is the scheduling
algorithm to be used in the event that several ready tasks have same priority. The most
common backup algorithm used is the round robin. If there are no tasks in ‘ready state’ when
a scheduler is called, the idle task will be executed which is basically an infinite loop that
does nothing. Idle task will have the lowest priority and will always be in ready state.

The actual process of changing from one task to another is called a context switch. Since
the contexts are processor-specific, the code that implements this is also processor-specific.
So it is always written in assembly language. For real-time systems the context switch should
take only the bare minimum of time because this determines the response.
Tasks and Data
 Each task has its own private data [includes register values, Program Counter and stack].
All other data like global, static, initialized, un-initialised…etc is shared among the tasks. A
situation like this can lead to many of shared data problems. If task1 calls a function ReadX
for reading a shared data that is being modified by task2, there is a chance that data read by
task1 is erroneous (Fig. 6).

 Fig. 6 Tasks and data- adapted from [1]

Task Synchronisation & Intertask Communication:
 There are several tools available in RTOS to enable inter task communication and task
synchronisation
Semaphores: Semaphores are intertask communication tools used to protect shared data
resources. Tasks can call Take-Semaphore and Release-Semaphore functions. If one task has
called Take-Semaphore and has not called the Release-Semaphore to release it, then any other
task that calls Take-Semaphore will block until first task calls Release-Semaphore. Here, in
the function where task2 is modifying shared data X (Fig. 6), we can protect the shared data
by taking the semaphore before modifying and releasing it only after that. Whenever task
takes a semaphore it is potentially slowing the response of any other task that needs the same
semaphore. Two types of semaphore namely binary semaphore and counting semaphore exist.
A counting semaphore is used when more than one task uses the same resource like in the
case of a buffer pool management. Using a different semaphore for highest priority tasks
ensures better response. Multiple semaphores can be used to protect different shared
resources.

Semaphore can also act as a signaling device for synchronisation. For example , a task that
formats printed reports builds those reports into a fixed memory buffer. After formatting one
report into the buffer the task must wait until interrupt routine has finished printing. Here the
task can wait for a semaphore after it has formatted a report. The interrupt routine on feeding

All other data

RTOS data
structures

RTOS

Task1

stack

Task2

stack registers

registers

Task3

stack registers

ReadX

the report to printer can release the semaphore. The task on receiving the semaphore formats
the next report [1]. When using Semaphores, one should ensure that it does not lead to
Priority inversion or Deadly embrace [refer appendix A]. Some RTOS have a method called
priority inheritance to tackle this problem.

Message Mailboxes: Messages are sent to a task using kernel services called message
mailbox. Mailbox is basically a pointer size variable. Tasks or ISRs can deposit and receive
messages (the pointer) through the mailbox. A task looking for a message from an empty
mailbox is blocked and placed on waiting list for a time(time out specified by the task) or
until a message is received. When a message is sent to the mail box, the highest priority task
waiting for the message is given the message in priority-based mailbox or the first task to
request the message is given the message in FIFO based mailbox [3].

Message Queues: is used to send one or more messages to a task. Basically Queue is an array
of mailboxes. Tasks and ISRs can send and receive messages to the Queue through services
provided by the kernel. Extraction of messages from a queue may follow FIFO or LIFO
fashion. When a message is delivered to the queue either the highest priority task (Priority
based) or the first task that requested the message (FIFO based) is given the message [3].

Event Flags: basically these are Boolean flags which tasks can set or reset that other tasks can
wait for. Event flags are used in cases where a task has to synchronise with occurrence of
multiple events. A task can be synchronized when any of the events have occurred as in
disjunctive synchronisation (logical OR) or may be synchronized when all the events have
occurred as in conjunctive synchronisation (logical AND) [3]. More than one task can wait
for same event. RTOS can form groups of events and tasks can wait for any subset of events
in a group [1].

Interrupts:
 “An interrupt is a hardware mechanism used to inform the CPU that an asynchronous
event has occurred[2]”.When CPU recognizes an interrupt, it saves its context and jumps to a
subroutine known as Interrupt Service routine (ISR).Upon completion of the ISR the program
returns to

a) The background in the case of foreground/background system
b) Interrupted task incase of a non-pre-emptive kernel
c) The highest priority task that is ready to run incase of a preemptive kernel.

Each OS needs to disable interrupts from time to time to execute critical code that should not
be interrupted. The number of lines of this code should be minimum and bound under all
circumstances. ISR must not call any RTOS function that might get blocked. An ISR must not
call any RTOS function that might cause RTOS to switch task states unless RTOS knows that
an ISR and not a task is running [1].
 A good RTOS should have shortest Interrupt latencies, interrupt responses and interrupt
recovery times. The ISR processing time also must be kept to the minimum for the best real-
time response.

Memory management:
 Each programs need to held in a memory generally in a ROM to be executed. The task
data (stack and registers) and all variables must be stored in RAM. In a real-time system the
main requirement is that the access time should be bound or predictable. The use of demand
paging is not allowed since the systems providing virtual memory mechanisms use memory
swapping which is not predictable. RTOS have fast and predictable functions to allocate and
free fixed size buffers. RTOS allows to setup pools each of which consist of same number of
memory buffers. In any given pool all buffers are of same size. In many circumstances it is
not acceptable for hardware failure to corrupt data in memory. In such instance hardware
protection mechanism should be used. In Hard Real-time systems static memory allocation is
used. In a Soft Real-time system of dynamic memory allocation is preferred [4].

VII. CASE STUDIES

Some of the popular RTOSs are reviewed here to identify their salient features which
make them suitable for different embedded real-time applications. One of the General
Purpose Operating Systems is also discussed here to highlight why a General Purpose
Operating System is not suitable for real-time applications.
QNX RTOS v6.1
 The QNX RTOS v6.1 has a client-server based architecture. QNX adopts the approach
of implementing an OS with a 10 Kbytes micro-kernel surrounded by a team of optional
processes that provide higher-level OS services .Every process including the device driver has
its own virtual memory space. The system can be distributed over several nodes, and is
network transparent. The system performance is fast and predictable and is robust.
It supports Intel x86family of processors, MIPS, PowerPC, and StrongARM . Documentation
is extensive except for the details on the APIs [10]. QNX has successfully been used in tiny
ROM-based embedded systems and in several-hundred node distributed systems
VRTX
 VRTX has multitasking facility to solve the real-time performance requirements found
in embedded systems. Pre-emptive scheduling is followed ensuring the best response for
critical applications. Inter-task communication is by use of mailboxes and queues. Mailbox is
equivalent to an event signal and events can pass data along with the event. Queues can hold
multiple messages and this buffering facility is useful when sending task produces messages
faster than the receiving task can handle them. Dynamic memory allocation is supported and
allocation and release is in fixed size blocs to ensure predictable response times. VRTX has
been designed for development and target system independence as well as real-time clock
independence.VRTX provides core services which every microprocessor can use to its
advantage [5].
Windows CE 3.0
 Windows CE 3.0 is an Operating system rich in features and is available for a variety of
hardware platforms. It exhibits true real-time behavior most of the times. But the thread
creation and deletion has periodic delays of more than 1 millisecond occurring every second.
The system is complex and highly configurable. The configuration of CE 3.0 is a complicated
process. The documentation does not give in depth knowledge about inner workings of the
system though the APIs are well documented. The system is robust and no memory leak
occurs even under stressed conditions. CE 3.0 uses virtual memory protection to protect itself
against faulty applications [10].
pSOSystem/x86 2.2.6
 pSOS+ is a small kernel suitable for embedded applications. This uses the software bus
to communicate between different modules. The choice of module to be used can be done at
compile time making it suitable for embedded applications. System has a flat memory space.
All threads share the same memory space and also share all objects such as semaphores. So it
has more chances of crashing. Around 239 usable thread priority levels available making it
suitable for Rate monotonic scheduling.
 pSOS has a multiprocessor version pSOS+m which can have one node as master and a
number of nodes as slaves. Failure in master will however lead to system crash. The
Integrated Development Environment is comprehensive and is available for both Windows
and UNIX systems. The drawback of this RTOS is that it is available only for selected
processors and that lack of mutexes in some versions leads to priority inversion [10].
VxWorks (Wind River Systems)
 VxWorks is the premier development and execution environment for complex real-time
and embedded applications on a wide variety of target processors. Three highly integrated
components are included with VxWorks: a high performance scalable real-time operating
system which executes on a target processor; a set of powerful cross-development tools; and a
full range of communications software options such as Ethernet or serial line for the target
connection to the host. The heart of the OS is the Wind microkernel which supports multi-

tasking, scheduling, intertask management and memory management. All other functionalities
are through processes. There is no privilege protection between system and application and
also the support for communication between processes on different processors is poor [10].

Windows NT
 The overall architecture is good and may be a suitable RTOS for control systems that
need a good user interface and can tolerate the heavy recourse requirements demanded for
installation. It needs hard disk and a powerful processor. Configuration and user interaction
requires a dedicated screen and keyboard. The choice of selecting components for installation
is limited and it is not possible to load and unload major components dynamically. Because of
all these limitations Windows NT not suitable for embedded applications. It is neither suitable
for other real time applications because of the following factors [10]:

a) There are only 7 priority levels & there is no mechanism to avoid priority inversion
b) The Queue of threads waiting on a semaphore is held in a FIFO order. Here there is

no regard for priority, hampering the response times of highest priority tasks.
c) Though ISR responses are fast, the Deferred Procedure Calls (DPC) handling is a

problem since they are managed in a FIFO order.
d) The thread switch latency is high (~ 1.2 ms), which is not acceptable in many real-

time applications.

VIII. CONCLUSIONS

Real time Operating systems play a major role in the field of embedded systems
especially for mission critical applications are involved. Selection of a particular RTOS for an
application can be made only after a thorough study of the features provided by the
RTOS.Since IC memories are getting denser scaled down versions of general operating
systems are able to compete with traditional Real Time Operating Systems for the embedded
product market. The choice of Operating System generally comes after the selection of the
processor and development tools. Every RTOS is associated with a finite set of
microprocessors and a suite of development tools[11]. Hence the first step in choosing an
RTOS must be to make the processor, real-time performance and the budget requirements
clear. Then look at the available RTOS to identify the one which suits our application.
Generally an RTOS for embedded application should have the following features

i) Open Source
ii) Portable
iii) ROM able
iv) Scalable
v) Pre-emptive
vi) Multi-tasking
vii) Deterministic
viii) Efficient Memory Management
ix) Rich in Services
x) Good Interrupt Management
xi) Robust and Reliable

Within the class of real-time embedded systems, the general feature is that system and its

application are fixed for the life of a product or the system. Thus there is a real need for a
general purpose architecture which would be flexible enough to meet the varied requirements
of these systems(wide range of sensors, threats, and scenarios), but which would still be
dedicated and matched to an application through the use of special configurations of general
modules [7]. Even though most of the current kernels (RTOS) are successfully used in todays
real-time embedded systems, but they increase the cost and reduce flexibility. Next generation
real-time operating systems would demand new operating systems and task designs to support
predictability, and high degree of adaptability [6].

REFERENCES

[1] David E Simon, An Embedded Software Primer. Reading, MA: Addison-Wesley,
 1999.
[2] Michael Barr, Programming Embedded systems in C and C++. CA : O’Reilly
 & Associates,1999.
[3] Jean J Labrosse, MicroC/OS-II The Real-Time Kernel . 2nd ed. Gilroy, CA: CMP
 Books, 2002.
[4] Dedicated Systems Experts, What makes a good RTOS. Brussels, Belgium:
 Dedicated Systems Experts, 2001.
[5] James F. Ready, “VRTX: A Real-Time Operating System for embedded

Microprocessor Applications,” IEEE Micro. 6(4), Aug.1986, pp.8-17.
[6] John A. Stankovic, Krithi Ramamritham, “The Design of the Spring Kernel,”
 Proc. IEEE- Real-Time Systems Symposium, Dec.1987, pp.146-57.
[7] Robert G Arnold, “A Modular Approach to Real-Time Super systems,” IEEE

Transactions on Computers 31(5): May 1982, pp.358-98.
[8] www.HowStuffWorks.com/operating-system.htm, How Operating Systems
 Work, HowStuffWorks, accessed November 14, 2002.
[9] http://www.cs.arizona.edu/people/bridges/oses.html, Operating Systems Project
 Information, Patrick Bridges, accessed November 12, 2002.
[10]Dedicated Systems Experts, RTOS Evaluation Project. Brussels, Belgium: Dedicated
 Systems Experts, 2001.
[11]Brian Santo, “Embedded Battle Royale,” IEEE Spectrum, Dec. 2001, pp.36-41.

APPENDIX A

A.1. Priority Inversion:

Priority inversion occurs when a lower priority task shares a semaphore with a higher priority
task. The figure illustrates how the higher priority task A is blocked and a lower priority task
B is running not giving a chance for the lowest priority task C to release the semaphore
required by task A.

A.2. Deadly Embrace: This is a situation in which two tasks are unknowingly waiting for
resources held by the other. Let us look at this by an example.Task1 and Task2 operate on
variables x and y after permission to use the by getting SemaphoreX and SemaphoreY. If
Task1 calls TakeSemaphoreX but before it calls TakeSemaphoreY RTOS stops task1 and
runs task2.Task2 gets SemaphoreY but when it tries to take SemaphoreX it blocks since
SemaphoreX is with task1.RTOS will switch back to task1 which now calls TakeSemaphoreY
but gets blocked. So now both task1 and task2 are blocked waiting for resource held by the
other.

A.3. Other Real Time Operating Systems [9]

i) C EXECUTIVE : is an operating system kernel for embedded applications. It
provides a small, efficient, real-time software environment for programs written
in C. C EXECUTIVE is available as small as 5 KB in ROM space, on 8-, 16- and
32-bit CISC and RISC processors, providing the foundation for a common,
portable software strategy. PSX provides a single -user, single-group, subset of
POSIX.1, with up to 32,000 preconfigured processes. PSX adds a substantial
subset of the POSIX.1 system calls to the basic C EXECUTIVE kernel. Using
these calls allows applications to migrate from POSIX-conformant UNIX
platforms to board-level systems, or vice versa.

ii) Chimera :Developed by the Advanced Manipulators Laboratory, at Carnegie
Mellon University, the Chimera Real-Time Operating System, is a next
generation multiprocessor real-time operating system (RTOS) designed especially
to support the development of dynamically reconfigurable software for robotic
and automation systems.

Task B

Task A

Task C

Task C takes a
semaphore it shares
 with Task A

Task B unblocks and
becomes running

Task A unblocks
and becomes
running

Task A tries to take
semaphore that taskC
has already taken

Task B goes on running not
giving Task C a chance to
release Semaphore- Task A
is blocked

Fig. 7 Priority Inversion

iii) Harmony(National Research Council of Canada)
Harmony is a multitasking, multiprocessing operating system for real-time
control. It is developed at the National Research Council to serve the need for a
flexible system for real-time control of robotics experiments and for other
applications of embedded systems where predictable temporal performance is a
requirement. Harmony is scalable, configurable and portable, both across
different target computers, and across different development hosts.

iv) Helios (Perihelion Distributed Software)
Helios is a micro kernel operating system for embedded and multiprocessor
systems. The operating system is modular in design and can scale from an
embedded runtime executive up to a fully distributed operating system.

v) Lynx(Lynx Real-time Systems)
LynxOS is a proprietary UNIX-like real-time operating system. LynxOS looks
and feels like UNIX from the user/programmer point of view. It was developed
from the ground-up with high performance, deterministic hard real-time response
in mind. The OS is in effect a complete re-implementation of UNIX from a real-
time perspective.

vi) Maruti (University of Maryland)
Maruti is a time-based operating system research project at the University of
Maryland. Maruti 3.0, the current version is an operating system suitable for field
use by a wider range of users. The integration of the time-based, hard real-time
technology with industry standards and more traditional event-based soft- and
non-real-time systems is on.

vii) OS9 (Microware Systems Corporation)
OS-9 is a real-time, multi-user, multitasking operating system developed by
Microware Systems Corporation. It is modular, allowing new devices to be added
to the system simply by writing new device drivers, or if a similar device already
exists, by simply creating a new device descriptor. All I/O devices can be treated
as files, which unifies the I/O system. In addition, the kernel and all user
programs are ROMable.

viii) OSE
OSE is a full-featured family of high quality, reliable and high performance real-
time operating systems from Enea OSE Systems, Sweden. There is an OSE
kernel for every need, from OSE Basic (for Z80, i8051 and others) up to OSE
Delta (for M68k, PPC and others). OSE Delta is also the first RTOS to be
certified according to the software quality standard IEC 1508. OSE Delta
supports runtime configuration, runtime program loading, multi-CPU systems
and TCP/IP.

ix) Roadrunner
In traditional operating systems, input/output (I/O) subsystems implement a push-
pull environment that provides system calls to allow user applications to pull data
from or push data to a device. An important set of applications make combined
use of push-pull to implement simple streaming, i. e. data is moved from one
device to another with no transformations. Using push-pull I/O to implement
these applications does not provide maximum performance. Roadrunner is
aiming at a kernel design optimized for simple streaming applications. The
Roadrunner operating system is being developed specifically to implement
multiple, concurrent, high-speed speed data streams with Quality-of-Service
(QOS) parameters.

x) Real-Time Mach Project (Carnegie Mellon University)
Real-Time Mach is a research prototype real-time operating system intended for
use as a platform for doing real-time systems research. The system is being
developed by the ART Project in the School of Computer Science, Carnegie
Mellon University.

xi) RTEMS (Redstone Military Arsenal)
RTEMS is a real-time operating system for embedded computer systems with the
following features:
a) event-driven, priority-based, preemptive scheduling
b) homogeneous and heterogeneous multiprocessor systems support
c) optional rate monotonic scheduling
d) intertask communication and synchronization
e) responsive interrupt management
f) dynamic memory allocation

xii) RTMX O/S
RTMX is a commercial, BSD 4.4-derived, real-time system that offers POSIX
1003.4 real-time programming support with user tunability along with the standard
UNIX functionality of BSD networking, X windows, and a full C development
environment.

xiii) RTX
RTX is a very small, very fast real time executive. It utilizes signals and queuing
as a basis for managing and scheduling tasks. Here it becomes very easy to support
multiple processors, communication channels, and to synchronize processes. RTX
is completely free, but it is not public -domain software. If you decide to use the
software, you may receive an automatic license to do so even in commercial
products, if you provide adequate, reasonable credit to its developer.

xiv) Spring Real-Time Project (University of Massachsetts, Amherst)
The Spring kernel has been designed and implemented to support/provide
predictability, on-line dynamic guarantees, atomic guarantees, end-to-end
scheduling and resource reservations. It utilizes a micro-kernel design for
multiprocessor architectures and provides an interface to remote processes, support
for distributed shared memory, and predictable low level communication. The
kernel exists as a component of Spring's integrated environment. This environment
extracts significant semantic information and this information is used at runtime to
support flexibility.

xv) Sumo (Lancaster University)
Past few years members of the SUMO team have been designing and
implementing a microkernel based system with facilities to support distributed
real-time and multimedia applications and ODP based multimedia distributed
application platforms. It is aiming at both communications and processing support
for distributed real-time/ multimedia applications in end systems, and such
applications require thread-to-thread real-time support according to user supplied
quality of service (QoS) parameters.

