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Abstract 
   Wavelets are implemented using Multirate signals. Wavelets are functions defined 
over a finite interval and having an average value  of zero. They are compactly supported. 
The signal power at large scales corresponds to that at low frequencies in the fourier 
transform; the power at small scales corresponds to that at high frequencies in the fourier 
transform. 
  The report describes two applications of wavelets. The first application is a wavelet 
transform domain filter which removes noise from a signal while preserving edges in it. It 
uses direct spatial correlation of wavelet transform contents at several adjacent scales to 
accurately determine locations of edges. The second is discriminating between internal 
faults and inrush currents in power transformers accurately.  
 
 
Introduction 
 The motivation in studying wavelet transforms was provided by the fact that signals can 
be modeled suitably by combining translations and dilations of a simple, oscillatory function of 
finite duration called a wavelet. Wavelet transforms are found in work done in the field of seismic 
signals, quantum mechanics, modeling multiscale phenomenon, solution of partial differential 
equation, statistics, communications and signal and image processing. In signal and image 
processing they are useful in many areas including filtering of noisy data, compression, 
fingerprint compression, edge detection, etc. 

Consider a real or complex-value continuous-time function )(tψ with the following 
properties: 

1) The function integrates to zero 
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 2) It is square integrable or, equivalently, has finite energy: 
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 3) It satisfies the admissibility condition ie 
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The function )(tψ is a mother wavelet or wavelet if it satisfies these properties [1]. It 
should be noted that properties (1) and (2) are sufficient to call the function as a wavelet. 
The property (3) is useful in formulating a simple inverse transform. 
 Property 1 is suggestive of a function that is oscillatory or that has a wavy appearance (A 
function does not necessarily have to oscillate to satisfy this property). Property 2 implies that 



most of the energy in )(tψ is confined to a finite duration. Thus, in contrast to a sinusoidal 
function, it is a “small wave” or a wavelet. Properties 1 and 2 are easily satisfied and there is an 
infinity of functions that quantify as mother wavelets. Figures below shows plot of various 
wavelets. 

                 figure 1 Mexian hat wavelet [1]                                         figure 2 Morlet wavelet [1] 
 

 

 
figure 3 Cubic B-spline wavelet [1] 

   Cubic B-spline wavelet is compactly supported ie the entire wavelet has a finite 

duration:0 ≤ t ≤ 4 sec.  



 

Continuous time wavelet transform (CWT): 

Let f(t) be any square integrable function. The continuous-time wavelet transform of f(t) 

with respect to a wavelet )(tψ is defined as [1] 

W(a,b) = dt
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Where a and b are real and * denotes complex conjugation. Thus, wavelet transform is a 
function of two variables. Observe that both f(t)and )(tψ belong to 2L (R), the set of energy 
signals. 

The above equation can be written in more compact form by defining �
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Notice that 
)(0,1 tψ = )(tψ  

The normalizing factor of 1/ || a  ensures that the energy stays the same for all a and b; ie 
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for all a and b. 
 For any given value of a, the function )(, tbaψ is a shift of )(0, taψ by an amount b along 

the time axis. Thus, the variable b represents time shift or translation. Since, the variable a 
determines the amount of time scaling or dilation, it is referred to as the scale or dilation variable. 
If a>1, there is a stretching of )(tψ along the time axis, whereas if  
0< )(tψ <1, there is a contraction of )(tψ . Negative values of a result in a time reversal in 
combination with dilation. Since the CWT is generated using dilates and translates of the single 
function )(tψ , the wavelet for the transform is referred to as the mother wavelet. 
 If the mother wavelet satisfies the admissibility condition (property 3), then inverse CWT 
exists and is is defined as  
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Wavelet transform provides  a weighting function for synthesizing a given function f(t) 
from the translates and dilates of the mother wavelet much as the Fourier transform provides a 
weighting function for synthesizing a function from sine and cosine functions. 

 
 



 
 

Discrete Wavelet Transform (DWT) 
 

CWT maps 1-D function f(t) to a function W(a,b) of two continuous real variable a and b. 
The region of support of W(a,b) is defined as the set of ordered pairs (a,b) for which W(a,b)≠0. 
The region of support of CWT is unbounded. CWT provides a redundant representation of the 
signal in the sense that thr entire support of W(a,b) need not be used to recover f(t) [1]. 

We look into a representation of the form  
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which uses discrete values for dilations and translations parameters. The dilation take the values 
of the form a = k2  where k is an integer. At any dilation k2 , the translation parameter takes 
values of the form k2 l where l is again an integer. The values d(k,l) are related to values of the 
wavelet transform W(a,b) = � [f(t)] at a = k2  and b = k2 l and is referred to as the Discrete 
Wavelet Transform (DWT) . 

 DWT of a signal x(t) with respect to a wavelet h(t) is given by 
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As can be clearly observed, DWT is a mapping from a one dimensional signal x(t) to a two 
dimensional sequence ),( kmX DWT as shown in figure 4. The index m in essence corresponds to 
the center frequency of the bandpass analysis filters, and corresponds to a non-uniform 
partitioning of the frequency axis. The center frequency is halved each time m is increased by1. 
Furthermore, since the filters are sampled increasingly slower with larger m, the index k 
corresponds to the multiple of the sampling period k2 T. 

 
 
 

 
 

figure 4 Schematic illustration of the DWT 



 
Figure 4 gives a schematic depiction of how the DWT can be computed using an analysis 

filter bank. The original signal x(t) can recovered from the DWT, by designing a synthesis filter 
bank with inputs equal to the DWT coefficients. A synthesis filter bank is shown in fig 5 where 
the synthesis filters are given by )( ωjFm . 

 

  
 
 

figure 5 Synthesis bank to reconstruct x(t) from ),( kmX DWT  

 
 
Wavelet transform domain filter 
 Fourier transform domain filters used in signal and image processing involve a tradeoff 
between the signal-to-noise ratio(SNR) and the spatial resolution of the signal/image processed. 
Low-pass filters will not only smooth away noise but will also blur edges in signals and images; 
high-pass filters can make the edges even sharper and improve the spatial resolution but will also 
amplify the noisy background. We will study spatial filters in the wavelet transform domain as an 
alternative to fourier transform domain filter. This filter can be seen as a low-pass filter that 
passes selected high-frequency data. The high-frequency data passed is that which occurs at 
position where edges are identified. 
 The signal power at large scales corresponds to that at low frequencies in the fourier 
transform; the power at small scales corresponds to that at high frequencies in the fourier 
transform [1]. The filter pass essentially all the signal at large scales. The signal at small scales is 
passed if it is around an identified edge; it is eliminated as noise if it is not around  an identified 
edge. Because most noise power is confined to small scales, the reduction of signal at small scales 
reduces noise preferentially. However, to keep edges sharp, small-scale information is required. 
By passing small scale data around identified edges, noise is reduced, and the identified edges 
stay sharp. The key to this technique is to identify edges. Edges are identified as features that 
have signal peaks across many scales. An edge occur at a position where there are maxima in the 
nonorthogonal wavelet transform at several adjacent scales [2]. Direct spatial correlations of 
wavelet transform at different scales are used to identify the edges; the small scale data is passed 
at positions where the correlation is large and suppressed if the correlation is small.  



 We use the direct multiplication of wavelet transform data at adjacent scales to 
distinguish important edges from noise and accomplish the task of removing the noise from 
signal. This approach is more straightforward, easier to implement, and significantly more robust. 
 Sharp edges have large signal over many wavelet scales, and noise dies out swiftly with 
increasing scale. Direct spatial correlation Cor lr (m,n) of wavelet transform contents at several 
adjacent scales accurately determine the locations of edges or other significant features. 
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Where �� is the number of scale involved in the direct multiplication, m<M-��+1, and M is the total 
number of scales. 
 Figure 6 shows a simulated 1-D data set of 256 points and its discrete, dyadic wavelet 
transform at all eight scales. In the simulated data there are two small “bumps” on top of a large 
boxcar and added Gaussian distributed white noise. The SNR of the data is about 18db. 
 Figure 7 demonstrates the effect of this wavelet filter on the smallest (first) scale of the 
wavelet transform of the signal shown in figure 6. Figure 7(b) gives the direct multiplication of 
the wavelet transform contents at the first two smallest scales cor 2r (1,n)= W(1,n)W(2,n). Note 
that the two edges of the large boxcar in the original data set show up much sharper and stronger 
in cor 2r (1,n) than they appear in W(1,n). Furthermore, one may observe that they are much 

larger in cor 2r (1,n) than the edges of the two small bumps and noisy background. 

First, the power of the cor 2r (1,n) data is rescaled to that of the W(1,n) data. The most 

important edges ( two major edges in fig 7) are identified in W(1,n) and cor 2r (1,n) by comparing 

the absolute values of cor 2r (1,n) and W(1,n). An edge is identified at any position n for which | 

cor 2r (1,n)| > |W(1,n)|. This edge position and its corresponding value  W(1,n) are stored. Finally, 

all the edges identified in this way are are extracted from cor 2r (1,n) and W(1,n) by resetting the 
values of these signals to 0’s at the positions identified. We refer to the remainder of the data 
points in W(1,n) and cor 2r (1,n) after the first round of data extraction as 'W (1,n) and 

'
2corr (1,n). By rescaling the power of '

2corr (1,n) to that of 'W (1,n) and comparing their absolute 
values, the next most significant edges (edges of two small bumps in fig 7) are extracted from 
W(1,n) and cor 2r (1,n). This procedure of power normalization, data value comparison and edge 
information extraction can be iterated many times until the power of the unextracted data points 
in W(1,n) is nearly equal to some reference noise power at the first wavelet scale. In digital image 
processing, one can often use the background noise as the dark regions (signal-free) near the 
boundaries of an image as the reference noise. 

All the edge information in the original data that is extracted from W(1,n) during this 
iteration process is kept in a data vector newW (1,n). By replacing W(1,n) with newW (1,n), we can 
have a new and spatially filtered first scale wavelet transform data where most of the noise is 
removed and most of the original edges are preserved. By repeating the procedure at every 
resolution scale, we can acquire all the spatially filtered wavelet transform data newW (m,n). The 

reconstruction from newW (m,n) through the inverse wavelet transform shown in fig 8 will yield 
the final filtered signal. 
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Figure 6 Simulated 1-D data of 256 points and its discrete dyadic transform [2] 
 
 

                                (a) 
                               

 
                                   (b) 
 

 
                           (c) 
figure 7 Graphic illustration of noise filteration technique (a) first scale wavelet transform W(1,n) 
before filtering; (b) Direct multiplication of w(1,n) and W(2,n); (c) newW (1,n) after filtering [2] 



Figure 8 shows that the edges of the large boxcar and the higher bump remaim as sharp 
after filtration as they were before filtration. Noise reduction is remarkable. It reduces from 18 to 
26.3 dB.] 
 There is slight degradation in both the edges and the contrast of small features (ie the 
smaller bump in the simulated data). It is difficult for the filter to discriminate between noise the 
features that are the same size as the noise. 

 
 
figure 8 1-D data and its discrete dyadic wavelet transform shown in fig. 6 after being processed 
with the wavelet domain filtering technique [2] 
 
 
Transformer protection 
  Power transformer protection is of critical importance in power systems. Any power 
transformer protective scheme has to take into account the effect of magnetizing inrush currents. 
This is because the magnetizing inrush current, which occurs during the energisation of the 
transformer, sometimes results in 10 times full load currents and therefore can cause mal-
operation of the relays [3]. Accurately discriminating between magnetizing inrush currents and 
internal faults is a key to solve this problem.  
 To avoid mal-operation due to inrush current, it is common practice to detect second 
harmonic component of current and block or restrain the differential protection of power 
transformer if it exceeds a certain value. However there are following drawbacks in this 
approach: 

1)  It has been reported that in certain cases, internal fault current might contain 
considerable amount of second harmonic content of measured current [4]. This may 
result in an operation with a time delay or non-operation of second harmonic restraint 
differential protection in case of internal faults or energization with internal faults. 



2)On the other hand, it has been found that the second harmonic content in magnetizing 
inrush currents tends to be relatively small in modern power transformers because of 
improvements in power transformer core material (high quality, low loss core material) [5]. In 
some cases, the second harmonic components are not sufficient to restrain the relay adequately. 

Here a simple decision making logic scheme based on wavelet transform for 
distinguishing internal faults from inrush currents is presented [3]. 

To demonstrate the effectiveness of the proposed scheme, a power transformer system 1 
is studied. System 1 is a three-phase and two-winding 750 MVA, 27/420 kV, Dy11-connected, 
fiveleg core type power transformer in a double-end-fed power system network. 
 

 
figure 9 systems simulated power transformer [3] 

 
The simulations of these two power transformer systems have been carried out using the 

well-known EMTP software. The CT saturation has been taken into consideration. 
In this study, the original differential current signal has been sampled at 25 kHz (the 

technique presented is based on employing the high-frequency phenomenon associated with 
transformer transients and hence necessitates the use of high sampling frequency of 25 kHz) and 
passed through a discrete wavelet transform (DWT), with the structure of Fig. 10, in which x[n] is 
the original signal, h[n] and g[n] are low-pass and high-pass filters, respectively. At the first 
stage, an original signal is divided into two halves of the frequency bandwidth, and sent to both 
high-pass filter and low-pass filter. Then the output of low-pass filter is further cut in half of the 
frequency bandwidth, and sent to the second stage. The same procedure is performed until the 
signal is decomposed to a pre-defined certain level. Finally, we obtain a bunch of signals, which 
actually represent the same original signal, but all corresponding to different frequency bands. 
Thus, 5-detailed signals that contain a frequency band of 12.5–6.25 kHz at detail 1, 6.25–3.125 
kHz at detail 2, 3.125–1.562 kHz at detail 3, 1.562kHz–781 Hz at detail 4 and 781–390 Hz at 
detail 5 as well as one approximate signal in the frequency band 390 Hz–DC level), are obtained. 

 
 

figure 10 Implementation of DWT [3] 
 

Fig. 11(a) shows typical magnetising inrush current waveforms (i.e. the EMTP output 
signal), which corresponds to a, b and c three phase differential currents through the CT 
secondary sides in system 1. As can be seen, the current waveforms are distorted quite 
significantly; gaps appear over the times of the inrush currents. From Fig. 11(b)–(d), which 
correspond to a, b and c three phase wavelet signals at detail 1, it can be seen that there are four 
sharp spikes at the edges of gaps at which the inrush current suddenly changes from one state to 



other different states. Another four sharp spikes are produced because the primary windings of 
the power transformer are connected in delta; for example the a-phase differential current is in 
fact the difference between the a phase magnetising inrush current and c-phase magnetizing 
inrush current. This gives rise to the non-smooth points in the current waveforms, which in turn 
cause sharp spikes to appear in the DWT of the current waveforms. 

 

 
 
Fig. 11. Magnetising inrush currents in system 1: (a) original a, b and c three phase differential 
currents; (b) a-phase DWT at detail 1; (c) b-phase DWT at detail 1; and (d) c-phase DWT at 
detail 1 [3]. 
 

Fig. 12(a) shows an internal fault current, which corresponds to a, b and c three-
phase differential currents through the CT secondary sides, under an a–b to earth fault on 
the high voltage side of the power transformer in system 1. It is apparent from Fig. 12(a) 
that there is a high-frequency distortion in the current waveforms. This is as a direct 
consequence of the effects of the distributed inductance and capacitance of the 



transmission line. This can lead to a significant second harmonic in the internal fault , 
thereby posing difficulty in an accurate discrimination between magnetizing inrush and 
internal fault currents by the conventional protection method. As before, detail 1 is taken 
as the feature extraction shown in Fig. 12(b)–(d). From Fig. 12(b)–(d), we can see that 
there are several sharp spikes appearing from the inception time of the internal fault. The 
maximum value of the sharp spike appears at the beginning of the fault 

Simulation studies shows that the wavelet transforms of magnetising inrush 
currents and internal fault currents have the following different features. For internal fault 
case, there are several sharp spikes appearing from the inception time of the internal fault. 
The maximum value of the sharp spike appears at the beginning of the fault. However, in 
marked contrast to the inrush current case, these sharp spikes rapidly decay to near zero 
within one cycle, whereas those sharp spikes under inrush current cases suffer from little 
attenuation during the entire inrush transient period, which can last from perhaps 10 cycle 
for small transformers to 1 min for large units . It is apparent that this difference can be 
used as the key feature to effectively distinguish internal faults from inrush currents 

 

 
 
Fig. 12. Internal fault currents in system 1: (a) original a, b and c three phase differential currents; 
(b) a-phase DWT at detail 1; (c) b-phase DWT at detail 1; and (d) c-phase DWT at detail 1 [3]. 
 



The decision for discriminating between internal faults and inrush currents are made 
based on the extracted features that are quantified by a ratio in a certain wavelet component, 
which is given by the following equations. 

 

 

 
 

where, max,1daI − , max,1max,1 , dcdb II −− respectively, represent the maximum peak values of a-

phase, b-phase, c-phase wavelet at detail 1 in the first window; max,1da
kI − , max,1max,1 , dc

k
db

k II −− ; 
respectively, represent the maximum peak values of a-phase, b-phase, c-phase wavelet at detail 1 
in the kth subsequent moving windows after the first window. 

The decision for distinguishing between internal faults and inrush currents is made in 
terms of the ratio change in ratiobratioa II −− ,  and ratiocI −  in each moving window, which is given 
as follows: 
If 

 then 
“This is an inrush” 
else 
“This is an internal fault” 
where, ε represents the predefined threshold 

 
Conclusions 

 Wavelets are functions defined over a finite interval and having an average value  of 
zero. The basic idea of the wavelet transform is to represent any arbitrary function as a 
superposition of a set of such wavelets or basis functions. These basis functions or baby wavelets 
are obtained from a single prototype wavelet called the mother wavelet, by dilations or 
contractions (scaling) and translations (shifts). CWT provides a redundant representation of 
signal. DWT is a nonredundant wavelet representation and can be implemented using multirate 
signals. Wavelet transform of f(t) at small scale contains information about f(t) at higher end of 
its frequency spectrum and vice-versa.  

Results of wavelet transform domain filters using direct spatial correlation of edge 
detection data over several adjacent scales shows that noise is reduced very effectively with very 
little resolution loss; most sharp edges are preserved, and some of them are enhanced. However, 
features that are of the same size as noise are suppressed because they are not distinguished from 
the noise. Wavelet transform based method can effectively distinguish between internal faults and 
inrush currents in a power transformer. 
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