

Abstract: This paper addresses the problem of reducing power
dissipation of digital signal processors basically used for
implementing FIR and IIR filters and FFT algorithms. An approach
is presented for minimizing power consumption for digital systems
implemented in CMOS technology which involves optimization at all
levels of the design. This optimization includes, at the highest level
the algorithms that are being implemented, the architecture for
implementing the circuit, the circuit topology and styles, and at the
lowest level the technology used to implement the circuit. It describes
a generic DSP architecture and identifies the main sources of power
dissipation during FIR and IIR filtering and FFT algorithm
implementations. It presents number of issues and transformations to
reduce power dissipated in one or more of these sources. These
transformations have been encapsulated in a framework that provide
the comprehensive solution to low power realization of various FIR,
IIR and FFT algorithms on programmable digital signal processors.

Index terms: Finite impulse response (FIR) & Infinite
Impulse response (IIR) filters, Architecture driven voltage
scaling, Bus invert coding, Gray coding, Transition zero
coding, CMOS VLSI.

I. Introduction
Over the last two decades, technology scaling and systems
development have primarily targeted increasing system
throughput; reducing the minimum feature size has
reduced gate delays and allowed high level of integration.
However, as demand for portability increases, with speed,
the need of low power design in systems has become
increasingly important. To maximize battery life and
minimize weight the systems and applications such as a
portable communications terminals, which demand
extreme computation capabilities requiring more then a
billion operations/sec to support wide range of user
applications including speech, graphics, and full motion
video.

Many of these applications, built as a systems on a
chip , perform real time signal processing functions using
a programmable DSP core embedded in them. Finite
impulse response (FIR) filtering, infinite Impulse response
filtering (IIR), FFT algorithms are most commonly used
functions. FIR and IIR filtering is achieved by convolving
the input data samples with the desired unit impulse
response of the filters. The output Y[n] of the filter is
given by

1

1

1

0

][].[][].[][
N

i

M

i

inXiBinXiAny

The weights A[i] and B[i] in the expression are the filter
coefficients. But B[i] = 0 for FIR filters. And IIR filters
response depends upon both the previous and present input
samples X[n-i] as well as upon the previous output
samples Y[n-i].But for applications requiring minimum
phase distortion FIR is the ideal choice because of

symmetric coefficients (A[i]=A[N-1-i]) are possible.
The typical DSP architecture[1],[10] to implement all the
DSP applications is shown in Fig.1[1]. The techniques to
reduce the power are targeted to this architecture.

Figure 1 Typical DSP Architecture

The architecture has two separate memory spaces for
program and data which can be addressed simultaneously.
One of the memories can be used to store input data
samples and the other to store the coefficients. The
program is usually stored on the available on chip ROM
which is usually electrically programmable but the
coefficients as well as program can also be stored in same
memory. Multiplier and accumulator unit (MAC) is
composed of an adder, multiplier and the accumulator.
Usually adders implemented in DSPs are Carry-Select or
Carry-Save adders as speed is of utmost importance in a
DSP[3],[10]. One implementation of the multiplier could
be as a parallel array multiplier which computes partial
products and adds them to the previous partial products.
Other ways are multiplication based on LUTs. There are
some Multiplier-less implementations too. Basically the
multiplier will multiply the inputs and give the results to
the adder, which will add the multiplier results to the
previously accumulated results. This entire process is to be
achieved in a single clock cycle. The FIR & IIR filtering
can be performed using this architecture as a sequence of
MAC s.

The sources of power dissipation in CMOS
circuits can be classified as dynamic, short circuit and
leakage power[12].
Pavg= Pswitching + Pshort-circuits + Pleakage

 = . CL. Vdd
2 . fCLK + ISC . Vdd + I leakage. . Vdd

The first term represents the switching components of
power, where CL is the load capacitance, fCLK is the clock
frequency and is the switching factor or node transition

M.Tech credit seminar report, Electronic systems group, EE. Dept. submitted in Nov.2003

Gurvinder Singh (03307915)

Supervisor: Prof. A. N. Chandorkar

activity factor, which shows high transition level (Vdd)
should be reduced to min. possible as it have quadratic
effect on power. And . CL can be reduced by choice of
logic function, logic style, circuit topology, data statistics
and sequencing of operations. Second term represents
short circuit component of power which is dependent upon
rise and fall time of input signal. To reduce this
component, the rise and fall time of input should be less
then or equal to that of the output signal. If Vdd < Vtn + | Vtp

| , Isc can be completely eliminated. Architecture driven
voltage scaling discussed in this paper allows reduction in
supply voltage. Third term represent the leakage
component of power, which can not be reduced much, as it
depends upon the technology. The silicon on insulator
technology have very less leakage and sub-threshold
current.

The low power transformations described
in this paper aim at reducing one or more of these factors
while maintaining the throughput of the DSP system. The
rest of the paper is organized as follows. In Section II, the
main sources of power dissipation and measures for
estimating the power are discussed. In Section III,
optimizations at algorithm level and in Section IV,
optimizations at architectural level are discussed.
Similarly, section V, VI discussed the optimization at
physical circuit and logic level, and at technology level
respectively. Finally, conclusion have been made in
Section VII with the description of a complete framework
for applying the issues and transformation discussed in all
the sections.

II. Power Dissipation- Sources And Measures

Each step in FIR, IIR, FFT filtering algorithms
involves getting the appropriate coefficient and data values
and performing the MAC operation over them. The
address and data busses of both memories and multiplier-
adder data path experience the highest signal activity
during the filtering operations[8]. For a typical embedded
processor, address and data buses are networks with a
large capacitive loading. Hence signal switching in these
networks has a significant impact on the power
consumption. In addition to the net capacitance of each
signal of the bus, inter-signal cross-coupling capacitance
also contributes to the bus power dissipation. The power
dissipation due to inter-signal capacitance varies
depending on the adjacent signal values. The current
required for signals to switch between 5 s (0101b) and
A s (1010b) is about 25% more than the current required
for the signals to switch between 0 s (0000b) and F s
(1111b).

Another component is power dissipation in
multiplier and adder. It is very difficult to find the
transition density at each and every node of the internal
circuits. Also most cause of run-time failure is the extent

of circuit activity. As given in the literature [2], the
algorithm of how transition density propagates from input,
internal nodes of the circuit and then to the output nodes.
This algorithm is implemented in simulator called
DENSIM to measure the transition density of the circuit
which accepts transition density and equilibrium
probability at the primary inputs of the circuit. Where
transition density of any signal x(t), t (- , +) is defined
by

D(x)=limT Nx (t) T
and Nx (t) is the number of transitions of x(t) in the time
interval (-T/2, T/2). And equilibrium probability of x(t) is
denoted by P(x) and given by

P(x)=limT (1/ T) x (t) dt
As x(t) is the digital signal, P(x) is the fraction of time that
x(t) is in 1 state and D(x) is the average no of transition
per unit time. Thus D(x) for 10 MHz clock is 20*106. The
various test on this simulator shows, the number of
transitions at the circuit nodes is directly related to no. of
transitions at the primary input of the circuits. Hence our
main emphasis is to minimize the number of transitions at
the input of the multiplier and adders.

For the address and Data buses, the hamming
distance between consecutive signal values and the number
of adjacent signal toggling in opposite direction thus form
the measure of power dissipation in the buses. For the
multipliers, the power is directly proportional to the
transition densities and the probabilities of the
multiplier/adder inputs[2]. The transition densities of the
multiplier inputs depend on the Hamming distance
between successive input values. The input signal
probabilities depend on the number of 1 s in the input
signal values of the multiplier[3]. These two thus form the
measures of multiplier power dissipation.

Third measure of the power dissipation is the
effect of circuit state on the power cost of an instruction
stream[11], which is more marked in case of DSP
processor. An instruction level power model based on the
base cost and the overhead cost of an instruction where the
base cost of a given instruction is defined as average
current drawn by the processor during the repeated
execution of instruction. The overhead cost is needed to
account for the effect of circuit state change for an
instruction sequence consist of different instructions. This
suggests that changing the instruction order by appropriate
scheduling of an instruction can lead to reduction in the
power cost of the program. This is called cold scheduling.

III. Optimization at algorithm level
The main factor which decides the power consumption is
the decision made for choice of algorithm. The ability for
algorithm to be parallelized is critical and the basic
complexity of computation must be highly optimized. This

section includes, how to minimize numbers of operations
and switching activity at algorithm level.

Concept here is that due to quadratic effect of Vdd on
power, reduction on supply voltage has a great effect, but
it reduces the speed. This section discusses the
transformations which allow the reduction of supply
voltage for the same throughput.

--Signal flow graph of FIR
filter as shown in figure 2[13]. require delayed versions of
input samples multiplied by the stored coefficients. Due to
which during every multiplication both the multiplier
inputs are switched to different values leading to large
switching losses in multiplier.

Figure 2 Signal flow graph of FIR filter

These losses can be minimized by transforming the signal
flow graph using transposition theorem[13] into SFG
shown in fig.3. This involves multiplying all the
coefficients with same input data X[n].
 Since during the filter
computation, one of the multiplier inputs is fixed, it results
in significant power saving in the multiplier. But It have
one drawback also that the architecture is required to be
change to perform the write operation after every

Figure 3 Signal flow graph of transposed FIR filter

cycle. Such architecture[4] is shown in Fig. 4 which
supports N cycle implementation of N tap transposed filter.

Figure 4 Architecture to support transposed FIR filter

But write operation after every cycle will result in extra
switching on high capacitance data lines which results in
increased power dissipation compared to the direct form
implementation. Thus making such architecture overall
less power efficient. Another Technique involves
implementing FIR filter in terms of its decimated sub-
filters using multi-rate architectures[4]. The signal flow
graph of a multi-rate architecture that uses a decimation
factor of two is shown in Fig. 5.

Figure 5 one level decimated multirate architecture

H0 and H1 are the decimated sub-filters formed by
grouping even and odd coefficients of the original filter.
The architecture processes two input samples
simultaneously to produce the corresponding two outputs.
From the signal flow graph shown in Fig. 2, an N-tap
direct form FIR filter requires N multiplications and (N-1)
additions per output. For the architecture shown in Fig. 5,
assuming even number of taps, each of the sub-filters is of
length N/2 and hence requires N/2 multiplications and
(N/2-1) additions. There are four more additions required
to compute the two outputs Y0 and Y1. This architecture
hence requires 3N/4 multiplications per output which is
less than the direct form architecture for all values of N
and requires (3N+2)/ 4 additions per output which is less
than the direct form architecture for N>6.

Because of the parallelism involved in this
architecture number of cycles required to compute one
output of filter are less than direct form architecture, since
the multi-rate architecture requires fewer cycles, the
frequency can be lowered by fmulti-rate/ fdirect. and still
achieve the same throughput. With the lowered frequency,
the processor gets more time to execute the instruction.
This time-slack can be used to appropriately lower the
supply voltage using the following relationship:

Delay Vdd / (Vdd Vtn)
2

Based on above observation: Ctotal_multirate / Ctatal_direct 0.75.
This reduction in the switched capacitance translates into
0.75 saving in the power dissipation. Further reduction can
be achieved by lowering the supply voltage as discussed
above.

As in IIR filters, there is a
feedback, the computation can not be easily parallelized
and algorithmic transformation are required to achieve
recursive bottlenecks. Consider a first order IIR filter[5] as
shown in fig. 6(a) with a critical path of 2 by assuming
each operation takes one cycle. Due to recursive

bottleneck imposed by the filter structure, it is impossible
to reduce the critical path using retiming and pipelining
discuss in the section IV which we want, so that we are
able to reduce the power for same throughput. Applying
loop unrolling does not change the effective critical path as
shown in fig.6(b) and therefore the supply voltage can not
be reduced.

Figure 6 Transformation of IIR algorithm to reduce
power

But after applying loop unrolling[5], distributivity and
constant propagation transformation can be applied in a
systemic way, the output of the samples can be represented
as
 YN-1 = XN-1 + A * YN-2

 YN = XN + A*XN-1+ A2 *YN-2

The transformed solution has a critical path of 3 (fig 6.(c)).
However the pipelining can now be applied reducing the
critical path further to 2 (fig 6(d)). Since we are processing
the 2 samples in parallel with in 2 cycles. Hence the supply
voltage can be reduced to half at which the delay increased
by the factor by 2. But at the same time transformed SFG
requires 3multiplications and 3 additions for processing 2
samples while the initial graph requires only one
multiplication and one addition to process one sample,
hence there is 50% increase in the capacitance. The
reduction in the supply voltage, however, more than
compensates for the increase in capacitance resulting in
overall reduction of power by 2 due to quadratic effect of
Vdd. This means we can speed up the circuit by more loop
unrolling combined with the other transformations and
hence further reduction in voltage is possible for the same
throughput. Unfortunately, the capacitance grows

linearly[5] with unrolling factor and soon limits the gains
from reducing the supply voltage. This result in an
optimum unrolling factor for power is 3 beyond which the

Figure 7 How power optimization is different from
speed

power consumption starts to increase again as shown in fig
7.

 Scaling the output of a filter preserves its characteristics in
terms of pass band ripple and stop band attenuation, but
results in an overall magnitude gain equal to the scale
factor[6]. For a scale factor K, from Eq (1) we get

1

1

1

0

][].[][].[][.
N

i

M

i

inYiBKinXiAKnYK

Thus the coefficients of the scaled filter are given by
(K.A[i]) and (K.B[i]). Given the allowable range of scaling
(e.g., 3 dB), an optimal scaling factor can be found such
that the total Hamming distance between consecutive
coefficient values is minimized. This can thus reduce not
only the power dissipated in the coefficient memory data
bus but also the power dissipated in the multiplier

Given an N-tap FIR or IIR filter with coefficients (A[i],
i=0.--.N-1) and (B[i], i=1,2--M-1) that satisfy the response
in terms of pass band ripple, stop band attenuation, find a
new set of coefficients (LA[i], i=0,1,---,N-1) such that the
total Hamming distance between successive coefficients is
minimized while still satisfying the desired filter
characteristics[6].

This coefficient optimization problem can be
formulated as a local search problem, where the optimum
coefficient values are searched in their neighborhood. This
is done via an iterative improvement process. During each
iteration one of coefficients is suitably modified so as
reduce the total Hamming distance while still satisfying
the desired filter characteristics. The optimization process
continues till no further reduction is possible.

The number of 1s in A[i] and -A[i] (where negatives are
stored in 2 s complement format) can differ significantly.
This fact can be taken advantage of. If rather than storing
A[i]s we store A[i] for all such numbers for which A[i]
has lesser number of ones and in the MAC instead of
multiply/add we use multiply/subtract, the result will be
same[6]. But significant power dissipation reduction is
observed in multiplier and coefficient data bus power.

But to implement it some modification are
required, If coefficients to be negated have random pattern
then filtering can be performed using two loops- one for
repeated multiply add and other for repeated multiply
subtract, by grouping coefficients to be negated together.

The order of computing the products and then addition can
be interchanged due to associative and distributive
property of summation[6]. For a 3-tap IIR filter, the output
can be computed as
 Y[n]= A1X[n-1]+A2X[n-2]+B1Y[n-1] OR
 Y[n]= B1Y[n-1]+A1X[n-1]+A2X[n-2]
Since these coefficients determine the order of data to be
appeared on the data buses for coefficient as well as input
samples. Hence Hamming distance between two
consecutive coefficients can be minimized by perfect
ordering of above sum of products. For a N-tap filter there
are such N! different coefficient orders are possible. To get
the perfect order nearest neighbor algorithm should be
used which provide the heuristic search to get the order
corresponding to minimum switching activity on the data
bus.

After the order is found, the data in the data
memory is also required to reorder so that the desired
sequence of coefficient-data product computations is
achieved when the memory is accessed sequentially.

If the input is being multiplied with multiple coefficients,
some of the shift-add terms can be shared and the number
of operations can be reduced[5]. Fig.8 shows an example
of exploiting multiple coefficients multiplied with same
input.

Figure 8. Example demonstrating sub-expression
example

On the left is brute force implementation in which each
multiply is computed separately. On the right side,

approach exploits common terms in the coefficients and
therefore some of the shift- add terms can be shared.

IV. Optimization at architecture level
An architecture driven voltage scaling strategy is presented
in this section in which concurrent architectures are used to
reduce supply voltage by retaining throughput.

Architecture can be modified to compensate for reduction
in speed due to reduction in Vdd. These modifications
involve two major features called parallelism and
pipelining as discussed below:

To illustrate how architectural techniques
can be used to compensate for reduced speed a simple 8-b
datapath consisting of adder and comparator is
considered[5]. Fig.9 shows inputs A and B are added and
the system is clocked with a clock period of T. Let s take
this data path as a reference whose power dissipation is
given by

Pref = Cref Vref
2 fref

Where Cref is effective capacitance being switched per
clock cycle. One way to maintain throughput for reduced
Vdd is to utilize parallel

Figure 9 Simple data path for adder and comparator

architecture as shown in fig. 10, two identical data paths
are used, allowing each unit to work at half the original
rate while maintaining the original throughput. Since the
speed requirements of adder and comparator are reduced to
half, hence voltage can be reduced from 5V to 2.9V, the
voltage at which the delay is doubled[5] as shown in
fig.11.

While the data path capacitance has increased by
the factor of 2. and corresponding frequency decreased by
the factor of 2. Unfortunately, there is a slight increase in
the total capacitance due to extra routing resulting in an
increased capacitance by the factor of 2.15. Thus the
power for parallel datapath is given by

Ppar = Cpar Vpar
2 fpar

 = (2.15Cref) (0.58 Vref)
2 (fref /2)

 = 0.36 Pref

The amount of parallelism can be further increased to
reduce the supply voltage. But up-to what limit, we can
reduce the supply voltage, is

Figure 10 Parallel implementation of adder and
comparator

Figure 11 Normalized delay w.r.t supply voltage

decided by power consumption of overhead circuitry
which dominates at some optimum voltage.
The same parallelism concept can be used for memory
access as shown in fig.12 two alternate schemes for
reading 8-b data from memory at throughput f. On the left
hand side serial access scheme and second approach is to
read several words from memory and clock the memory at
lower rate for the same throughput. For example reading 8
bytes in parallel require memory to be clocked at 1/8 of the
serial rate. Hence supply voltage can be reduced as time
available to read the memory is 8 times the serial version.
The parallel version can run at supply voltage of 1.1V.But
this optimization is possible only when data access pattern
is sequential in nature.

Pipelining enables the more efficient use of
on-chip silicon resources, allows multiple operations to

Figure 12 Parallel memory access for Vdd reduction

occur, and enables much faster cycle times[14]. What
happens in pipelining is explained as follows: Throughput
of any system consisting of a series of operations is limited
by the single slowest operation in the complete series. So if
this single slow operation is further broken down into a
number of stages, the intermediate results will be available
faster for the next stage. Each stage result(s) are stored in
registers that follow that stage, and so the next stage can
start operating on these results of the previous stage &
simultaneously the previous stage can start operating on
the next succeeding set of data. Thus simultaneously no
stage of the
pipeline is free. DSPs can take advantage of pipelining as
the data inputted in a DSP is always continuous.

Figure 13 Pipelined implementation of simple data path

As shown in fig. 13, with the additional pipelined latch,
the critical path becomes the max[Tadder,Tcomaparator],
allowing the adder and comparator to operate at slower
rate[5]. For example the two delays are equal, allowing the
supply voltage to again be reduced from 5V used in the
reference data path to 2.9V. However, there is a much
lower area overhead incurred by this technique, as we only
need to add pipeline registers. Hence addition of extra
latches, increasing the effective capacitance by approx. a
factor of 1.15.The power consumed by pipelined data path
is

Ppipe = Cpipe Vpipe
2 fpipe

=(1.15 Cref) (0.58 Vref)
2 fref = 0.39 Pref

Hence power reduced by this technique is by the factor of
2.5, providing approx. the same power reduction as
parallel architecture with the advantage of lesser area
overhead.

Hence bigger improvement is possible if both parallelism
and pipelining [5]are applied as shown in Table. I

In most signal processing applications, 2 s complement
representation is used for arithmetic and logical operation.
But fig.14 shows a short segment of a speech signal and
the associated transition probabilities (Pr) assuming 2 s
complement for each bit[5]. LSB s are uncorrelated and
hence Pr-0.5 and MSB s are highly correlated. If signal
switches at higher rate form +ve to ve value, hence uses
small dynamic range then max. possible value determined
by the bit width, it results in large switching activity.

In sign magnitude only one bit
is allocated for the sign and other for magnitude. In this
case, if the dynamic range of a signal does not span the
entire bit-width, only one bit will toggle when the signal

switches sign, as opposed to the 2 s complement
representation
where number of bits switches due to sign change. To
illustrate this, the transition activity on 16-b data bus with
random gaussian data applied to it is shown in fig. 15 for
2 s complement number representation and sign magnitude
represent[5].

Figure 15 Transition activity for different number
presentation

In which is the correlation between two consecutive data.
The above analysis suggest that sign magnitude has
advantage in terms of number of transitions on busses.
However addition and subtraction computation are
difficult to implement in sign magnitude representation. So
sign magnitude is helpful if large busses have to be driven
(like external memory access), where overhead of
converting into 2 s complement is insignificant as
compared to reduction in the capacitance switched in large
busses.

Bus invert coding (BIC) also called starvation coding and
limited weight coding is helpful in reducing the Pdis. at I/O
pads where due to huge dimensions of the devices, large
currents are required to be drive the capacitance. In this
coding we look for reducing I/O activity with assumption
that each node has the same average load capacitance at
I/O and internal nodes. Total power dissipated on the chip
is given by
Pchip=Cint.N(transitions)int + CI/O . N(transitions)I/O

Internal transitions are much larger then I/O transitions
because of large number of internal nodes, but Cint is much
smaller than CI/O. The Idea behind this coding is that: code
the data in order to decrease the number of transitions on

the I/O node even at the expense of slightly increasing the
number of transitions on the low capacitance node[7]. But
total effect on power dissipation is reduction because of
large I/O capacitance. The data on n-bit wide bus can have
2n possible values with equal probability. The average
number of transitions per clock cycle will be n/2. This
code needs one extra control bit called

bit. Let

data d is to transmit and b denotes the coded value on
the bus.

By convention when b=d and when invert=1, bus
value is the complement of data value. Power can be
reduced by coding the I/O as follows:

i. Compute the hamming distance between the
present bus value and next data value.

ii. If the hamming distance is larger than n/2, set
=1, and make the next bus value equal

to the inverted next data value.
iii. Otherwise let =0 and let the next bus

value equal to the next data value.
iv. At the receiver side the contents of the bus

must be conditionally inverted according to
the invert line, unless the data is not stored
encoded as it is.

With this coding average number of transition per time slot
becomes 3.27(instead of 4). But maximum number of
transitions is reduced by half. Hence peak power is
reduced by 50% but average power is reduced only by
18.2%. If the numbers of data lines are large then average
power is reduced by more amount. To implement the bus
invert coding extra circuitry is needed which means extra
area and sometimes lower speed. A possible circuit for 8-
bit data bus at driver side[7] is shown in fig.16 that
consists of 16 extra X-OR gates and a majority voter. This
circuit would result in extra internal transitions and delay,
but bus drivers and receivers and latches are also required

in un-encoded case. But the delay and extra power
consumption of majority voter should be considered
carefully. At the receiver side because it only needs to
invert the bus if invert line=1, it can be very easily
implemented. If encoder and decoder have large delay then
pipelining can be used to get same throughput.

Bus invert coding is not good for address

bus, as mostly the data on this bus is sequential and
number of transitions on average are not more than n/2.
Following techniques are more helpful to reduce power
consumption on the address bus.

Address busses are used to fetch the
data and coefficient (instruction also) from the external or
internal data and program memory respectively. By
providing the addressing by gray codes which changes by
one bit only as sequenced from one number to next
number[8]. Hence significant number of bit switches can
be eliminated as shown in Table.2[8], the comparison of
bit switches for binary and gray sequential addressing. It
also shows that higher order bit on gray code sequence are
not switched until all bit switch permutations for low order
bits takes place. Hence gray coding is beneficial also for
paging as binary coding. Instead of binary counter, the
gray counter is required on chip to access the external or
internal memory, to which we can optimize by good
designing to consume low power. Following fig. 17 shows
the comparison between

binary and gray coding for various packages[8]. But it is
unrealistic to assume that the address computation units,
the data path, the memory decoder and even the compiler
could be modified to generate gray code addressing.

Hence it is not easy to implement it with simple gray
counter. Another possibility is implementing the gray
encoder and decoder on both sides.

This technique relies on the
fact in a remarkable no. of cases, patterns traveling on the
address bus are consecutive[9]. Hence devices located at
receiving end of the bus can automatically calculate the
address to be received at the next clock cycle. Hence
transmission of new pattern can be avoided. But there are
exceptions to this behavior, as control flow instructions
cause interruption in the sequence of consecutive addresses
on the instruction flow and data which not stored in arrays,
are often addressed without any regular pattern. But
usually sequential addressing dominates. This techniques
also require one extra line called INC, If two addresses are
consecutive then INC line=1. The address lines are frozen
and new address is computed directly by the receiver.
When two address are not consecutive then INC=0, bus
lines operate naturally. As long as the addresses are
consecutive, there is no any transition on the address bus
and hence thus coding is transition zero coding (T0). This
approach is helpful if consecutive addresses have very
large lengths. To fully evaluate the effectiveness of this
coding the cost of T0 encoding/decoding from binary
addresses should be taken into account. At a given clock
cycle t, the encoder as shown in fig.18[9] computed the
incremented address of cycle t-1and compare it to the
address generated at cycle t. If both are equal then INC
line is raised and the old address is left

on the bus otherwise INC line=0 and newer address is
loaded onto the bus. The decoder is even simpler shown in
fig.18(right side). At any given cycle the last cycle address
is incremented. If INC line is high, the older incremented
address is used otherwise the address coming from bus line
is selected. If encoder/decoder are optimized for min.
delay. The critical path at the encoder side is late arrival of
data b, comparator and MUX. And on the decoder side is
incrementer and MUX. Hence this architecture circuit can
be make very fast. But gray encoder/decoder consume less
power and area as compared to T0 encoder/decoder, but
gray decoder is consist of chain of XOR s due to which its
delay is more as compared to T0 encoder/decoder.
Hence for wider buses, if performance is main factor then
T0 coding is the only alternative[9]. For power is main
factor, there is trade-off between both as T0
encoder/decoder consume large power. For area is main
factor, gray code is the best option, where power is the 2nd

concern.

This technique is used to
reduce the power dissipated in the adder, its input buses
and the accumulator[6]. This not only reduces power
dissipation in these buses, it also reduces the power
dissipated in the adder and the accumulator that drives one
of the buses. Bitwise commutativity implies that the result
of an ADD operation is not affected even when one or
more bits from one input are swapped with the
corresponding bits in the second input.

The technique compares for every bit, the new value with
the current value, and performs bit-swapping if the two
values are different. Fig. 19 shows an implementation of
this scheme[6]. As can be seen from Fig. 19, the reduction
in the toggles in the adder inputs is achieved at the expense
of additional logic, i.e., the MUXes and the XOR gates.
The power dissipated in this logic offsets power savings in
the adder and its input buses.

The final savings depend on the data values being
accumulated and also on the relative capacitances of the
adder input buses and the mux inputs.

Due to finite propagation

delays from one logic block to the next, the node can have
multiple transitions in a single clock cycle before settling
to correct logic level[5]. To minimize the extra transitions
and power in a design, it is important to balance all signal
paths and reduce the logic path.

Fig.20 shows chain and tree implementations for adding
four numbers if we assume that all the inputs arrive at
same time. Then due to finite propagation delay of first
adder for the chained case, the second adder is computing
with the new C input and the previous output of A+B and
so on . Hence there are more chances of glitches as
compared to tree structure which is balanced. But decrease
in the logic path as in case of tree structure will increase
register power. Hence the decision to increase or decrease
the logic path is based upon trade-off between the glitching
capacitance and the register capacitance. But it is also
notable that reducing the logic path allows reduction in
supply voltage while keeping throughput same.

V. Physical circuit and logic level optimization

 At the layout level, this technique aims
at reducing power dissipation due to cross-coupling
capacitance. One approach to achieve this is to increase the
spacing between the bus lines. This however results in
increased area. In this approach the bus bits are reordered
in such a way that the number of adjacent signals toggling
in opposite direction are minimized[6].

Figure 21 Bus bit reordering scheme

Fig. 21 illustrates[6] this approach and shows how the bus
signals A0 A7 can be reordered in the sequence of A2-A0-
A4-A1- A3-A5-A7-A6.
The numbers of algorithms are available to get optimum
bus order. The input to these algorithms is coefficient

values and there order in which they are accessed from
memory for FIR or IIR computation. The most applicable
algorithm is hill climbing search algorithm.

At the layout level, the
place and route should be optimized such that signals that
have high switching activity should be assigned short
wires and signals with lower switching activities can be
allowed progressively long wires.

For low power, as is true for high
speed design, it is important to equalize all delay paths so
that single critical path does not unnecessarily limit the
performance of the entire circuit. As we known that to
increase the speed we can increase the size of the
transistor, hence it allows more reduction in supply voltage
for same throughput. But optimizing for power is totally
different[5].

Fig.22 shows the two-gate circuit[5], with first stage
having input gate capacitance Cref driving the next stage
with the parasitic capacitance due to substrate coupling
and interconnect Cp between them. Then the delay of first
stage at supply voltage Vref is given by

TN = K(Cp + Cref)Vref N Cref(Vref Vt)
2

= K(1+

N) Vref Vref(Vref Vt)
2

where = Cp Cref , and K is constant. Speed can be
increased by factor of (1+

N) 1+ if the size is
increased by N w.r.t reference circuit having N=1.

But if we want the supply reduction to decrease the power
then speed to the Vdd can be scaled down to get same
voltage where delay of the scaled design and the reference
design are same which is given by

VN =(1+

N)Vref (1+)

Then energy consumed by first stage is given by

Energy(N)= (Cp +N Cref)VN
2

 =NCref (1+

N)3 Vref

2 (1+)2

For =0, energy increases linearly w.r.t N. For >0,
Initially energy decreases with increases in N, due to
reduction in delay compensates the increase in capacitance
due to increasing N and after some point energy increases
with increase in N as the capacitance factor NCref

dominates and also parasitic capacitance increases as
shown in fig.23 (which shows the simulation result of 8-bit
adder) for various values of N[5]. Which shows that if Cp

due to interconnects is very large as in case to drive the
address and data buses, then increase in the size is helpful
in reduction of power by using large size buffer at the
driving end. But if CL is not dominated by interconnects
then minimized sized device should be should.

Another approach to reduce the
supply voltage is to reduce the swing at the output node[5].
For example, using an NMOS device to pull up the output
will limit the swing to Vdd

Vtn. The power consumed will
be reduced to CLVdd(Vdd

Vtn). But this scheme has two
negative effects: First, noise margin is reduced at the
output by Vtn. Second, since the output does not rise to the
maximum value, the PMOS of the next stage will be on
and hence the next static stage will have static power loss,
increasing the effective energy per transition. Hence
special gates are required to increase the noise margin at
signal level and eliminate the short circuit currents as
shown in fig. 24[5], which requires extra transistors and
hence have more parasitic capacitance. This circuit uses a
precharged scheme and the device M3 is used to clip the
voltage of bit line to Vdd

Vtn . During =1, the evaluation
period, if Vin is high, the bit

line will begin to drop as shown in fig.25.As the ratio of
the capacitance of the bit line to the internal node is very
high, once the bit line is dropped to 0.2V to sufficiently
turn on M3, the internal node drops to the potential to the

potential of bit line, providing signal amplification. Thus
the circuit greatly reduces the voltage swing on the high
capacitance line, which reduces the energy, and provides
the amplification, which reduces the delay as well. This
technique is useful for high capacitance bit line or nodes.

One important circuitry to

operate the circuit at low voltages is the level shifter[5].
That can convert the low voltage swing form the core of

the chip to the high voltage swing at the I/O pin or vice-
versa. Also different parts of the system could operate at
their own optimum supply voltage and communicate with
each other using level conversion circuitry, in which the
design of high efficiency low voltage in which voltage is
programmable, must be considered.

Power down is
not only useful at chip and module level but also at the
logic level by reducing the switching the switching activity
at the expense of some additional control circuitry[5].

Taking example of comparing the two numbers at the
output of combinational circuit as shown in fig26.If the
most significant bits, A[N-1] and B[N-1], are different
then the computation of A>B can be strictly performed
from MSB s and therefore the comparator logic for bits
A[N-1:0] and B[N-1:0] is not required and hence the logic
can be power down. One approach to accomplish the
power down is shown in fig26, is to gate the clock. The
XNOR output of the A[N-1] and B[N-1] is latched by the
special register to generate the gated clock. This gated
clock is then used to clock the low order registers.

VI. Optimization at technology level

We know that the supply voltage have quadratic effect on
power reduction at the expense of delay. As shown in
fig.11, the delay increases drastically as supply voltage
approaches threshold value[5]. Since the objective is to
reduce power consumption while keeping the throughput
of overall system fixed, compensation for these increased
delays is required. As discussed in Section II architecture
driven voltage scaling strategy uses the concept of
parallelism and pipelining to compensate for increased
delays. Another approach is to reduce the threshold voltage
of the device. Low threshold devices should be used.
Reducing the threshold voltage allows the reduction in
supply voltage without loss in speed. For example the
circuit running at the supply voltage of 1.5V with Vt=1V
have same performance as the circuit running at supply
voltage of 0.9V and Vt=0.5V according to the following
equation

Td= CLVdd/ Kn (W/ L) (Vdd Vt)
2

Fig.27 shows the plot of normalized delay Vs. threshold
voltage for various supply voltages[5].

But how low the threshold can be reduced. This limit is set
by the adequate noise margin and the increase in the sub-
threshold currents. Noise Margins will be relaxed in low
power designs because of the reduced current being
switched, but sub-threshold current will result in
significant static power dissipation.

 Fig.28 shows a plot of energy Vs. threshold voltages
for a fixed throughput for a 16-b data path ripple carry
adder. Which shows the optimum threshold voltage must
compromise between improvement of current drive at low
supply voltage operation and control of threshold leakage.
If feature size shrinks below 1.0 m, the delay
characteristics as a function of supply voltage does not
have quadratic relationship. As a result of velocity
saturation, the current is no longer a quadratic function of
voltage but linear; hence current drive is significantly is
reduced to
I= W Cox (Vdd Vt) vsat.

And hence the delay of the circuit is given by CVdd / I, by
comparing these two equations delay for submicron
technology is relatively independent of supply voltages at
high electric fields. Hence Vdd can be reduced to some
extent for velocity saturated device with little penality in
speed performance.

VII. Conclusions

Figure 29 Frame work for designing low power digital
signal processor

This paper discusses the identification of main sources of
power dissipation in DSP and their measures. And provide
the techniques to reduce them at each level of designing
the digital signal processors. First of all, the specifications
are given to us, and we need to design the algorithm using
appropriate method of designing FIR, IIR filters and
modify the algorithm to reduce the computations, this can
be performed by various transformations as discussed
above. Then coefficient modifications (like scaling,
ordering, optimization, selective coefficient negation) are
discussed at algorithm level to reduce the power further.
Then at architecture level, the architecture driven voltage
scaling which involve parallelism, pipelining is discussed.
And then different coding techniques to reduce the power
consumption on address bus and data bus are discussed. At
physical layout level and logic level, this paper include
activity driven place and route, the use of minimize sized
devices, reduced swing logic, and logic level optimization
and power down. At the technology level, this paper
discusses the reduction in the threshold voltage Vt and its
trade-off with leakage and sub-threshold currents. We can
reduce the Vt to 0.3-0.4V which is 0.7V current day
technology. All the above techniques are encapsulated in
the framework to design the low power programmable
processor as shown in fig.29[6].

Acknowledgment
The author would like to thank Prof. A. N .Chandorkar for
his great co-operation and guidance. And the author would
also like to thank the reviewers for their constructive
criticism and comments.

References:
[1] S. W. Smith, The Scientist and Engineer's Guide to Digital Signal
Processing, California Technical Publishing, 1997, pp. 503-534.
[2] F. Najm, Transition density: A new measure of activity in digital
circuits, IEEE Trans. Computer-Aided Design, pp. 310 323, Feb. 1993.
[3] G.-K. Ma and F. J. Taylor, Multiplier policies for digital signal
processing, IEEE ASSP Mag., Jan. 1990, pp. 6 19.
[4] M. Mehendale, S. D. Sherlekar, and G. Venkatesh, Extensions to
programmable DSP architectures for reduced power dissipation, in Proc.
11th Int. Conf. VLSI Design, Jan. 1998.
[5] A. P. Chandrakasan and R. W. Brodersen, Minimizing power
consumption in digital CMOS circuits, Proc. IEEE, Apr. 1995, pp. 498
523.
[6] M. Mehendale, S. D. Sherlekar, and G. Venkatesh, Low-Power
Realization of FIR Filters on Programmable DSP s , IEEE Trans.

Signal Processing, Dec. 1998, pp. 546-553.
[7] M. R. Stan and W. P. Burleson, Bus invert coding for low power
I/O, IEEE Trans. VLSI Syst., Mar. 1995.
[8] C.-L. Su, C.-Y. Tsui, and A. M. Despain, Saving power in the
control path of embedded processors, IEEE Design Test Comput., pp.
24 30, Winter 1994.
[9] L. Benini, G. D. Micheli, E. Macii, D. Sciuto, and C. Silvano,
Asymptotic zero-transition activity encoding for address busses in low-

power microprocessor-based systems, in Proc. GLS-VLSI 97, 7th Great
Lakes Symp. VLSI, Mar. 1997.
[10] E. A. Lee, Programmable DSP architectures: Part I, IEEE ASSP
Mag., Oct. 1988, pp. 4 19.
[11] M. T.-C. Lee, V. Tiwari, S. Malik, and M. Fujita, Power analysis
and minimization techniques for embedded DSP software, IEEE
Trans.VLSI Syst., pp. 123 135, Mar. 1997.
[12] Eshraghian and Weste, The principles of CMOS VLSI design,
Pearson Education Asia, 1993, pp-231-237.

[13] John G. Proakis and dimitris G.Monoloakis, Digital signal
processing, Prentice Hall India, Dec.2000, pp.-500-590.
[14] Vijay K. Madisetti, VLSI digital signal processors, IEEE press,
1995, pp.-121-190.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

