
     
Abstract: This paper addresses the problem of reducing power 
dissipation of digital signal processors basically used for 
implementing FIR and IIR filters and FFT algorithms. An approach 
is presented for minimizing power consumption for digital systems 
implemented in CMOS technology which involves optimization at all 
levels of the design. This optimization includes, at the highest level 
the algorithms that are being implemented, the architecture for 
implementing the circuit, the circuit topology and styles, and at the 
lowest level the technology used to implement the circuit. It describes 
a generic DSP architecture and identifies the main sources of power 
dissipation during FIR and IIR filtering and FFT algorithm 
implementations. It presents number of issues and transformations to 
reduce power dissipated in one or more of these sources. These 
transformations have been encapsulated in a framework that provide 
the comprehensive solution to low power realization of various FIR, 
IIR and FFT algorithms on programmable digital signal processors.  

Index terms: Finite impulse response (FIR) & Infinite 
Impulse response (IIR) filters, Architecture  driven voltage 
scaling, Bus invert coding, Gray coding, Transition zero 
coding, CMOS VLSI. 

I. Introduction 
Over the last two decades, technology scaling and systems 
development have primarily targeted increasing system 
throughput; reducing the minimum feature size has 
reduced gate delays and allowed high level of integration. 
However, as demand for portability increases, with speed, 
the need of low power design in systems has become 
increasingly important. To maximize battery life and 
minimize weight the systems and applications such as a 
portable communications terminals, which demand 
extreme computation capabilities requiring more then a 
billion operations/sec to support wide range of user 
applications including speech, graphics, and full motion 
video.               

Many of these applications, built as a systems on a 
chip , perform real time signal processing functions using 
a programmable DSP core embedded in them. Finite 
impulse response (FIR) filtering, infinite Impulse response 
filtering (IIR), FFT algorithms are most commonly used 
functions. FIR and IIR filtering is achieved by convolving 
the input data samples with the desired unit impulse 
response of the filters. The output Y[n] of the filter is 
given by 
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The weights A[i] and B[i] in the expression are the filter 
coefficients. But B[i] = 0 for FIR filters. And IIR filters 
response depends upon both the previous and present input 
samples X[n-i] as well as upon the previous output 
samples Y[n-i].But for applications requiring minimum 
phase distortion FIR is the ideal choice because of      

symmetric coefficients (A[i]=A[N-1-i]) are possible.             
The typical DSP architecture[1],[10] to implement all the 
DSP applications is shown in Fig.1[1]. The techniques to 
reduce the power are targeted to this architecture. 

 

Figure 1 Typical DSP Architecture 

The architecture has two separate memory spaces for 
program and data which can be addressed simultaneously. 
One of the memories can be used to store input data 
samples and the other to store the coefficients. The 
program is usually stored on the available on chip ROM 
which is usually electrically programmable but the 
coefficients as well as program can also be stored in same 
memory. Multiplier and accumulator unit (MAC) is 
composed of an adder, multiplier and the accumulator. 
Usually adders implemented in DSPs are Carry-Select or 
Carry-Save adders as speed is of utmost importance in a 
DSP[3],[10]. One implementation of the multiplier could 
be as a parallel array multiplier which computes partial 
products and adds them to the previous partial products. 
Other ways are multiplication based on LUTs. There are 
some Multiplier-less implementations too. Basically the 
multiplier will multiply the inputs and give the results to 
the adder, which will add the multiplier results to the 
previously accumulated results. This entire process is to be 
achieved in a single clock cycle. The FIR & IIR filtering 
can be performed using this architecture as a sequence of 
MAC s.                    

The sources of power dissipation in CMOS 
circuits can be classified as dynamic, short circuit and 
leakage power[12]. 
Pavg= Pswitching + Pshort-circuits + Pleakage 

       =  . CL. Vdd
2 . fCLK + ISC . Vdd  + I leakage.  .  Vdd        

The first term represents the switching components of 
power, where CL is the load capacitance, fCLK  is the clock 
frequency and  is the switching factor or node transition 
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activity factor, which shows high transition level (Vdd) 
should be reduced to min. possible as it have quadratic 
effect on power. And  . CL  can be reduced by choice of 
logic function, logic style, circuit topology, data statistics 
and sequencing of operations. Second term represents 
short circuit component of power which is dependent upon 
rise and fall time of input signal. To reduce this 
component, the rise and fall time of input should be less 
then or equal to that of the output signal. If Vdd < Vtn + | Vtp 

| , Isc  can be completely eliminated. Architecture driven 
voltage scaling discussed in this paper allows reduction in 
supply voltage. Third term represent the leakage 
component of power, which can not be reduced much, as it 
depends upon the technology. The silicon on insulator 
technology have very less leakage and sub-threshold 
current.                          

The low power transformations described 
in this paper aim at reducing one or more of these factors 
while maintaining the throughput of the DSP system. The 
rest of the paper is organized as follows. In Section II, the 
main sources of power dissipation and measures for 
estimating the power are discussed. In Section III, 
optimizations at algorithm level and in Section IV, 
optimizations at architectural level are discussed. 
Similarly, section V, VI discussed the optimization  at 
physical circuit and logic level, and at technology level 
respectively. Finally, conclusion have been made in 
Section VII with the description of a complete framework 
for applying the issues and transformation discussed in all 
the sections.   
    

II. Power Dissipation- Sources And Measures  

               

Each step in FIR, IIR, FFT filtering algorithms 
involves getting the appropriate coefficient and data values 
and performing the MAC operation over them. The 
address and data busses of both memories and multiplier-
adder data path experience the highest signal activity 
during the filtering operations[8]. For a typical embedded 
processor, address and data buses are networks with a 
large capacitive loading. Hence signal switching in these 
networks has a significant impact on the power 
consumption. In addition to the net capacitance of each 
signal of the bus, inter-signal cross-coupling capacitance 
also contributes to the bus power dissipation. The power 
dissipation due to inter-signal capacitance varies 
depending on the adjacent signal values. The current 
required for signals to switch between 5 s (0101b) and 
A s (1010b) is about 25% more than the current required 
for the signals to switch between 0 s (0000b) and F s 
(1111b).                          

Another component is power dissipation in 
multiplier and adder. It is very difficult to find the 
transition density at each and every node of the internal 
circuits. Also most cause of run-time failure is the extent 

of circuit activity. As given in the literature [2], the 
algorithm of how transition density propagates from input, 
internal nodes of the circuit and then to the output nodes. 
This algorithm is implemented in simulator called 
DENSIM to measure the transition density of the circuit 
which accepts transition density and equilibrium 
probability at the primary inputs of the circuit. Where 
transition density of any signal x(t), t  (- , + ) is defined 
by 

D(x)=limT  Nx  (t)    T 
and Nx  (t) is the number of transitions of x(t) in the time 
interval (-T/2, T/2). And equilibrium probability of x(t) is 
denoted by P(x) and given by  

P(x)=limT ( 1/ T)  x (t) dt 
As x(t) is the digital signal, P(x) is the fraction of time that 
x(t) is in 1 state and D(x) is the average no of transition 
per unit time. Thus D(x) for 10 MHz clock is 20*106. The 
various test on this simulator shows, the number of 
transitions at the circuit nodes is directly related to no. of 
transitions at the primary input of the circuits. Hence our 
main emphasis is to minimize the number of transitions at 
the input of the multiplier and adders.  

For the address and Data buses, the hamming 
distance between consecutive signal values and the number 
of adjacent signal toggling in opposite direction thus form 
the measure of power dissipation in the buses. For the 
multipliers, the power is directly proportional to the 
transition densities and the probabilities of the 
multiplier/adder inputs[2]. The transition densities of the 
multiplier inputs depend on the Hamming distance 
between successive input values. The input signal 
probabilities depend on the number of 1 s in the input 
signal values of the multiplier[3]. These two thus form the 
measures of multiplier power dissipation.                    

Third measure of the power dissipation is the 
effect of circuit state on the power cost of an instruction  
stream[11], which is more marked in case of DSP 
processor. An instruction level power model based on the 
base cost and the overhead cost of an instruction where the 
base cost of a given instruction is defined as average 
current drawn by the processor during the repeated 
execution of instruction. The overhead cost is needed to 
account for the effect of  circuit state change for an 
instruction sequence consist of different instructions. This 
suggests that changing the instruction order by appropriate 
scheduling of an instruction can lead to reduction in the 
power cost of the program. This is called cold scheduling.   

III. Optimization at algorithm level 
The main factor which decides the power consumption is 
the decision made for choice of algorithm. The ability for 
algorithm to be parallelized is critical and the basic 
complexity of computation must be highly optimized. This 



section includes, how to minimize numbers of operations 
and switching activity at algorithm level. 

Concept here is that due to quadratic effect of Vdd  on 
power, reduction on supply voltage has a great effect, but 
it reduces the speed. This section discusses the 
transformations which allow the reduction of supply 
voltage for the same throughput.  

--Signal flow graph of FIR 
filter as shown in figure 2[13]. require delayed versions of 
input samples multiplied by the stored coefficients. Due to 
which during every multiplication both the multiplier 
inputs are switched to different values leading to large 
switching losses in multiplier.  

 

Figure 2 Signal flow graph of FIR filter 

These losses can be minimized by transforming the signal 
flow graph using transposition theorem[13] into SFG 
shown in fig.3. This involves multiplying all the 
coefficients with same input data X[n]. 
                                Since during the filter 
computation, one of the multiplier inputs is fixed, it results 
in significant power saving in the multiplier. But It have 
one drawback also that the architecture is required to be 
change to perform the write operation after every 

 

Figure 3 Signal flow graph of transposed FIR filter 

cycle. Such architecture[4] is shown in Fig. 4 which 
supports N cycle implementation of N tap transposed filter. 

 

Figure 4 Architecture to support transposed FIR filter 

But write operation after every cycle will result in extra 
switching on high capacitance data lines which results in 
increased power dissipation compared to the direct form 
implementation. Thus making such architecture overall 
less power efficient. Another Technique involves 
implementing FIR filter in terms of its decimated sub-
filters using multi-rate architectures[4]. The signal flow 
graph of a multi-rate architecture that uses a decimation 
factor of two is shown in Fig. 5.  

 

Figure 5 one level decimated multirate architecture 

H0 and H1 are the decimated sub-filters formed by 
grouping even and odd coefficients of the original filter. 
The architecture processes two input samples 
simultaneously to produce the corresponding two outputs. 
From the signal flow graph shown in Fig. 2, an N-tap 
direct form FIR filter requires N multiplications and (N-1) 
additions per output. For the architecture shown in Fig. 5, 
assuming even number of taps, each of the sub-filters is of 
length N/2 and hence requires N/2 multiplications and        
( N/2-1) additions. There are four more additions required 
to compute the two outputs Y0 and Y1. This architecture 
hence requires 3N/4 multiplications per output which is 
less than the direct form architecture for all values of  N 
and requires (3N+2)/ 4 additions per output which is less 
than the direct form architecture for N>6.            

Because of the parallelism involved in this 
architecture number of cycles required to compute one 
output of filter are less than direct form architecture, since 
the multi-rate architecture requires fewer cycles, the 
frequency can be lowered by fmulti-rate/ fdirect. and still 
achieve the same throughput. With the lowered frequency, 
the processor gets more time to execute the instruction. 
This time-slack can be used to appropriately lower the 
supply voltage using the following relationship:            

Delay  Vdd / (Vdd  Vtn)
2 

Based on above observation: Ctotal_multirate / Ctatal_direct  0.75. 
This reduction in the switched capacitance translates into  
0.75 saving in the power dissipation. Further reduction can 
be achieved by lowering the supply voltage as discussed 
above. 

As  in IIR filters, there is a 
feedback, the computation can not be easily parallelized 
and algorithmic transformation are required to achieve 
recursive bottlenecks. Consider a first order IIR filter[5] as 
shown in fig. 6(a) with a critical path of 2 by assuming 
each operation takes one cycle.  Due to recursive 



bottleneck imposed by the filter structure, it is impossible 
to reduce the critical path using retiming and pipelining 
discuss in the section IV which we want, so that we are 
able to reduce the power for same throughput. Applying  
loop unrolling does not change the effective critical path as 
shown in fig.6(b) and therefore the supply voltage can not 
be reduced.  

 

Figure 6 Transformation of IIR algorithm to reduce 
power 

But after applying loop unrolling[5], distributivity and 
constant propagation transformation can be applied in a 
systemic way, the output of the samples can be represented 
as  
                    YN-1 = XN-1 + A * YN-2 

                    YN = XN  + A*XN-1+ A2 *YN-2 

The transformed solution has a critical path of 3 (fig 6.(c)). 
However the pipelining can now be applied reducing the 
critical path further to 2 (fig 6(d)). Since we are processing 
the 2 samples in parallel with in 2 cycles. Hence the supply 
voltage can be reduced to half at which the delay increased 
by the factor by 2. But at the same time transformed SFG 
requires 3multiplications and 3 additions for processing 2 
samples while the initial graph requires only one 
multiplication and one addition to process one sample, 
hence there is 50% increase in the capacitance. The 
reduction in the supply voltage, however, more than 
compensates for the increase in capacitance resulting in 
overall reduction of power by 2 due to quadratic effect of  
Vdd.  This means we can speed up the circuit by more loop 
unrolling combined with the other transformations and 
hence further reduction in voltage is possible for the same 
throughput. Unfortunately, the capacitance grows 

linearly[5] with unrolling factor and soon limits the gains 
from reducing the supply voltage. This result in an 
optimum unrolling factor for power is 3 beyond which the  

 

Figure 7 How power optimization is different from 
speed 

power consumption starts to increase again as shown in fig 
7. 

   

 Scaling the output of a filter preserves its characteristics in 
terms of pass band ripple and stop band attenuation, but 
results in an overall magnitude gain equal to the scale 
factor[6]. For a scale factor K, from Eq (1) we get  
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Thus the coefficients of the scaled filter are given by 
(K.A[i]) and (K.B[i]). Given the allowable range of scaling 
(e.g., 3 dB), an optimal scaling factor can be found such 
that the total Hamming distance between consecutive 
coefficient values is minimized. This can thus reduce not 
only the power dissipated in the coefficient memory data 
bus but also the power dissipated in the multiplier 

Given an N-tap FIR or IIR filter with coefficients (A[i], 
i=0.--.N-1) and (B[i], i=1,2--M-1) that satisfy the response 
in terms of pass band ripple, stop band attenuation, find a 
new set of coefficients (LA[i], i=0,1,---,N-1)  such that the 
total Hamming distance between successive coefficients is 
minimized while still satisfying the desired filter 
characteristics[6].                      

This coefficient optimization problem can be 
formulated as a local search problem, where the optimum 
coefficient values are searched in their neighborhood. This 
is done via an iterative improvement process. During each 
iteration one of coefficients is suitably modified so as 
reduce the total Hamming distance while still satisfying 
the desired filter characteristics. The optimization process 
continues till no further reduction is possible. 



The number of 1s in A[i] and -A[i] (where negatives are 
stored in 2 s complement format) can differ significantly. 
This fact can be taken advantage of. If rather than storing 
A[i]s we store A[i] for all such numbers for which A[i] 
has lesser number of ones and in the MAC instead of 
multiply/add we use multiply/subtract, the result will be 
same[6]. But significant power dissipation reduction is 
observed in multiplier and coefficient data bus power.                      

But to implement it some modification are 
required, If  coefficients to be negated have random pattern 
then filtering can be performed using two loops- one for 
repeated multiply add and other for repeated multiply 
subtract, by grouping coefficients to be negated together. 

The order of computing the products and then addition can 
be interchanged due to associative and distributive 
property of summation[6]. For a 3-tap IIR filter, the output 
can be computed as 
       Y[n]= A1X[n-1]+A2X[n-2]+B1Y[n-1]  OR 
       Y[n]= B1Y[n-1]+A1X[n-1]+A2X[n-2] 
Since these coefficients determine the order of data to be 
appeared on the data buses for coefficient as well as input 
samples. Hence Hamming distance between two 
consecutive coefficients can be minimized by perfect 
ordering of above sum of products. For a N-tap filter there 
are such N! different coefficient orders are possible. To get 
the perfect order nearest neighbor algorithm should be 
used which provide the heuristic search to get the order 
corresponding to minimum switching activity on the data 
bus.                   

After the order is found, the data in the data 
memory is also required to reorder so that the desired 
sequence of coefficient-data product computations is 
achieved when the memory is accessed sequentially. 

If the input is being multiplied with multiple coefficients, 
some of the shift-add terms can be shared and the number 
of operations can be reduced[5]. Fig.8 shows an example 
of exploiting multiple coefficients multiplied with same 
input.  

 

Figure 8. Example demonstrating sub-expression 
example 

On the left is brute force implementation in which each 
multiply is computed separately. On the right side, 

approach exploits common terms in the coefficients and 
therefore some of the shift- add terms can be shared.  

IV. Optimization at architecture level   
An architecture driven voltage scaling strategy is presented 
in this section in which concurrent architectures are used to 
reduce supply voltage by retaining throughput. 

Architecture can be modified to compensate for reduction 
in speed due to reduction in Vdd.  These modifications 
involve two major features called parallelism and 
pipelining as discussed below: 

To illustrate how architectural techniques 
can be used to compensate for reduced speed a simple 8-b 
datapath consisting of adder and comparator is 
considered[5]. Fig.9 shows inputs A and B are added and 
the system is clocked with a clock period of T. Let s take 
this data path as a reference whose power dissipation is 
given by 

Pref = Cref  Vref
2 fref 

Where Cref is effective capacitance being switched per 
clock cycle. One way to maintain throughput for reduced 
Vdd is to utilize parallel  

 

Figure 9 Simple data path for adder and comparator 

architecture as shown in fig. 10, two identical data paths 
are used, allowing each unit to work at half the original 
rate while maintaining the original throughput. Since the 
speed requirements of adder and comparator are reduced to 
half, hence voltage can be reduced from 5V to 2.9V, the 
voltage at which the delay is doubled[5] as shown in 
fig.11.                 

While the data path capacitance has increased by 
the factor of 2. and corresponding frequency decreased by 
the factor of 2. Unfortunately, there is a slight increase in 
the total capacitance due to extra routing resulting in an 
increased capacitance by the factor of 2.15. Thus the 
power for parallel datapath is given by  

Ppar = Cpar Vpar
2 fpar 

                                 = (2.15Cref) (0.58 Vref )
2 (fref /2) 

  =   0.36 Pref 



The amount of parallelism can be further increased to 
reduce the supply voltage. But up-to what limit, we can 
reduce the supply voltage, is  

 

Figure 10 Parallel implementation of adder and 
comparator 

 

Figure 11 Normalized delay w.r.t supply voltage 

decided by power consumption of overhead circuitry 
which dominates at some optimum voltage.  
The same parallelism concept can be used for memory 
access as shown in fig.12 two alternate schemes for 
reading 8-b data from memory at throughput f.  On the left 
hand side serial access scheme and second approach is to 
read several words from memory and clock the memory at 
lower rate for the same throughput. For example reading 8 
bytes in parallel require memory to be clocked at 1/8 of the 
serial rate. Hence supply voltage can be reduced as time 
available to read the memory is 8 times the serial version. 
The parallel version can run at supply voltage of 1.1V.But 
this optimization is possible only when data access pattern 
is sequential in nature.  

Pipelining enables the more efficient use of 
on-chip silicon resources, allows multiple operations to  

 

Figure 12 Parallel memory access for Vdd reduction 

occur, and enables much faster cycle times[14]. What 
happens in pipelining is explained as follows: Throughput 
of any system consisting of a series of operations is limited 
by the single slowest operation in the complete series. So if 
this single slow operation is further broken down into a 
number of stages, the intermediate results will be available 
faster for the next stage. Each stage result(s) are stored in 
registers that follow that stage, and so the next stage can 
start operating on these results of the previous stage & 
simultaneously the previous stage can start operating on 
the next succeeding set of data. Thus simultaneously no 
stage of the 
pipeline is free. DSPs can take advantage of pipelining as 
the data inputted in a DSP is always continuous.  

 

Figure 13 Pipelined implementation of simple data path 

As shown in fig. 13, with the additional pipelined latch, 
the critical path becomes the max[Tadder,Tcomaparator], 
allowing the adder and comparator to operate at slower 
rate[5]. For example the two delays are equal, allowing the 
supply voltage to again be reduced from 5V used in the 
reference data path to 2.9V. However, there is a much 
lower area overhead incurred by this technique, as we only 
need to add pipeline registers. Hence addition of extra 
latches, increasing the effective capacitance by approx. a 
factor of 1.15.The power consumed by pipelined data path 
is 

Ppipe = Cpipe  Vpipe
2 fpipe 



=(1.15 Cref) (0.58 Vref)
2 fref = 0.39 Pref 

Hence power reduced by this technique is by the factor of 
2.5, providing approx. the same power reduction as 
parallel architecture with the advantage of  lesser area 
overhead. 

 

Hence bigger improvement is possible if both parallelism 
and pipelining [5]are applied as shown in Table. I 

In most signal processing applications, 2 s complement 
representation is used for arithmetic and logical operation. 
But fig.14 shows a short segment of a speech signal and 
the associated transition probabilities (Pr) assuming 2 s 
complement for each bit[5]. LSB s are uncorrelated and 
hence Pr-0.5 and MSB s are highly correlated. If signal 
switches at higher rate form +ve to ve value, hence uses 
small dynamic range then max. possible value determined 
by the bit width, it results in large switching activity. 

In sign magnitude only one bit 
is allocated for the sign and other for magnitude. In this 
case, if the dynamic range of a signal does not span the 
entire bit-width, only one bit will toggle when the signal 

switches sign, as opposed to the 2 s complement 
representation 
where number of bits switches due to sign change. To 
illustrate this, the transition activity on 16-b data bus with 
random gaussian data applied to it is shown in fig. 15 for 
2 s complement number representation and sign magnitude 
represent[5].  

 

Figure 15 Transition activity for different number 
presentation 

In which  is the correlation between two consecutive data. 
The above analysis suggest that sign magnitude has 
advantage in terms of number of transitions on busses. 
However addition and subtraction computation are 
difficult to implement in sign magnitude representation. So 
sign magnitude is helpful if large busses have to be driven 
(like external memory access), where overhead of 
converting into 2 s complement is insignificant as 
compared to reduction in the capacitance switched in large 
busses. 

Bus invert coding (BIC) also called starvation coding and 
limited weight coding is helpful in reducing the Pdis.  at I/O 
pads where due to huge dimensions of the devices, large 
currents are required to be  drive the capacitance. In this 
coding we look for reducing I/O activity with assumption 
that each node has the same average load capacitance at 
I/O and internal nodes. Total power dissipated on the chip 
is given by 
Pchip=Cint.N(transitions)int + CI/O . N(transitions)I/O 

Internal transitions are much larger then I/O transitions 
because of large number of internal nodes, but Cint  is much 
smaller than CI/O.  The Idea behind this coding is that: code 
the data in order to decrease the number of transitions on 



the I/O node even at the expense of slightly increasing the 
number of transitions on the low capacitance node[7]. But 
total effect on power dissipation is reduction because of 
large I/O capacitance. The data on n-bit wide bus can have 
2n  possible values with equal probability. The average 
number of transitions per clock cycle will be n/2. This 
code needs one extra control bit called 

 
bit. Let 

data d is to transmit and b denotes the coded value on 
the bus.  

 

By convention when b=d and when invert=1, bus 
value is the complement of data value. Power can be 
reduced by coding the I/O as follows: 

i. Compute the hamming distance between the 
present bus value and next data value. 

ii. If the hamming distance is larger than n/2, set 
=1, and make the next bus value equal 

to the inverted next data value. 
iii.        Otherwise let =0 and let the next bus 

value equal to the next data value. 
iv.        At the receiver side the contents of the bus 

must be conditionally inverted according to 
the invert line, unless the  data is not stored 
encoded as  it is. 

With this coding average number of transition per time slot  
becomes 3.27(instead of 4). But maximum number of 
transitions is reduced by half. Hence peak power is 
reduced by 50% but average power is reduced only by 
18.2%. If the numbers of data lines are large then average 
power is reduced by more amount. To implement the bus 
invert coding extra circuitry is needed which means extra 
area and sometimes lower speed. A possible circuit for 8-
bit data bus at driver side[7] is shown in fig.16 that 
consists of 16 extra X-OR gates and a majority voter. This 
circuit would result in extra internal transitions and delay, 
but bus drivers and receivers and latches are also required 

in un-encoded case. But the delay and extra power 
consumption of majority voter should be considered 
carefully. At the receiver side because it only needs to 
invert the bus if invert line=1, it can be very easily 
implemented. If encoder and decoder have large delay then 
pipelining can be used to get same throughput. 

 
Bus invert coding is not good for address 

bus, as mostly the data on this bus is sequential and 
number of transitions on  average are not more than n/2. 
Following techniques are more helpful to reduce power 
consumption on the address bus. 

 

Address busses are used to fetch the 
data and coefficient (instruction also) from the external or 
internal data and program memory respectively. By 
providing the addressing by gray codes which changes by 
one bit only as sequenced from one number to next 
number[8]. Hence significant number of bit switches can 
be eliminated as shown in Table.2[8], the comparison of 
bit switches for binary and gray sequential addressing. It 
also shows that higher order bit on gray code sequence are 
not switched until all bit switch permutations for low order 
bits takes place. Hence gray coding is beneficial also for 
paging  as binary coding. Instead of binary counter, the 
gray counter is required on chip to access the external or 
internal memory, to which we can optimize by good 
designing to consume low power.  Following fig. 17 shows 
the comparison between  

 



binary and gray coding for various packages[8]. But it is 
unrealistic to assume that the address computation units, 
the data path, the memory decoder and even the compiler 
could be modified to generate gray code addressing. 

  

Hence it is not easy to implement it with simple gray 
counter. Another possibility is implementing the gray 
encoder and decoder on both sides. 

 

This technique relies on the 
fact in a remarkable no. of cases, patterns traveling on the 
address bus are consecutive[9]. Hence devices located at 
receiving end of the bus can automatically calculate the 
address to be received at the next clock cycle. Hence 
transmission of new pattern can be avoided. But there are 
exceptions to this behavior, as control flow instructions 
cause interruption in the sequence of consecutive addresses 
on the instruction flow and data which not stored in arrays, 
are often addressed without any regular pattern. But 
usually sequential addressing dominates. This techniques 
also require one extra line called INC, If two addresses are 
consecutive then INC line=1. The address lines are frozen 
and new address is computed directly by the receiver. 
When two address are not consecutive then INC=0, bus 
lines operate naturally. As long as the addresses are 
consecutive, there is no any transition on the address bus 
and hence thus coding is transition zero coding (T0). This 
approach is helpful if consecutive addresses have very 
large lengths. To fully evaluate the effectiveness of this 
coding the cost of  T0 encoding/decoding from binary 
addresses should be taken into account. At a given clock 
cycle t, the encoder as shown in fig.18[9] computed the 
incremented address of cycle t-1and compare it to the 
address generated at cycle t. If both are equal then INC 
line is raised and the old address is left  

 
on the bus otherwise INC line=0 and newer address is 
loaded onto the bus. The decoder is even simpler shown in 
fig.18(right side). At any given cycle the last cycle address 
is incremented. If INC line is high, the older incremented 
address is used otherwise the address coming from bus line 
is selected. If encoder/decoder are optimized for min. 
delay. The critical path at the encoder side is late arrival of 
data b, comparator and MUX. And on the decoder side is 
incrementer and MUX. Hence this architecture circuit can 
be make very fast. But gray encoder/decoder consume less 
power and area as compared to T0 encoder/decoder, but 
gray decoder is consist of chain of  XOR s due to which its 
delay is more as compared to T0 encoder/decoder. 
Hence for wider buses, if performance is main factor then 
T0 coding is the only alternative[9]. For power is main 
factor, there is trade-off between both as T0 
encoder/decoder consume large power. For area is main 
factor, gray code is the best option, where power is the 2nd 

concern. 

This technique is used to 
reduce the power dissipated in the adder, its input buses 
and the accumulator[6]. This not only reduces power 
dissipation in these buses, it also reduces the power 
dissipated in the adder and the accumulator that drives one 
of the buses. Bitwise commutativity implies that the result 
of an ADD operation is not affected even when one or 
more bits from one input are swapped with the 
corresponding bits in the second input.  

The technique compares for every bit, the new value with 
the current value, and performs bit-swapping if the two 
values are different. Fig. 19 shows an implementation of 
this scheme[6]. As can be seen from Fig. 19, the reduction 
in the toggles in the adder inputs is achieved at the expense 
of additional logic, i.e., the MUXes and the XOR gates. 
The power dissipated in this logic offsets power savings in 
the adder and its input buses.  

 

The final savings depend on the data values being 
accumulated and also on the relative capacitances of the 
adder input buses and the mux inputs. 



  
Due to finite propagation 

delays from one logic block to the next, the node can have 
multiple transitions in a single clock cycle before settling 
to correct logic level[5]. To minimize the extra transitions 
and power in a design, it is important to balance all signal 
paths and reduce the logic path.  

 

Fig.20 shows chain and tree implementations for adding 
four numbers if we assume that all the inputs arrive at 
same time. Then due to finite propagation delay of first 
adder for the chained case, the second adder is computing 
with the new C input and the previous output of A+B and 
so on . Hence there are more chances of glitches as 
compared to tree structure which is balanced. But decrease 
in the logic path as in case of tree structure will increase 
register power. Hence the decision to increase or decrease 
the logic path is based upon trade-off between the glitching 
capacitance and the register capacitance. But it is also 
notable that reducing the logic path allows reduction in 
supply voltage while keeping throughput same.  

V. Physical circuit and logic level optimization   

 At the layout level, this technique aims 
at reducing power dissipation due to cross-coupling 
capacitance. One approach to achieve this is to increase the 
spacing between the bus lines. This however results in 
increased area. In this approach the bus bits are reordered 
in such a way that the number of  adjacent signals toggling 
in opposite direction are minimized[6]. 

 

Figure 21 Bus bit reordering scheme  

Fig. 21 illustrates[6] this approach and shows how the bus 
signals A0 A7 can be reordered in the sequence of A2-A0-
A4-A1- A3-A5-A7-A6. 
The numbers of algorithms are available to get optimum 
bus order. The input to these algorithms is coefficient 

values and there order in which they are accessed from 
memory for FIR or IIR computation. The most applicable 
algorithm is hill climbing search algorithm.  

At the layout level, the 
place and route should be optimized such that signals that 
have high switching activity should be assigned short 
wires and signals with lower switching activities can be 
allowed progressively long wires. 

  

For low power, as is true for high 
speed design, it is important to equalize all delay paths so 
that single critical path does not unnecessarily limit the 
performance of the entire circuit. As we known that to 
increase the speed we can increase the size of the 
transistor, hence it allows more reduction in supply voltage 
for same throughput. But optimizing for power is totally 
different[5].  

 

Fig.22 shows the two-gate circuit[5], with first stage 
having input gate capacitance Cref driving the next stage 
with the parasitic capacitance due to substrate coupling 
and interconnect Cp between them. Then the delay of first 
stage at supply voltage Vref  is given by 

TN = K( Cp + Cref)Vref   N Cref(Vref Vt)
2 

= K( 1+ 

 

N) Vref  Vref(Vref Vt)
2 

where = Cp  Cref , and K is constant. Speed can be 
increased by factor of  (1+ 

 

N) 1+  if the size is 
increased by N w.r.t reference circuit having N=1. 

 

But if we want the supply reduction to decrease the power 
then speed to the Vdd can be scaled down to get same 
voltage where delay of the scaled design and the reference 
design are same which is given by  

VN =(1+ 

 

N)Vref (1+ )

 



Then energy consumed by first stage is given by   

Energy(N)= ( Cp +N Cref)VN
2 

                                   =NCref (1+ 

 
N)3 Vref

2 (1+ )2  

For =0, energy increases linearly w.r.t N. For >0, 
Initially energy decreases with increases in N, due to 
reduction in delay compensates the increase in capacitance 
due to increasing N and after some point energy increases 
with increase in N as the capacitance factor NCref 

dominates and also parasitic capacitance increases as 
shown in fig.23 (which shows the simulation result of 8-bit 
adder) for various values of N[5]. Which shows that if Cp 

due to interconnects is very large as in case to drive the 
address and data buses, then increase in the size is helpful 
in reduction of power by using large size buffer at the 
driving end. But if CL is not dominated by interconnects 
then minimized sized device should be should. 

 

Another approach to reduce the 
supply voltage is to reduce the swing at the output node[5]. 
For example, using an NMOS device to pull up the output 
will limit the swing to Vdd 

 

Vtn. The power consumed will 
be reduced to CLVdd(Vdd 

 

Vtn). But this scheme has two 
negative effects: First, noise margin is reduced at the 
output by Vtn. Second, since the output does not rise to the 
maximum value, the PMOS of the next stage will be on 
and hence the next static stage will have static power loss, 
increasing the effective energy per transition. Hence 
special gates are required to increase the noise margin at 
signal level and eliminate the short circuit currents as 
shown in fig. 24[5], which requires extra transistors and 
hence have more parasitic capacitance. This circuit uses a 
precharged scheme and the device M3 is used to clip the 
voltage of bit line to Vdd 

 

Vtn . During =1, the evaluation 
period, if Vin is high, the bit  

  

line will begin to drop as shown in fig.25.As the ratio of 
the capacitance of the bit line to the internal node is very 
high, once the bit line  is dropped to 0.2V to sufficiently 
turn on M3, the internal node drops to the potential to the 

potential of bit line, providing signal amplification. Thus 
the circuit greatly reduces the voltage swing on the high 
capacitance line, which reduces the energy, and provides 
the amplification, which reduces the delay as well. This 
technique is useful for high capacitance bit line or nodes. 

 
One important circuitry to 

operate the circuit at low voltages is the level shifter[5]. 
That can convert the low voltage swing form the core of  

 

the chip to the high voltage swing at the I/O pin or vice-
versa. Also different parts of the system could operate at 
their own optimum supply voltage and communicate with 
each other using level conversion circuitry, in which the 
design of high efficiency low voltage in which voltage is 
programmable, must be considered. 

 

Power down is 
not only useful at chip and module level but also at the 
logic level by reducing the switching the switching activity 
at the expense of some additional control circuitry[5]. 

  

Taking example of comparing the two numbers at the 
output of combinational circuit as shown in fig26.If the 
most significant bits, A[N-1] and B[N-1], are different 
then the computation of  A>B can be strictly performed 
from MSB s and therefore the comparator logic for bits 
A[N-1:0] and B[N-1:0] is not required and hence the logic 
can be power down. One approach to accomplish the 
power down is shown in fig26, is to gate the clock. The 
XNOR output of the A[N-1] and B[N-1] is latched by the 
special register to generate the gated clock. This gated 
clock is then used to clock the low order registers.  



 
VI. Optimization at technology level

 
We know that the supply voltage have quadratic effect on 
power reduction at the expense of delay. As shown in 
fig.11, the delay increases drastically as supply voltage 
approaches threshold value[5]. Since the objective is to 
reduce power consumption while keeping the throughput 
of overall system fixed, compensation for these increased 
delays is required. As discussed in Section II architecture 
driven voltage scaling strategy uses the concept of 
parallelism and pipelining to compensate for increased 
delays. Another approach is to reduce the threshold voltage 
of the device. Low threshold devices should be used. 
Reducing the threshold voltage allows the reduction in 
supply voltage without loss in speed. For example the 
circuit running at the supply voltage of 1.5V with Vt=1V 
have same performance as the circuit running at supply 
voltage of 0.9V and Vt=0.5V according to the following 
equation 

Td= CLVdd/ Kn ( W/ L) ( Vdd  Vt)
2 

Fig.27 shows the plot of normalized delay Vs. threshold 
voltage for various supply voltages[5].  

 

But how low the threshold can be reduced. This limit is set 
by the adequate noise margin and the increase in the sub-
threshold currents. Noise Margins will be relaxed in low 
power designs because of the reduced current being 
switched, but sub-threshold current will result in 
significant static power dissipation. 

 
       Fig.28 shows a plot of energy Vs. threshold voltages 
for a fixed throughput for a 16-b data path ripple carry 
adder. Which shows the optimum threshold voltage must 
compromise between improvement of current drive at low 
supply voltage operation and control of threshold leakage. 
If feature size shrinks below 1.0 m, the delay 
characteristics as a function of supply voltage does not 
have quadratic relationship. As a result of velocity 
saturation, the current is no longer a quadratic function of 
voltage but linear; hence current drive is significantly is 
reduced to 
I= W Cox ( Vdd  Vt ) vsat. 

And hence the delay of the circuit is given by CVdd / I, by 
comparing these two equations delay for submicron 
technology is relatively independent of  supply voltages at 
high electric fields. Hence Vdd  can be reduced to some 
extent for velocity saturated device with little penality in 
speed performance.  

VII. Conclusions

  

Figure 29 Frame work for designing low power digital 
signal processor 



This paper discusses the identification of main sources of 
power dissipation in DSP and their measures. And provide 
the techniques to reduce them at each level of designing 
the digital signal processors. First of all, the specifications 
are given to us, and we need to design the algorithm using 
appropriate method of designing FIR, IIR filters and 
modify the algorithm to reduce the computations, this can 
be performed by various transformations as discussed 
above. Then coefficient modifications (like scaling, 
ordering, optimization, selective coefficient negation) are 
discussed at algorithm level to reduce the power further. 
Then at architecture level, the architecture driven voltage 
scaling which involve parallelism, pipelining is discussed. 
And then different coding techniques to reduce the power 
consumption on address bus and data bus are discussed. At 
physical layout level and logic level, this paper include 
activity driven place and route, the use of minimize sized 
devices, reduced swing logic, and logic level optimization 
and power down. At the technology level, this paper 
discusses the reduction in the threshold voltage Vt and its 
trade-off with leakage and sub-threshold currents. We can 
reduce the Vt to 0.3-0.4V which is 0.7V current day 
technology. All the above techniques are encapsulated in 
the framework to design the low power programmable 
processor as shown in fig.29[6]. 
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