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Abstract  

This report consists of some of the techniques used to design FIR filters with arbitrary 
responses. Three techniques used to design linear phase FIR filters are described. In the 
beginning, the window technique and the frequency sampling techniques are discussed in detail 
with their relative merits and demerits. Different optimal filter design techniques are also 
discussed to design linear phase FIR filters. WLS Chebyshev approximation method for 
designing FIR filters with arbitrary complex frequency response is discussed in detail. An 
efficient weighted least squares design technique to design FIR filters satisfying prescribed 
magnitude and phase specifications is discussed. Some MATLAB functions used to design FIR 
filters are also included. 

1. Introduction   

FIR filters are particularly useful for applications where exact linear phase response is required. 
The filter design essentially involves the two stages as follows: 

(i) The approximation stage 

(ii) The realization stage   

The approximation stage takes the specifications and gives the transfer function of the FIR 
filter. The realization stage deals with choosing the specific structure to implement the transfer 
function obtained from the approximation stage. In this report only approximation stage for FIR 
filter design is discussed. There are three well-known techniques to design linear phase FIR 
filters namely: 

(i) The window technique 

(ii) The frequency sampling technique 

(iii) The optimal filter design technique  

FIR filters satisfying prescribed phase specifications can also be designed. Weighted Least 
Squares (WLS) Chebyshev approximation method [5], for designing FIR filters satisfying 
arbitrary complex frequency response is discussed in detail. Computationally efficient weighted 
least squares design [6], of FIR filters satisfying prescribed magnitude and phase specifications 
is also discussed. In this method, the filter coefficients are obtained by solving a system of 
linear equations that involves Toeplitz matrix.  
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2. The window method 

This method is mainly used for designing proto-type filters. In this method [1], [2], from the 
given desired frequency response specifications Hd( ), corresponding unit sample response 
hd(n) is determined using the Fourier transform relation   

deHnh nj
dd )(

2

1
)(                                (1)  

where  
n

nj
dd enhH )()(                          (2)       

It can be easily observed from (2) that the impulse response of digital filter is infinite in 
duration. One possible way to obtain an FIR filter that approximates the desired frequency 
response is to truncate the infinite impulse response at n=N-1. This truncation of infinite 
impulse response can be done by multiplying hd(n) by the N-point rectangular window defined 
as   

w(n) =  1  0  n  N-1                         (3)   

        =  0   otherwise 

Then the impulse response of the truncated filter becomes    

h(n) = hd(n)w(n)                               (4)   

        = hd(n) 0  n  N-1    

        = 0  otherwise 
It is well known fact that multiplication of the window function w(n) with hd(n) in time domain 
is equivalent to convolution of W( ) with Hd( ) given by the formula   

dWHH d )()(
2

1
)(

      

            (5)    

                    
where W( ) is the Fourier transform of the rectangular window. Since (2) is basically Fourier 
representation of Hd( ), the multiplication of hd(n) with w(n) is identical to truncating the 
Fourier series of the desired filter characteristic. But direct truncation of infinite Fourier series 
leads to the well known Gibbs phenomenon, which manifests itself as a fixed percentage of 
overshoot and ripple before and after an approximated discontinuity in the frequency response 
due to the non-uniform convergence Fourier series at the discontinuity. 

The effects of truncating the Fourier coefficients on the frequency response of the designed 
filter is as follows:  

(i) The discontinuities in the desired frequency response become transition bands between 
values in either side of the discontinuity. 
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(ii) The window function produce ripples in the resulting frequency response H( ) for all 

.   

Some of the windows commonly used are listed below: 
    

 1. Barlett triangular window:        

w(n)     =  2n/(N-1)  0  n N/2       
=  1 - 2n/(N-1)  N/2 

 

n 

 

N-1  
2. Blackman window:     

w(n) =  0.42 - 0.5cos[2 k/(N-1)]+0.08cos[4 k/(N-1)]    

3. Hamming window:    

w(n) =  0.54 - 0.46cos[2 k/(N-1)]   

4. Hanning window:    

w(n) =  0.5(1 - cos[2 k/(N-1)] )    

5. Kaiser window:    

w(n) = I0[ {k2 - (n-k)2}] / I0[ k]  where, k=(N-1)/2      

In the Kaiser window, Io[x] is the zeroth order Bessel function. The best filter can be designed 
by using Kaiser window, which has a parameter ' ' that allows the adjustment of compromise 
between the overshoot reduction and transition region width spreading. The major advantage of 
using the window method is the relative ease of using well-defined equations for windows.  

The issues with the window method are  

(i) The window method needs closed form expression of desired frequency response for 
calculating the filter coefficients. Otherwise the evaluation of filter coefficients becomes more 
difficult.  

(ii) The edge frequencies of the designed filter cannot be specified exactly since the 
window smears the discontinuities in the frequency response of the desired filter.  

(iii) Window method is basically useful for prototype filters only. This makes its use very 
limited in speech and image processing applications where non-prototype filters are often 
required.  

3. The frequency sampling technique 

In this technique [1], [3], the desired frequency response is sampled at a set of N equally spaced 
frequencies. These N frequency samples constitute an N-point DFT H(k). Thus by using the 
inverse DFT, the filter impulse response can be determined using the following relation 
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                               N-1   

h(n) = 1/N   H(k)ej(2 nk/N)                                                                  (6) 
                n=0 

By using the impulse response obtained above, the continuous frequency response is calculated 
as an interpolation of the sampled frequency response. The approximation error then would be 
zero exactly at the sampled frequencies and be finite between them. The smoother the 
frequency response is approximated, the smaller the interpolation error between them.  

The method to improve the quality of approximation is to make a number of frequency 
samples as unconstrained variables. The frequency samples in the transition bands as 
unconstrained variables have been found in [1], to provide good ripple cancellation in adjacent 
frequency bands. The values of these unconstrained variables are generally optimized by 
computer by means of linear programming technique to minimize some simple function of the 
approximation error.   

The procedure for designing FIR filters using frequency sampling technique described 
in [3], is summarized bellow:  

(i) Choose a set of frequencies at which the sampled frequency response is specified. The 
choice of a set of frequencies is merely the choice of a value for N, the number of impulse 
response samples, and an initial frequency.  

(ii) For a given value of N, the designer must determine how fine an interpolation should be 
used. In [1], they mentioned that for the designs they investigated, where N varies from 15 to 
256, they found 16 to 1 interpolation lead to reliable computations and results.  

(iii) Given the set of N values of H(k), compute the inverse DFT to obtain h(n) [using FFT 
algorithm.]       

(iv) In order to obtain the values of interpolated frequency response two procedures were 
suggested in [3]. They are   

a) Rotate the h(n) by N/2 samples (N even) or [(N-1)/2] samples (N odd) to remove the 
sharp edges of the impulse response, and then 15N zero-valued samples are symmetrically 
placed around the impulse response.   

b) Split the h(n) around the N/2 sample value, and 15N zero-valued samples are placed 
between the two pieces of the impulse response.  

(v) The zero-augmented sequences are transformed using the FFT algorithm to give the 
interpolated frequency responses.   

(vi) The values of these unconstrained variables are optimized by means of linear 
programming technique to minimize some simple function of the approximation error. 

Design example: 

The frequency response of the low pass filter with total 64 samples, 16 samples in bandwidth 
and 3 transition coefficients using frequency sampling method is shown below. The transition 
coefficients obtained by the linear programming from [3] are 0.030957, 0.275570, 0.744348. 
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Fig. 1. Magnitude response of the low pass filter with three transition coefficients from [3] 

Merits   

(i) The frequency sampling technique can be used to design the non-prototype filters where 
the desired frequency response can be any irregular shape.  

(ii) Unlike the window method, once the transition bandwidth has been chosen, the filter 
can be designed that will have such a transition bandwidth. Whereas in the window method 
there is a trade-off between overshoot and transition bandwidth. 

Demerits 

 The interpolated frequency response is equal to the desired frequency response only at sampled 
frequencies. There will be a finite error present at all the other frequencies.  

4. Optimal filter design methods 

Here optimal filter in the sense that a filter that is the best that can be achieved for the given 
number of impulse response coefficients. Many methods are available for designing linear 
phase optimal filters. The basic idea in all these methods is to design the filter coefficients so 
that a particular error is being minimized. Three of them are listed below:   

(i) Weighted Chebyshev approximation   

(ii) Nonlinear equation solution for maximal ripple FIR filter   

(iii) Polynomial interpolation solution for maximal ripple FIR filters 

4.1. Weighted Chebyshev approximation 

The design of optimal linear phase FIR filters can be achieved by considering the filter design 
problem as Chebyshev approximation problem. Thus it is possible to derive a set of conditions 
for which the designed filter is optimal and unique.  

In this method [1], following terms are defined to formulate the FIR filter design problem 
as Chebyshev approximation problem.  
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Hd( ) = The desired frequency response of the filter   

H ( ) = The frequency response of the designed filter   

W( ) = The frequency response of the weighing function 

The weighing function enables the designer to choose the relative size of the error in different 
frequency bands. The general form of the frequency response for four different types of linear 
phase FIR filters (i.e. whether length N of the filter is odd or even and filter is symmetric or 
anti-symmetric) can be written as     

H( ) =  e-j (N-1)/2ej L/2 H( )

       

            (7)  

TABLE  I  

         The values of L and H( ) for four different types of FIR filters from [1]    

L              H( )

       

Case1:N odd Symmetrical 
impulse response 

0 (N-1)/2   
     a(n)cos( n) 
    n=0 

Case2:N even Symmetrical 
impulse response 

0     N/2   
     b(n)cos[ (n-0.5)] 
    n=1 

Case3:N odd Anti-Symmetrical 
impulse response 

1 (N-1)/2   
     c(n)sin( n) 
    n=1 

Case4:N even Anti-Symmetrical 
impulse response 

1      N/2   
     d(n)sin[ ( n-0.5)] 
    n=1 

 

Each of the expressions for H( )

 

in the above table can be written as a product of fixed 
function of  [call this as Q( )] and a term that is a sum of cosines [call this as P( )]. Thus the 
expressions for H( )

  

in TABLE-I become as     

TABLE  II  

                    Expressions for P( ) and Q( ) for different types of filters from [1]   

      Q( )               P( ) 
Case 1          1 (N-1)/2   

     p(n)cos( n) 
    n=0 

Case 2 cos( /2)   N/2-1   
     q(n)cos( n) 
    n=0 

Case 3 sin( ) (N-3)/2   
     r(n)cos( n) 
    n=0 

Case 4 sin( /2)   N/2-1   
     s(n)cos( n) 
    n=0 
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The weighted error of approximation E( ) is, by definition      

E( ) = W( )[Hd( ) - H( ) ]  
         = W( )[Hd( ) - P( )Q( )]                              (8)  

Since Q( ) is a fixed function of frequency it can be factored out from (8), gives 

)]()([)()( PHWE d

      

            (9) 
                         

where )()()( QWW

 

)(/)()( QHH dd

 

The Chebyshev approximation problem may now be stated as finding the set of coefficients 
[p(n), q(n), r(n), or s(n)] to minimize the maximum absolute value of E( ) over the frequency 
bands in which the approximation is being performed. The Chebyshev approximation problem 
may be stated mathematically as follows:   

Min  [max |E ( )|]                           (10) 
          coefficients         

The solution to this problem is given by Parks and McClellan [2], who applied a theorem in 
theory of Chebyshev approximation called the alternation theorem. 

4.2. Nonlinear equation solution for maximal ripple FIR filters  

The filters designed by this method [1], have maximum number of ripples in their frequency 
responses. The maximum number of ripples i.e. the number of frequencies at which H( ) could 
attain an extremum is strictly a function of the type of filter. At each extremum the value of 

H( )

 

is pre-determined by a combination of the weighing function H( ) , the desired 
frequency response Hd( ), and the quantity 

 

that represents the peak error of approximation. 
By distributing the frequencies at which H( )

 

attained an extremal value among the 
different frequency bands over which a desired response was being approximated a unique 
optimal filter can be obtained.  

The procedure for obtaining a set of nonlinear equations is as follows: 

At each of the unknown extremal frequencies, E( ) attains the maximal value of either 

 

or - , 
the derivative of H( )  becomes zero. Thus equations of the form     

H( i) =  ± /W( i)+Hd( i)  i=1, 2 k                 (11)   

d/d [ H( ) ] = i =  0  i=1, 2 k                (12)  

are obtained. Where, k = Number of extrema of H( )
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These equations represent a set of 2k nonlinear equations in 2k unknowns [k impulse response 
coefficients and k frequencies at which H( )

 
obtains the extremal value]. The set of 2k 

equations may be solved iteratively using a nonlinear optimization procedure.  

It should be noted that the quantity, 

 
is a fixed quantiity and is not minimized by the 

optimization scheme. Thus the shape of  H( )  is postulated a priori and only the frequencies 
at which H( )

 
is attains the extremal values are unknown.  

The main disadvantage of this technique is that the design procedure has no way of 
specifying band edges for the different frequency bands of the filter. Thus the optimization 
algorithm is free to select exactly where the bands will lie.  

4.3. Polynomial interpolation solution for maximal ripple FIR filters  

This technique [1], is basically an iterative technique for producing a polynomial H( ) that has 
extrema of desired values. The algorithm for this technique is as follows: 

(i) Make an initial estimate of frequencies at which the extrema in H( )

 

will occur. 

(ii) Use the Lagrangian interpolation formula to obtain a polynomial that alternatively   
goes through the maximal ripple values at these frequencies. 

(iii) Check whether the polynomial associated with the frequencies have extrema that 
achieve the maximum allowable ripple.  

(iv) If not locate the frequencies at which the extrema of previous Lagrangian 
interpolation occur and then update the extremal frequency values by these frequencies.  

(v) Use the updated frequencies to construct another Lagrangian polynomial and then 
go to step (iii)  

This procedure is repeated until the polynomial satisfies the required specifications. The 
disadvantage of this method is the band edge frequencies cannot be specified a priori. They 
must be calculated from the final solution. The low pass filter designed by polynomial 
interpolation method is shown below: 
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Fig. 2. Iterative solution for a maximal ripple lowpass filter from [1] 

5. Design of FIR filters with arbitrary complex frequency responses 

In this section, two methods for design of FIR filters with arbitrary complex frequency 
response are described. Firstly, weighted least squares Chebyshev approximation method 
proposed in [5], is discussed. The computational complexity involved in this method is reduced 
in [6], which is also discussed. 

5.1. Weighted least squares Chebyshev approximation method 

The basic idea in this technique [5], is to obtain the suitable frequency dependent weighting 
function by an iterative procedure that yields an equi-ripple design. Let the desired complex 
frequency response Hd( ), is conjugate symmetric and includes p disjoint nontransition bands 
as follows:  

p21NT B..........BBB

 

where }{B m2m1m

 

,     m =1, 2, , p 

m1 and m2 denote the specified cutoff frequencies in the mth frequency band. Then the 
union of the transition bands, denoted BTS, is given by  

}B{B NTTS ,0 . 

The frequency response of the (N-1 )th order FIR filter can be written as   
M-1  

H( ) =   h(n)e-j n  

   n=0      
M-1                    M-1  

                =    h(n)cos( n) - j   h(n)sin( n)           (13)   
  n=0                     n=0  

Then the complex approximation error between Hd( ) and H( ) can be expressed as  

E( ) = Hd( ) - H( )  

                   

                                     =  Er( ) + jEi( ),  NTB

    

       (14) 

where Er( ) and Ei( ) are the real part and the imaginary part of  E( ), respectively. Let 
We( ), NTB , be a piece-wise constant function associated with the desired relative 

approximation error ratio among the p frequency bands, defined as  

We( ) = m, if, mB ,                     (15) 

where ,0.,,.........0,0 2 pm

 

1},........,,max{ 21 p , and the ratio 

)/1(:...:)/1(:)/1( p21

 

denotes the desired relative approximation error ratio among B1, B2, 

. . ., Bp. Now the object is to find the impulse response h(n), such that H( ) is equiripple with 
)/1(:.....:)/1(:)/1(:......:: 2121 pp . where m is the maximum approximation error 

in Bm. 
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For notational simplicity, let Hd(k), We(k), E(k), Er(k) and Ei(k) also denote Hd( =k/2N), 

We( =k/2N), E( =k/2N), Er( =k/2N) and Ei( =k/2N) at N total number of uniform samples. 
Thus the error can be expressed as in the following linear vector form: 

h
D

D

H

H

E

E

d

d

I

R

2

1

)Im(

)Re(       
        (16)  

where  Er and EI denote the real part and imaginary part of E, respectively, Re(Hd) and Im(Hd) 
denote the real part and imaginary part of  Hd, respectively,  

h = [h(0) h(1) h(2) h(M-1)]T,  

E = [E(0) E(1) E(2) . E(N-1)] T,  

Hd   = [Hd (0) Hd (1) Hd (2) . Hd(N-1)] T, 

and D1 and D2 are MN matrices with the (i, j)th element )/)1)(1cos(( Njiij1D and 

)/)1)(1sin(( Njiij2D , respectively. Then the sum of weighted error squares can be 

written as  
21N

0k

)k(E)k(w)(hJ  

         = I
T

IR
T

R WEEWEE

  

         =
I

R

I

R

E

E

W

W

E

E

0

0
T

,              (17) 

where W = diag [w(0)  w(1) w(2) .. w(N-1)] with w(k)  0 for all 0  k  N-1. The WLS 

estimate, h , of h which minimizes J(h) is given by   

)Im(

)Re(
1

1

1
d

d

H

H
WDDWDh TT              (18) 

where TTT
21 DDD  and TTT diag 21 WWW . 

The following terms are defined in [5], to explain this method 

Error ripple )(kE i
m : 

,)()( kEkE i
m

  

   ,i
mBk/2N

  

i=1, 2, .., q.           (19) 

where q is the total number of error ripples in Bm . 

Amplitude i
me of error ripple )(kE i

m :    

i
m

i
m

i
m BNkkEe 2/),(max              (20) 
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Piecewise-constant function R(k), NTBk/2N : 

i
me ekWkR )()(

   
               (21) 

         i
mme , if i

mBk/2N . 

Now the problem is to find the w(k) such that )(kE is equiripple with the desired 

approximation error ratio among the nontransition bands or, equivalently )()( kEkWe for 

NTBk/2N is equiripple. The design method for this is shown below:                              

  

Fig. 1. The WLS Chebyshev approximation method from [6]   

The method begins with the initial weighing function 

)()()0( kWkw e , NTBk/2N

     

              (22)   

 = 0,  TSBk/2N

 

Assume that the above method is ended up with the weighing function )()( 1 kwkw n at the  
(n-1) th iteration. Then the sequence of steps to be followed is stated below:  

 (i) For the nth iteration, compute the WLS estimate, h  by (18), in which )()( 1 kwkw n . 
 (ii) Then compute the associated E(k) by (16). 

 (iii) Search for )(kE i
m  and i

me , for all i and m. 

 (iv) Check whether )()( kEkWe  for NTBk/2N  is equiripple by  
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max

minmax

R

RR        
        (23) 

where NTBNkkRR 2/),(maxmax ,  

NTBNkkRR 2/),(minmin ,  

 = preassigned small positive constant. 

(v) If )()( kEkWe  is not equiripple, update the weighing function by 

   max
1)( /)()()( wkRkwkw nn ,  NTBk/2N

   

                          (24)   

 = 0,    TSBk/2N

 

where  NT
n BNkkRkww 2/),()(max 1

max             (25) 

This procedure is repeated until the equiripple filter satisfying prescribed magnitude and 
phase specifications are obtained. 

Design example: 

The desired frequency response for linear phase low pass filter is given as follows: 

  

           

 

The Magnitude response of the designed filter for above specifications using this method is 
shown below:  

 

Fig. 3. Magnitude response of the linear phase low pass filter from [5]  
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5.2. Computationally efficient weighted least squares method  

The computational complexity involved in the WLS Chebyshev approximation method to 
obtain the FIR filter coefficients with arbitrary complex frequency response is reduced in this 
method [6]. In this method, the filter coefficients are obtained by solving a system of linear 
equations that involves Toeplitz matrix. 

The frequency response of an N-point FIR filter with real valued impulse response 
coefficients can be written as    

N-1  

H( ) =   h(n)e-j n  

   n=0    

   
N-1                    N-1  

                =    h(n)cos( n) - j   h(n)sin( n)     
  n=0                     n=0  

                = HTC( ) - jHTS( )                          (26) 

where H  =  [h(0) h(1) h(2) ........................h(N-1)]T   

C( ) = [1 cos( ) cos(2 )...........cos((N-1) )]T   

S( ) = [0 sin( ) sin(2 )............sin((N-1) )]T  

The desired frequency response Hd( ) having an amplitude response H( ) and phase 
response ( ) is given by    

Hd( ) = H( )ej ( )  

                  =  HR( ) + jHI( )                     (27) 

Then the mean squared error between Hd( ) and M( ) can be expressed as  
             M   

E =  

 

W( k) Hd( k) - H( k) 2  

         k=1  

                                  
 M 

                =  

 

W( k)[(HR( k) - HTC( k))2 + (H( k) - HTS( k))2]                (28)  
        k=1   

where W( ) nonnegative frequency dependent weighing function and M is the number of 
points at which Hd( ) is sampled. Then a set of linear equations can be obtained by setting 
E/ H=0 to minimize the error E. These equations in the matrix form can be written as    

QH = D                      (29)   
     

       M 

where Q (n,m) =  

 

W( k)cos((n-m) k)     0  n,m  N - 1                 (30)   
      k=1     

         
M  

  D(n)  =   

 

W( k)H( k)cos(n k + ( k))                  (31)   
    k=1  



 

14

   
From (30) it can be seen that Q is real, Toeplitz-symmetric, and positive definite matrix. 

And also note that the entries are independent of Hd( ). Hence only first row of elements has to 
be evaluated. Consequently, the system of equations can be solved by Levinson method. 

6. Some MATLAB functions to design FIR filters  

MATLAB is software that is used in a number of applications including signal 
processing. The Signal  Processing Toolbox provides several functions to design FIR filters. 
Some of them are listed below: 

fir1: This function implements the classical window method for FIR digital filter design. It 
designs filters in standard low pass, high pass, band pass, and band stop configurations. 
By default the filter is normalized so that the magnitude response of the filter at the 
center frequency of the pass band is 0 dB.   

fir2: This function is used for designing of frequency sampling based FIR filters with 
arbitrary shaped frequency response.      

firls:  This function designs a linear-phase FIR filter that minimizes the weighted, integrated 
squared error between an ideal piecewise linear function and the magnitude response of 
the filter over a set of desired frequency bands. 

firpm: This function designs a linear-phase FIR filter using the Parks-McClellan algorithm. 
The Parks-McClellan algorithm uses the Chebyshev approximation theory to design 
filters with an optimal fit between the desired and actual frequency responses. The 
filters are optimal in the sense that the maximum error between the desired frequency 
response and  the actual frequency response is minimized. 

fircls: This function uses an iterative least-squares algorithm to obtain an equiripple response. 
The algorithm is a multiple exchange algorithm that uses Lagrange multipliers method. 

cfirpm: This function designs FIR filters with arbitrary complex responses. This design 
technique may be used to produce nonlinear-phase FIR filters, asymmetric frequency-
response filters. The design algorithm optimizes the Chebyshev error using an extended 
Remez-exchange algorithm for an initial estimate.  

7. Conclusions 

There are several techniques available for designing linear phase FIR filters. Every method has 
its own advantages and disadvantages. The choice of technique depends heavily on the decision 
of designer whether to compromise accuracy of approximation or ease of design. The window 
technique is most suitable for prototype filters like the low-pass, high-pass, band-pass etc. The 
frequency sampling technique is suitable for designing of filters with arbitrary frequency 
response. Optimal filter design techniques give best filters for given length of the FIR filter, but 
these techniques are more complex. 

Weighted least squares Chebyshev approximation method for the design of FIR filters 
with complex frequency response provides the flexibility of meeting phase specifications also. 
Weighted least squares design technique is an efficient and less complex technique for the 
design of FIR filters with prescribed magnitude and phase specifications. 
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