Communication Protocols in Industry and Automotive
Applications

M.Tech. Seminar

by

Rajesh Deshpande
04307908

under the guidance of

Prof. M. C. Chandorkar

Department of Electrical Engineering

Indian Institute of Technology, Bombay
Nov 2004

Contents

Introduction
Communication Protocols and their architecture

Field bus for Process Control

3.1 Fieldbusand OST
3.2 Physical layer oL
3.3 Communication Stack Lo
3.4 Fieldbus User layer

Profibus-DP-A high speed I/0 network

4.1 Profibus and OSI model oo
4.2 Physical Layer oo
4.3 Datalink Layer
MODBUS

Devicenet and CANOpen

6.1 DeviceNet e e e
6.1.1 DeviceNet and OSI model
6.1.2 Devicenet objects and device profiles

6.2 CANOpen e

Controller Area Network: A closer Look

7.1 Features of CAN o
7.2 Protocol Basic Characteristics
7.3 CANand the OSImodel
7.4 CAN Physical Layer

741 Signal Levels

10

13
13
13
14
15

7.4.2 Physical medium Lo 18

7.4.3 Maximum Bus Speed Lo 18
7.4.4 Minimum Bus Speedo oL 18
7.4.5 Maximum Cable Length 19
7.4.6 Bus Termination L. 19
747 The Cable 19
74.8 CAN connectors. o 19

7.5 CAN Data link Layer 19
7.5.1 Message Framingo L oL 20
7.5.2 Bus arbitration and Message Priority 23
7.5.3 Message Addressing and Identification 24
7.5.4 Message Coding L 24
7.5.5 Error Handling 24
7.5.6 Error Detection Mechanisms 25
7.5.7 Fault Confinement 0., 25

7.6 Bit Timing and Synchronization L. 26
7.7 Higher Level Protocols 0o 27
7.8 Some of CAN controller chips 27
8 Conclusion 28

il

List of Figures

2.1

3.1
3.2
3.3

4.1

5.1
2.2
9.3

7.1
7.2
7.3
74
7.5
7.6
7.7

The ISO OSI model s 3
Fieldbus and OSI model 5
Fieldbus Elements 5
Example of Fieldbus Functional blocks 6
Profibus layers. L 8
MODBUS Messaging Frame 10
Modbus Protocol Architecture 11
Modbus as an Interface 11
CAN and OSI model s 17
CAN Data Frame 20
Control Field 21
The Remote Frame 22
The Error Frame s 22
The Overload Frame 23
Bit Duration L 26

iii

List Of Abbreviations

PLC - Programmable Logic Controller

ISO - International Standards Organization

IPC - An association connecting Electronic Industries
MAP - Manufacturing Automation Protocol
OSI - Open Systems Interconnection

IEC - International Electrotechnical Commission
PID - Proportional Integral Derivative

AT - Analog input

AO - Analog Output

EIA - Electronics Industries Association

CRC - Cyclic redundancy check

IP - Internet Protocol

TCP - Transmission control Protocol

CiA - CAN in Automation manufacturer’s group

SAE - Society of Automotive Engineers

v

Chapter 1
Introduction

The IT revolution in automation technology and embedded systems is opening up new
savings potentials in the optimization of system processes. Communication in automation
is becoming increasingly direct, horizontally at field level as well as vertically through all
hierarchy levels. At field level the distributed peripherals, such as [/O modules, measuring
transducers, drive units, valves and operator terminals communicate with the automation
systems via an efficient, real-time communication system. At cell level, the programmable
controllers such as PLCs and Computers communicate with each other using large infor-
mation packets. Network infrastructures for industrial communications are complex. This
seminar is an attempt to briefly introduce most commonly used protocols in industry ap-
plications and study CAN protocol in some depth. The first part gives an overview of
the different communication systems used in automotive applications whereas second part
explains CAN protocol in detail. Chapter 2 creates a background by explaining the Open
Systems Interconnection model. Chapter 3 describes the use of fieldbus in process con-
trol. Chapters 4 and 5 give introduction to working of PROFIBUS and MODBUS in
industrial networking. Chapter 6 explains breif idea of higher level protocols DeviceNet
and CANOpen based on CAN. The last chapter presents working of CANbus in detail.

Chapter 2

Communication Protocols and their

architecture

A communication protocol is a specification of a set of rules for accomplishing a particular
type of communication. These rules may be like what medium to use, signal levels, analog
or digital, serial or parallel, peer- to- peer or broadcast and likewise. These specifications
also give rules on how to communicate with different nodes i.e. addressing mechanism,
error correction, acknowledgment, bus traffic management, right up to establishing the
communication from user’s point of view. All this is accomplished by a layered architecture
so that protocols in a layer perform specific functions. The Open Systems Interconnect
OST has defined a model of the layered architecture commonly known as OSI model. It
is a 7 layered model(fig 2.1). Following is the brief description of each of these layers-
The physical layer defines electrical and physical properties of the medium as well as
signal. Data link layer groups the raw bits into frames. The data link layer is responsible
for error free transmission of the frames. The network layer handles addressing and routing
of the packets over the network. Transport layer handles flow control and error handling.
The session layer establishes and maintains sessions across the network. The presentation
layer is responsible for syntax and semantics of data i.e. it handles protocol conversion,
encryption, compression, character representation etc. The application layer is nothing
but a user interface which allows access to the network services that support applications.

Thus, any general communication system can be modeled into this layered architecture.

Application
Protocol

Application Layer

_—3

-

Presentation

Presentation layer

Protocol

—

Application Layer

_|Presentation layer

-

Session Layer

Session Protocol

R

—
- >

Transport Layer

Transport Protocol

_—3

Session Layer

-

Network Layer

Data link layer

Physical Layer

Transport Layer

Network Layer

Packets

Data link layer

Frames

Physical Layer

Bits

Figure 2.1: The ISO OSI model

Chapter 3
Field bus for Process Control

Originally developed as a digital replacement for 4-20mA analog current loop, the concept

of fieldbus was extended by the introduction of smart field devices.

3.1 Fieldbus and OSI

Foundation Fieldbus targets distributed control in process automation. Foundation Field-
bus technology comprises the physical layer, the communication stack, and the user ap-
plication. These components fit in the OSI communication model.

Foundation Fieldbus does not implement layers three through six of the OSI model,
because process control does not require the services of these layers. An important part

of Foundation Fieldbus is the defined user application, layer eight.(fig 3.1)

3.2 Physical layer

Foundation Fieldbus uses the ISA S50.02-1992 and IEC 1158-2 physical-layer. These
standards specify data-communication rates of 31.25 kbps, 1 Mbps, and 2.5 Mbps. Devices
operating at 31.25 kbps can draw their power directly from the network. Low speed devices

can use twisted pair to carry both power and signals.

3.3 Communication Stack

Communication stack provides an interface of user application to the physical layer. The
data link layer manages access to the fieldbus through a centralized bus scheduler, a link

active scheduler LAS. Fieldbus offers cyclic scheduled communications to execute control

User solution Process Open
Function
o Control
Application L Block
Application .
. Application
Presentation
Session Application FMS
Transport Fieldbus Open
Access Communication
Network sublayer
] Stack
Data Link Data Link
i Open Physical
Physical Physical P Iayety
OSI Model Fieldbus Concept Fieldbus Secification
Figure 3.1: Fieldbus and OSI model
FieldBus
Basic I\}I_ink Basic Basic
aster : .
DeV|Ce DeV|Ce DeV|Ce DeV|Ce

Figure 3.2: Fieldbus Elements

loops and also acyclic communications to handle events, such as alarm conditions. LAS
has a list of the alloted transmission times for each device for cyclic communications.
Acyclic communication is achieved by token passing.

Thus LAS is in charge of access to the bus. A link master is a device that contains

LAS. Thus any fieldbus contains one or more link master and many basic devices.(fig 3.2)

Communication stack is again divided in two sub-layers. The stack’s Fieldbus-access
sublayer F'AS provides an interface between the data-link layer and layer seven. The FAS
provides communication services, such as client/server, publisher/subscriber, and event
distribution. The stack’s Fieldbus-messaging-specification F'MS layer defines a model
for applications to interact over the fieldbus. The object dictionary and the virtual field

Temp SP

l Temperature
Controller

PID |

Flow SP

Y Valve

Al PID External Al
Process

Flow Flow Temperature
Transmitter Controller Transmitter

Figure 3.3: Example of Fieldbus Functional blocks

device are important features of this model. The object dictionary is a fieldbus-device
structure that describes data that can appear on the fieldbus. You can think of the object
dictionary as a look-up table that supplies information, such as the data type of values
that you read from or write to a device. The virtual field device is a model for remotely

viewing data described in the object dictionary.

3.4 Fieldbus User layer

Foundation fieldbus defines an eighth layer-user layer. Foundation Fieldbus user interacts
with devices through a set of blocks that define device capabilities in a standardized way.
Resource blocks, function blocks, and transducer blocks are the general types of blocks.
Resource blocks describe the characteristics of a device, such as name, manufacturer,
and serial number. Function blocks provide the control and I/O behavior of a device.
Transducer blocks decouple function blocks from the functions that read and write local
inputs and outputs.

Function blocks are the core components with which a user specifies a control system’s
behavior. Foundation Fieldbus defines standard sets of function blocks. Connecting
the inputs and outputs of individual function blocks specifies communication of data on
the bus. Even more important, you can precisely schedule a function block’s execution,
allowing direct execution of control loops over the network. The function blocks reside in
individual devices, but the network schedules the overall execution of the function. An
example of a simple control loop has analog-input (AI), proportional /integral /derivative
(PID), and analog-output (AO) function blocks. (fig 3.3)

Chapter 4

Profibus-DP-A high speed I/0 network

Profibus comprises of compatible protocol-stack variations—Profibus-FMS, Profibus-DP,
and Profibus-PA. Profibus-FMS handles high-level, non-real-time communications among
devices. Profibus-DP targets time-critical communication between controllers and dis-
tributed peripherals. German national standard DIN 19245 and European Fieldbus Stan-
dard EN50170 both specify Profibus-FMS and DP. Profibus-PA targets process-control
applications, especially those requiring intrinsically safe operation.

Profibus uses twisted pair transmission medium and industry standard RS485 in man-
ufacturing applications or IEC 1158-2 in process control. Profibus can also use Ethernet or
TCP/IP as shown in figure. Profibus-DP is the profibus running on RS485. Profibus PA
is profibus superimposed on standard ITEC 1158-2. IEC 1158-2 allows data communica-
tion and power transmission over the network using two wire technology used in explosive
environment.

Profibus-DP provides high-speed data transfer at the sensor and actuator levels. Con-
trollers, such as PLCs, exchange data with their distributed peripherals using a fast serial
link. Profibus defines master and slave devices. Master devices, or active stations, can
control the bus and transfer messages without a remote request. Slave devices are sim-
ple peripherals, such as sensors and actuators. Slaves, or passive stations, cannot access
the bus except at the request of a master. In a Profibus-DP system, data exchange is
mainly cyclic, with a master reading input information from slaves and sending output

information back to the slaves.

4.1 Profibus and OSI model

Profibus-DP does not use OSI layers three to six. The direct-data-link mapper maps the

data-link-layer functions for the user interface. The user interface specifies the system

7

Profiles User Layer
Ex@r’:ssi on EXt%lr::sion Extiﬁsion Application Layer
Not Used Layers 3-6
Fieldbus Data Link IEG Interface Data link
RS485 IEC 1158-2 | physical

Figure 4.1: Profibus layers
and device behaviour of Profibus-DP devices. (fig 4.1)

4.2 Physical Layer

The Profibus standard defines two physical layers with appropriate medium-access pro-
tocols for different transmission techniques. The base version of the physical layer uses
copper wire in accordance with US standard EIA RS-485. This physical medium uses a
two-conductor twisted-pair cable. A second physical medium is fiber-optic, which greatly
extends the bus length at high transmission speeds. Fiber-optic versions of Profibus

operate at transmission speeds as high as 12 Mbps.

4.3 Data link Layer

The Profibus data-link layer is designated as the fieldbus data link. The MAC defines
when a station can transmit data and ensures that only one station has the right to
transmit data at any time.

The Profibus medium-access protocol includes the token-passing method for commu-
nication between complex stations (masters) and the master-slave method for communi-
cation between complex stations and simple peripherals (slaves). This combined method
is called hybrid medium access.

Profibus-DP is a low-level network that targets high-performance I/O scanning. A
Profibus-DP network can include the DP-Master Class 1 (DPM1), which is the central
controller. A DPM1 exchanges information with the decentralized stations (DP-slaves)
in a defined message cycle. Typical devices are PLCs, computer numerical controllers,
and robot controllers. The network can also include DP-Master Class 2 (DPM2) devices,
which are used for programming, configuration, or diagnostics, and DP-slaves, which are

I/0O devices that provide input information and issue output information to the system.

8

Typical DP-slaves are discrete inputs or outputs for 24V dc or 230V ac, analog inputs,
and analog outputs. The amount of input and output data is device-dependent and has
a maximum of 246 bytes.

A typical Profibus-DP system configuration comprises one or more DP-slaves assigned
to a DPM1. Interaction between the DPM1 and a DP-slave has parameterization, config-
uration, and data-transfer phases. In the parameterization and configuration phases, the
DPM1 sends configuration data to the DP-slave.

The Profibus specification requires the vendors of every DP-slave and DPM1 to doc-
ument the device’s characteristics in a device data sheet and database file that follow
a standard structure, content, and coding format. The standardized approach permits

common configuration tools to configure any Profibus-DP device.

Chapter 5

MODBUS

MODBUS Protocol is a messaging structure, widely used to establish master-slave commu-
nication between intelligent devices. Modbus devices communicate over a serial network in
a master /slave (request/response) type relationship using one of two transmission modes:
ASCII (American Standard Code for Information Interchange) mode or RTU (Remote
Terminal Unit) mode. A MODBUS message sent from a master to a slave contains the
address of the slave, the "command" (e.g. "read register" or "write register"), the data,
and a check sum (LRC or CRC). MODBUS is traditionally implemented using RS232,
RS422, or RS485 over a variety of media (e.g. fiber, radio, cellular, etc). MODBUS
TCP/IP uses TCP/IP and Ethernet to carry the MODBUS messaging structure.

The MODBUS protocol comes in 2 flavours: ASCII transmission mode and RTU
transmission mode. In ASCII mode, eight-bit bytes of information are sent as two ASCII
characters. The primary advantage of ASCII mode is the flexibility of the timing sequence.
Up to a one second interval can occur between character transmissions without causing
communication errors. ASCII mode uses only ASCII character for data coding and can
be used with any dummy modem like communication interface, even ones with with 7
bit communication channel. In RTU mode, data is sent as two four-bit, hexadecimal
characters, providing for higher throughput than in ASCII mode for the same baud rate.

ADU

Additional address| Function code Data | Error check

PDU

Figure 5.1: MODBUS Messaging Frame

10

Application Layer

Y

A

Y

P

TCP

MODBUS+
HDLC

Master/Slave

Ethernet 11 / 802.3

Physical Layer

RS485/RS232

Physical Layer

Figure 5.2: Modbus Protocol Architecture

PLC

Modbus
on Mb+

Vo PLC
Y
GATEWAY GATEWAY
Modbus
on TCP/IP
PLC o
110 /0
. Modbus
Drive on RS 485 PLC

1’0

Modbus
on TCP/IP

Modbus on

RS

PLC

GATEWAY

232

Device

Modbus RTU is a binary protocol and more time delay critical than the ASCII protocol.
Both ASCII and RTU work nicely with direct wire connection and with 2/4-wire short haul
modems. For long distance connections where there are lots of communication devices in

the communication route, the ASCII protocol is preferred, because it is less sensitive to

Figure 5.3: Modbus as an Interface

delays and can be transported also over 7-bit communication channels.

Thus MODBUS is essentially an application layer protocol defined in layer 7 of the

OSI model. (fig 5.2)

MODBUS allows easy communication within all types of network architectures. (fig

5.3)

Modbus defines basic architecture of the protocol Data unit (PDU) independent of the

underlying layer. Some additional fields for addresses depending on network structure used

11

and PDU make an Application Data Unit. (fig 5.1) In a message from client to server,
a function code specifies what action to perform. The data field may contain additional
information that server uses to carry out the action performed eg. register addresses,

quantity of items to be handled etc.

12

Chapter 6

Devicenet and CANOpen

DeviceNet and CANOpen both are CAN based manufacturing buses used as higher level

protocols on the basic stack defined in CAN- an abbreviation for Controller Area Network.

6.1 DeviceNet

Developed by Allen-Bradley, DeviceNet is now the responsibility of an independent sup-
plier organization, the Open DeviceNet Vendors Association. ODVA controls the De-
viceNet specification. DeviceNet is a low-level network that connects industrial devices,
such as sensors and actuators, to higher level devices, such as controllers. DeviceNet fo-
cuses especially on the interchangeability of low-cost, simple devices often used in manu-
facturing applications. Examples are limit switches, photoelectric sensors, motor starters,
bar-code readers, variable-frequency drives, and operator interfaces. Part of the goal of
DeviceNet is to achieve the same level of interchangeability for 120/220V-ac and 24V-dc
discrete devices using digital communications, as is possible with hard-wired 1/0O devices.

The basis of DeviceNet is CAN. The CAN offers fast response and good reliability
under adverse environmental and electrical conditions. Apart from these attributes of
CAN, cost was also major factor for choosing CAN. The availability of CAN chips helps
achieving improved performance at decreased prices. Part 2 of this document explains
the working of CAN in detail.

6.1.1 DeviceNet and OSI model

Devicenet adds two more layers media and application layer to the basic stack of phys-
ical and data link layer defined by CAN. Hence,in short, CAN defines the form of data

movement, whereas the DeviceNet application layer defines the data’s meaning.

13

A DeviceNet network can have as many as 64 node addresses. Because it uses the CAN
data-link layer, DeviceNet is inherently a peer-to-peer network, though many applications
use a master/slave architecture.

In DeviceNet, two entities on the network must establish a connection before commu-
nication can occur. Explicit-message and 1/O are the basic types of connections. The
network assigns transmissions associated with a connection, an identification value, or
a connection ID. An explicit message connection provides a generic, multipurpose com-
munication path between two devices and provides the means for performing typical
request /response functions, such as device configuration. The explicit messaging protocol
indicates how a device should interpret a message. An I/O connection is a dedicated,
special-purpose communication path between a producing device and one or more con-
suming devices. The connection ID implies the content of the associated I/O message.
No defined protocol exists for I/O-message data. The devices at either end of the connec-
tion must know the general form of I/O messages. 1/O connections carry time-critical,
control-oriented data.

You can choose the I/O mechanism that yields the most efficient data transfer. The
predefined master/slave connection set defines the communication mechanism for a ba-
sic network comprising a master (for example, a PLC) and a set of simple devices (for

example, on/off switches or motor starters).

6.1.2 Devicenet objects and device profiles

The object model provides a template for organizing and implementing the attributes
(data), services (methods or procedures), and behaviours of a DeviceNet product’s com-
ponents. For each attribute, the model provides an addressing scheme that comprises the
node address or medium-access-control identifier (MAC ID), the object-class identifier, the
instance number, and the attribute number. There are four different classes of objects- an
identity object, connection object, parameter object and application object. An identity
object’s attributes include vendor ID, device type, product code, revision status, serial
number, product name, and state. A connection object represents one end of a virtual
connection (explicit or I/O) between two nodes on a DeviceNet network. Configuration
options that are attributes of the parameter object include parameter values, ranges, text
strings, and limits. Also, a device usually includes at least one application object other
than those from the assembly or parameter class.

To facilitate compatibility and interoperability, DeviceNet defines standard device

profiles. As One need not implement all the objects and all the attributes within an

14

object, a device profile contains the definition of the device’s object model. The device
profile and electronic data sheet describe the objects in a device and thus the device’s

function as a user sees it.

6.2 CANOpen

As the existing standards based on CAN allow designer to use off-the-shelf components
and still have freedom to optimize the performance to meet specific requirements. In all
the applications where customization is required CANOpen is the better option.

CANOpen was developed by ASPIC Esprit project. In 1994, the CANOpen speci-
fication was handled to CiA-CAN in Automation users and manufacturers group. The
protocol is now standardized and it is EN 50325-4.

CANOpen standardizes the way in which data is structured and exchanged in CAN
environment. Device profiles of CANOpen specify the data sets and communication mod-
els supported by various modules such as I/O devices, drivers, encoders etc. It offers
standardized communication objects for real time data transfer and special objects like
synchronization messages, emergency messages and management data like Error control,
NMT message.

The core of any CANOpen node is the object dictionary, a lookup table with 16 bit
index and 8 bit subindex. All process and communication related information is stored
at predefined entries in the object dictionary. From any node object dictionary data of
any node can be accessed by sending read/write requests. Each node has an unique ID
which gets embedded into these requests which allows peer to peer communication. Thus
messages are categorized into requests and replies referred to as Receive service data
objects and transmit service data objects (RSDO and TSDO). Separate identifiers are
maintained at each node in the object dictionary for these two.

Thus CANOpen tries to overcome limitations imposed by CAN by allowing data more
than 8 bits, peer to peer communication, variable length data etc. Availability of various
tools from many manufacturers for development, testing, configuration and maintenance

makes this standard practically implemented in various industry applications.

15

Chapter 7

Controller Area Network: A closer
Look

CAN an (abbreviation for Controller Area Network) protocol is an ISO standard for
serial data communication originally developed by Bosch Technology. CAN is getting

widespread use in industrial automation as well as automotive mobile machines.

7.1 Features of CAN

e Digital serial transmission

e Multi-master communication

e Privatization of messages

e Simple transmission medium

e Hardware implementation of the protocol
e Excellent error handling

e Fine fault confinement

7.2 Protocol Basic Characteristics

1. It uses non destructive bit wise arbitration to control access to the bus.

2. The messages are small and protected by checksum.

16

Application

Higher Level Protocols

Transfer Layer A
Fault Confinement

Error Detection and signaling
Acknowledgment
Bus Arbitration

CAN

Message Framing

Transfer rate and timing

Physical Layer

Bit representation and signal levels
Transmission Medium Y

Figure 7.1: CAN and OSI model

3. There is no explicit address in the messages, instead each message carries a numeric

value which controls its priority on the bus.

4. Multi-cast communication: It is a broadcast bus, no of nodes can receive the message

simultaneously and can act upon it.

5. System Flexibility: Number of nodes can be added or removed from the bus without

any change in hardware/software of any node or in the application layer.

6. An elaborate error handling scheme that results in retransmitted messages when

they are not properly received.

7. There are effective means for isolating faults and removing faulty nodes from the
bus.

7.3 CAN and the OSI model

The CAN standard specifies the physical and data-link layer (also referred to as transfer
layer).

Physical layer defines electrical specifications of the transmission and the channel i.e.
it defines how data is physically transmitted over the medium.

Transfer layer is actually the kernel of the protocol. It defines a few different message

types, their formats, arbitration rules for bus access, acknowledgment etc. It is also

17

responsible for bit timing and synchronization, error detection and fault confinement. (fig
7.1)

7.4 CAN Physical Layer

7.4.1 Signal Levels

The CAN bus uses Non-Return To Zero (NRZ) coding with bit stuffing. There are two
different signaling states: dominant (logic 0) and recessive (logic 1). These correspond
to certain electrical levels depending on physical layer used. The modules are connected
together in wired AND fashion. So, if just one node drives the bus into dominant mode the
whole bus goes to dominant state regardless of several other nodes transmitting recessive

state.

7.4.2 Physical medium

There are various types of physical media in use.

1. The most common specified by ISO CAN standard 11898. It uses differential trans-

mission on twisted pair wire. It is sometimes known as High Speed CAN

2. Another ISO standard, std 11519, defines another two wire balanced signaling
scheme for lower bus speeds. It is fault tolerant, so the signaling can continue

even it the bus wire is cut or shorted to ground. It is sometimes called High Speed
CAN

3. SAE J2411 defines a single-wire physical layer. It is used cheaply in cars and other

locomotives.

7.4.3 Maximum Bus Speed

The maximum speed of the CAN bus, according to standard, is 1Mbit/s. Low speed CAN
bus (referred ISO 11519 as above) can go up to 125 kbit/s. Single wire CAN bus can go
up to around 50 to 100 kbit/s.

7.4.4 Minimum Bus Speed

Minimum bus speed is not specified in the standard, but some transceivers specify mini-
mum bus speed also eg. using TJA1050 data rate below 50kbit /s.

18

7.4.5 Maximum Cable Length

At a speed of 1 Mbit/s, maximum cable length of 130 ft (about 40 meters) can be used.
The length is limited as the signal wavefront should travel to most remote node and back
before the next bit sample. Other maximum cable lengths are 100 meters at 500kbit /s, 6
kilometers at 10kbit /s.

7.4.6 Bus Termination

An ISO 11898 CAN bus must be terminated. This is done by a resistor of 120 ohms in

each end of the bus. Termination serves two purposes-
e Remove the signal reflections at the end of the bus.

e Ensure the bus gets correct dc levels.

7.4.7 The Cable

The ISO 11898 prescribes that cable impedance should be 120 ohms, but an impedance in
the interval (108-132) ohms is permitted. The standard is defined for twisted pair cable,
shielded or unshielded.

7.4.8 CAN connectors

There is no standard for CAN connectors, but each higher level protocol defines one or

few preferred connector types:
e 9 pin DSUB proposed by CiA
e 5 pin Mini-C and/or Micro-C used by DeviceNet.

If power is supplied, it shall be in the range +7 to +13V, 100mA.

7.5 CAN Data link Layer

It specifies-
e Message framing
e Bus Arbitration

e Acknowledgment

19

LCK
Slot

Aﬂ:-i?raﬁm
Field Continl End of
Field Data Field CRC Field Frame
‘ Identifier ‘ ‘ ‘ ‘ U‘ ‘ ‘
* * cre ¥ M
Startof RTE Delimiter Leliraiter

Figure 7.2: CAN Data Frame

e Error Detection and Signaling
e Fault Confinement

e Transfer rate and Timing.

7.5.1 Message Framing

The CAN Messages The CAN is a broadcast type of bus i.e. all nodes can hear all
transmissions and there is no way to send a message to a specific node. The higher level
protocols however provide local filtering so that a node responds only to the interesting
messages. There is no explicit address in the messages and the messages are said to be
content addressed, that is, their contents implicitly determine their addresses.

There are four types of messages-
e The Data Frame

The Remote Frame

The Error Frame

e The Overload Frame

Data Frame

Data frame carries information from transmitter to receiver. It contains seven dif-
ferent fields. (fig 7.2)

— Start Of Frame: It marks the beginning of data frames and remote frames. It
consists of single dominant bit. A station is allowed to transmit only when the
bus is idle. All the stations synchronize to the leading edge caused by start of

frame.

The arbitration field consists of identifier and the RTR bit.

20

Arbitration :
At -—I-i Control Field ﬂgzg

R1 RO DLC3 | DLCZ | DLC1 | DLCD

Reserved Bits Data Length Code

Figure 7.3: Control Field

— IDENTIFIER: The identifier’s length is 11 bits (Std CAN). These bits are
transmitted in the order from ID-10 to ID-0. The seven most significant bits
(ID10 to ID4) must not be all recessive.

— RTR bit: Remote transmission request bit. It distinguishes a data frame and

a remote frame.

— Control Field: It consists of 6 bits. It includes the data length code (4 bits)
and two bits reserved for future expansion. The data length code indicates the
no of bytes in data field. (fig 7.3)

— Data Field: The data field consists of the data to be transferred within a data
frame. It can extend from 0 to & bits. MSB is transmitted first.

— CRC Field: It contains CRC sequence and CRC delimiter. This is a frame
check sequence based on cyclic redundancy check. The CRC delimiter is single

recessive bit at the end of CRC sequence.

— ACK Slot: The transmitter gives a recessive bit in this slot. The receiver may

respond by superscribing dominant bit if it has received the message correctly.
— ACK Delimiter: ACK delimiter is a recessive bit after ACK slot.

— End Of Frame: Each Data frame and remote frame ends with a sequence of 8

recessive bits that marks the end of frame.

e Remote Frame

It is a request to produce data frame of labeled X where X is a value of the arbitration
field in both the frames. Remote frame has two main differences as compared to

data frame-

21

Ahitration Hok

; Slot
Field Contiol End of
Field CRC Fisld Frarae
Identifier | H | | |
+ CRC d *ACK
Start of RTE Delimiter Deliraiter
Frame

Figure 7.4: The Remote Frame

Error

delimiter
Error |
flag
_—=

Superposition of
error flags

Figure 7.5: The Error Frame

1. Remote frame has RTR bit in the arbitration field recessive.

2. There is no data field in the message.

The purpose of the remote frame is to solicit the transmission of the corresponding
frame. If say node A sends remote frame on the bus with X arbitration field, the
node B may respond to it by sending a data frame also containing arbitration field
X. (fig 7.4)

e The Error Frame

The error frame consists of two fields-error flag and error delimiter. The error flag
is the superposition of error flags given by all nodes. There are two forms of error
flag-active error flag and passive error flag.

Active error flag contains six consecutive dominant bits. Passive error flag contains
six consecutive recessive bits unless it is overwritten by dominant bits by any other
node. An error delimiter has 8 recessive bits. It provides some space in which other
nodes can send their error flags when they detect the first error flag. (fig 7.5)The

mechanism of error detection is explained later in section 7.5.5.

e The Overload Frame

22

Overload
delimiter

Overload e
flag
_—=

Superposition of
Overload flags

Figure 7.6: The Overload Frame

Overload frame is transmitted when receiver requires a delay of the next data frame

or remote frame. It contains overflow flag and overflow delimiter.

— Overload Flag

The overload flag contains six dominant bits. The overflow flag form destroys
the fixed form of intermission. As a consequence all other stations also detect

an overload condition and start transmitting an overload flag. (fig 7.6)

— Overload delimiter

It has the same form as error delimiter. After transmission of overflow flag
station monitors the bus until it detects a transition from dominant to recessive
bit, at that point all the nodes have stopped transmitting overload flags and all

the nodes get synchronized by sending 6 recessive bits of the overload delimiter.

7.5.2 Bus arbitration and Message Priority

The bus arbitration is the process in which two or more CAN nodes agree on who is to
use the bus.

Any CAN controller may start transmission when it has detected an idle bus. This may
result in two or more controllers starting a message at the same time. This is resolved in
the following manner. The transmitting nodes monitor the bus while they are sending. If
a node detects a dominant level when it is sending recessive level itself, it will immediately
quit the arbitration process and become the receiver instead of sender. The arbitration is
performed for the whole of the arbitration field and when that entire field has been sent,
exactly one transmitter remains on the bus. No time is lost in the arbitration process.

Since the bus is wired and a dominant bit is logically 0, it follows that the node having

numerically lower arbitration field will have the higher priority.

23

7.5.3 Message Addressing and Identification

It is worth noting that there is no explicit address in the CAN message. The contents of a
message are identified by an identifier which is located somewhere in the message. Hence
the messages are said to be contents-addressed. A conventional message address will be
used like “Here is message for node X” and a contents addressed message will be “Here
is a message containing data labeled X”. The difference between the two is less apparent
but significant. The standard does not say that the arbitration field must be used as a

message identifier.

7.5.4 Message Coding

The frame segments START OF FRAME, ARBITRATION FIELD, DATA FIELD and
CRC SEQUENCE are coded by method of bit stuffing. Whenever transmitter detects
five consecutive identical bits in a message to be transmitted it automatically inserts
a complementary bit in the message. The remaining fields and other frames such as
overload frame and error frame are of fixed format. The individual bits are coded by NRZ

(Non-Return-to-Zero) type of coding.

7.5.5 Error Handling

Error handling is built into CAN protocol and is of great importance for the performance
of the CAN bus. The error handling aims at detection of errors in message appearing on

the CAN bus so that transmitter can retransmit the message.
e Types of Errors
There are five different types of errors defined- bit error, stuff error, CRC error,
form error and acknowledgment error.

e The Error flag

Every node will try to detect the errors in the transmitted message. If an error
is found the discovering node will transmit an error flag destroying the bus traffic.
The other nodes will detect the error flag and take appropriate action. For an error
active node it is an active error flag and for a passive node it is a passive error flag.

Active and passive nodes are described in next section.

24

7.5.6 FError Detection Mechanisms

There are five different mechanisms of detecting an error. First two of these work at bit

level and others work at message level.

e Bit Monitoring
Each transmitter on the bus monitors the transmitted signal level. If the bit level
is different from that transmitted bit error is signaled. No bit error is raised during
arbitration process.

e Bit Stuffing

If more than five consecutive bits of the same level occur on the bus for fields on

which stuffing is done, a stuff error is signaled.

e Frame Check
Some fields of message have fixed format (eg. CRC delimiter, Ack Delimiter, End

of frame etc). If a CAN controller detects invalid value in this field form error is

signaled.

e Acknowledgment Check

All the nodes which correctly receive the message are expected to send a dominant
level in the ack slot. If a transmitter cannot detect dominant level in the ack slot,

ack error is signaled.

e Cyclic Redundancy Check

Each message contains a 15 bit CRC field. Any node that detects a different CRC
field than what it has calculated, it will generate a CRC error.

7.5.7 Fault Confinement

Fault confinement is the management entity in the media access sublayer of the CAN
protocol which distinguishes short disturbances from permanent failures. With respect to

fault confinement the node may be in any of the three modes-
e Error passive

e Error active

e Bus off

25

NOMINAL BIT TIME————=

SYNC SEG | PROP SEG |PHASE SEG1 PHASE SEG?

SAMPLING
POINT

Figure 7.7: Bit Duration

An error active unit can normally take part in bus communication and sends active error
flag when error is detected. A passive node sends a passive error flag. Also after an error,
error passive unit will wait before initiating further transmission. A node which is in bus
off state won’t transmit anything on the bus at all.

For fault confinement two counts are implemented in every bus unit.
e Transmit error count
e Receive error count

There are several rules governing how these counters are incremented or decremented. In
essence, a transmitter detecting fault increments its transmit error counter faster than
the listening nodes will increment their receive error counters. Any of the nodes starts in
error active mode. When any of the error counters raises above 127, the node will enter
a state known as error passive and when the transmit error counter raises above 255, the
node will enter the Bus Off State.

7.6 Bit Timing and Synchronization

Nominal bit rate is the no of bits per second transmitted by a transmitter in the absence
of resynchronization. Nominal bit time is the reciprocal of nominal bit rate. The Nominal

bit time can be divided into following segments- (fig 7.7)
e Synchronization segment Sync — seg
e Propagation time segment prop — seg
e Phase buffer segmentl Phase — segl

e Phase buffer segment2 Phase — seg2

26

e Synchronization Segment
This part of the bit time is used to synchronize the various nodes on the bus. An
edge is expected to lie within this segment.

e Propagation Segment
This part of the bit time is used to compensate for the physical delay times within
the network.

e Phase-segl,Phase-seg2

These phase buffer segments are used to compensate for edge phase errors.

e Sample Point

The Sample Point is the point of time at which the bit is sampled and read as the

value of respective bit.

7.7 Higher Level Protocols

CAN protocol just specifies how small packets of data can be transmitted from node
A to node B using shared communication medium. It contains no information about
flow control, transportation of data larger than 8 bits, node addresses, establishment of
communication. These topics are covered in higher level protocols which belong to higher
layers of OSI model. Most commonly used higher level protocols based on CAN are
CANOpen and Devicenet as explained in chapter 6.

7.8 Some of CAN controller chips

e Infineon 81C90 DPRAM type controller which supports CAN 2.0A. It has 16 mes-
sage buffers and a global buffer and two 8 bit parallel ports.

e Intel 82527 This chip is successor of first CAN chip 82526 in the market. It supports
CAN2.0 and provides DPRAM type interface with up to 15 message objects, two 8
bit parallel ports.

e Microchip 2515 Full CAN 2.0B, 1 Mbps, 3 Tx buffers, 2 Rx buffers.

e Philips SJA1000 This is advanced version of 82C200 supports CAN2.0 active and a

receive FIFO of 64 bytes, complete access to error counters and error diagnostics.

27

Chapter 8
Conclusion

The best of buses for one industrial-automation application can be the worst of buses for
another. Wide-ranging requirements have spurred the creation of specialized networks.
Understanding the forces driving each of these networks can help making a better choice
for the next system.

Fieldbus integrates digital control making it the best choice for process control. Foun-
dation fieldbus enables the integration of a manufacturer’s plant and global enterprise
through the high Speed Ethernet (HSE) backbone.

Several different methods are now being used for communication between industrial
devices and the world around them such as TCP/IP, CAN etc. The simplest communica-
tion interfaces for industrial equipment are serial interfaces such as RS-232, RS-422 and
RS-485, used for communication among controllers, simple sensors, servos, valves and ac-
tuators. Some of the protocols that are used today on top of RS-232, RS-422 and RS-485
are Profibus and Modbus and Interbus. Profibus PA allows communication in hazardous
industrial environment. However, MODBUS TCP/IP and Ethernet give easier interface
on the internet. In addition, because of networking topology they require a great deal of
effort for maintenance and network upgrades.

The CAN protocol is a serial bus system that comes to industrial design from auto-
motive applications. Therefore, its cables and connectors are already ruggedized, and the
equipment, is relatively inexpensive and widely available. CAN’s disadvantages are a small
data payload up to 8 bytes per transmission and low-speed data transfers, at a maximum
of 1 Mbit/second. It is a simple protocol well-suited for command-and-control-type inter-
faces. Its sophisticated error detection mechanisms and retransmission of faulty messages
guarantee data integrity. In industrial design, it is best employed for communication
among systems, sensors, devices and actuators, including printed-circuit boards.

A number of higher-level protocols based on CAN have been developed for industrial

28

control and automation, including CANOpen and Devicenet. CANOpen was designed for
motion-oriented machine control networks such as handling systems. It is found in many
applications, including medical equipment, maritime electronics, public transportation
and building automation. DeviceNet is an open, low-level network that provides connec-
tions between simple industrial devices (such as sensors and actuators) and such higher-
level devices as programmable logic controllers and computers. This network employs
the Common Industrial Protocol to provide control, configuration and data collection
capabilities for industrial devices.

With the help of communication protocols that are mostly new to the industrial envi-
ronment, industrial control and automation equipment is being integrated with back-office
and front-office systems, resulting in greater efficiency and productivity, as well as lower
operating costs. Work still needs to be done, however, on reducing redundancy among

competing industry standards.

29

References

. “Foundation Fieldbus Primer” by fieldbus inc., revision 1.1, June 24,
2004, http://www.fieldbus.org/Primer 1_1.pdf

. “Modbus Application Protocol Specification version 1.1, MODBUS.ORG”,
http:/ /www.modbus.org/ModbusApplicationProtocol _v1 1.pdf

. http://www.can-cia.de/
. “CAN Specification version 2.0” by Bosch, http://www.can.bosch.com /can2spec.pdf

. “A tale of three buses”, Mike Santori, National Instruments, EDN Access

October 23, 1997, http://www.reed-electronics.com /ednmag/archives/1997/102397,

30

