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Introduction

Practical electromagnetic problems are complicated and require numerical techniques to obtain approximate
solution. The finite element method (FEM) is an extensively used numerical method. The method was first
proposed in 1940s and applied firstly by Courant, a mathematician, to solve torsion problem. The FEM was
mainly used in mechanical and structural fields. A practical problemirofaft designwas first solved by

using FEM. In 1965, Zienkiewicz and Cheung, mathematicians, reported applicability of the FEM for all the
fields having same type of governing equations. Thereafter, FEM became popular also in the applications
of electromagnetics. As compared to other methods in computational electromagnetics, the FEM has many
advantages, viz. better applicability to complex, 3-D, anisotropic, nonlinear and coupled problems. Finite
element formulation can be implemented in Ritz method (or Variational method) and Galerkin method. In the
Ritz method, boundary value problem is formulated in terms of functional (function of functions, e.g., energy
expression), whose minimization gives accurate solution. However, formation of functional is difficult in
some complex problems and hence, it constraints scope of the Variational method. But, the method is simpler
to understand the working of finite element method. It can be explained by considering an example of parallel
plate capacitor in the next section.

lllustrative Example: Parallel Plate Capacitor

Problem definition:- To compute potential distribution over dielectric regdoy using FEM

A geometry of the parallel plate capacitor is as shown in the Fig. 1. The lower plate of the capacitor is at
ground potential whereas, the upper plate is assigned a potential of 10 V. It should be noted that, when fringing
fields are neglected (as done here) the problem becomes a trivial uniform field case having exact analytical
solution. However, the problem is solved using FEM since the explanation of the involved procedure becomes
simpler. The field distribution in this case is governed by Laplace equation:

V2 =0
¢|y=1, o<a<1 = 10 onQ (1)

¢|y:0, o<z<l — 0

The functional for the system can be taken as expression of the energy stored in the capacitor. The energy
expression for a single-dielectric case can be given by:-

_1 2
5_2/Q|V¢|d9 (2)
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Figure 1: A Parallel Plate Capacitor

Additional e term will appear inside integral for multiple dielectric system. For single dielectric case, consid-
ered here, the term is of no consequence as it will anyway get cancelled when the total energy expression is
minimized later (eq. 36). The procedure of the FEM can be divided into the following four steps.

1. Discretization of the domain

2. Approximation of the solution

3. Assembly of the system

4. Boundary conditions and solution of the final system

The problem domain is discretized into finite number of elements (or sub-domains). Selection of the type
of elements is based on geometry of the problem, shape of the element (i.e., triangular or quadrilateral for
2-D analysis and cubic, tetrahedral or prismatic for 3-D analysis) and nodal or vector formulation. Size of the
element depends on the specific geometry requirements. In case of eddy current problems, selection of the
element size depends upon skin depth. To compute force or torque in the electromagnetic systems (such as
permanent or electro magnets and motors), size of elements is decided by the air-gap in the system. Irregular
boundaries in the problem domain should be divided with more number of elements in order to obtain accurate
solution (refer Fig. 2). The problem domain of the parallel plate capacitor can be discretized as shown in
Fig. 3.

Figure 2: Irregular boundary divided with more number of elements.
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Figure 3: Discretization of the domain for parallel plate capacitor
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Figure 4: Triangular element for 2-D analysis
After discretization of the domain into large (finite) number of elements, approximate solution is assumed

over each element. The best choice for approximating the desired solupieceswise linear polynomial
The polynomial approximation for 2-D and 3-D analysis can be given by:-

EE = a+ bx + cy + dxy = for 2-D quadrilateral element size 3)

vae = a + bzx + cy = for 2-D triangular element size 4)

gfb? =a+ bx + cy + dz = for 3-D tetrahedral element size (5)

¢ = a+ba +cy+dz + exy + fyz + gzx + hayz = for 3-D cubic element size (6)

It should be noted that the number of constants in the above expressions is equal to the number of nodes of
the chosen element type. The global solution over the entire problem domain can be found by augmenting
individual elemental approximate solutions. The system assembly for simple 2-D triangular elemental domain
(refer Fig. 4) can be shown as:-

¢ =a+bxr; +cyn (7)

Ng =a+bry +cyo (8)

;5\?; =a+ bxs + cys 9)
a R e I

= |b 1 zo 1y g (10)
c 1 23 y3 Se
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We shall, henceforth, drop theon ?qggs for simplicity and understand thatefers to the approximate solution.

-1
a 1 =1 yn o1
oc=[1 z vy H =1 z y [1 o yz] [ b5 ] (11)

c 1 x5 ys ?5
3
=6 =Y Ni(x,y)d (12)
=1
where, )
Ni(z,y) = A [(w2y3 — T3y2) + (y2 — y3)z + (23 — 22)y]
1
Na(z,y) = A [(w3y1 — T1y3) + (Y3 — y1)x + (21 — 23)Y] (13)
N3(z,y) = IA [(T1y2 — 22y1) + (Y1 — y2)7 + (22 — 21)Y]
and,
I 1w
A = Area of the elemental triangular element= |1 z2 ys (14)
1 x5 ys
N;(z,y) is the expansion function and has the property that,
Ni(zj,y5) = 6ij (15)
where,
1 1=
b=, 7 (16)
0 i#J

Thus,N;(x, y) defined over the particular element vanishes outside the element. Eqn. 12 can be substituted in
Eqn. 2 to obtain expression for the functional (i.e., enefyyThus, the functional expression for one element

e can be given by:-
3
v (Z Ni(:c,y)¢§>
i=1

2
d0° (17)

=35/,

3 2
<Z{VNi<x, y)}¢f) dQ° (18)
Q¢ | \i=1
1

=&=3 Z/ (VN1 (2,9)5 + VNa(2,y)65 + VN3 (2, y)5)[* dQ° (19)

where, the operatdv is del operator which can be defined in the Cartesian co-ordinate systems as:-

0 0 0

_ 9 “ el 2

V=gast 52 + 5o (20)

For any vectom, a-a = |a|?

S=1% / (VN ()65 + VN (. 5)05 + VN3 (,9)65) - o

(VN1(z,9)¢f + VN2 (z,y)¢5 + VN3(x, y)¢5)] dQ°

LTSS [ N TN e @)

e i=1j=1
where()¢ is the elemental domain.

ZZZQSe(/VN z,y) - VNj(fcjy)dQe> X (23)
Qe

e =1 j=1
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ag; = /VNi'VdeQe (24)
Qc

A° = |a3 a3 a3 (25)

ag, agy; aj3

Ac¢ is referred to as the elemental stiffness matrix. The elemental energy can, thus, be represented as,

[ e e
ar; A2 a13]

&£ — ¢6TAe¢e (26)

where,¢® = { ¢ ¢5 o5 }T ands =Y &°.

For example,
afl == /VNl . VNldQe (27)
Qc
where, from equation 13,
aj; = L [(y2 = y3)* + (w3 — 22)?] dQ° = € [(y2 — y3)? + (23 — 22)] (28)
B ynz . 4A
Similarly, we have,
1
afy = [ VN VN = (0 )0 — )+ (o — ) — ) (29)
1
ajz = VN; - VN3dQ© = N ((y2 — y3)(y1 — y2) + (23 — x2) (22 — 21)] (30)
Qe

The global connectivity matrix can be given as:-

iF i
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e 2
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e 4
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e 8
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Figure 5: Connectivity matrix

The global stiffness matrix is of the form:

A A Az -0 Agg
Agy Agp Az - Ay

A= | A1 Asx Aszz oo Ajzg (31)
Agy Aga Agz -+ Agg



Elements in the global stiffness matrix can be understood by referring Fig. 6.
Au =af] +aff
A = af% = Ay
A=A =0 i=3,6,7,89
Azg = a5y + afi +af}

ed
Agg = Q19 = Aso

el e2 e3

Ass = a5y + a3 + ags
6 7 8
+ag, +ajy +afy

el e2
A51 = Qg7 + asy = A15

and so on.

Figure 6: Discretisation of the problem domain by triangular elements

Thus, the global stiffness matrix is:

A_ =
1 2 3 9
1 [ a$l + a3 a3 0 0
2 a5t af+aff+afi afl 0 (32)
3 0 asi ass 0
9 0 0 0 - aSi+af
Thus, equation 23 for the functional can now be expressed as,
LT
& =0TAd (33)
where,A is the matrix in equation 32 antlis a vector of all nodal potential values,
T
dp={¢1 d2 ¢3 b1 &5 P6 P71 ¢s P} (34)



The total energy of the system can be minimized by differentiating it with respect to nodal potential values.

VE =0 (35)
IE
Op2

=0 (36)

o9&
09

A set ofn-number of simultaneous equations obtained from the above equation can be written as below:-

Ay + Aoy + Az + -+ Aoy =0
A1y + Azapy + Azzpz + -+ - + A9y =0

= : (37)
Ag191 + Agaga + A93.¢3 + o+ Agopg =0
The above set of equations can be written in terms of matrix form.
= A¢p=0 (38)
The boundary conditions for the problem of parallel plate capacitor are:-
=¢2=¢3=0
om0 @

This specifies six of the nine unknowns in Eqn. 37.
Equation 37 now becomes the reduced order system as shown below:

Agads + Agsds + Asedps = —10(Agr + Agg + Ago)
As404 + Ass505 + Ascps = —10(As7 + Asg + Asg) (40)
Agads + Ass05 + Assps = —10(Ag7 + Ags + Aso)
= Azx3 ¢3x1 = b3x1 (41)
——

Symmetric

The unknown values of potentials can thus be determined from Eqn. 40, which in this case will be very close
to 5. The values will deviate slightly from the exact solution value on account of inaccuracies introduced due

to the numerical procedure.
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Tutorial One: Calculation of leakage inductance of transformer using FEM

Consider a transformer with the following rating:
31.5 MVA, 132 kV/33kV, Y/A, Ampere-turns: 135024, No. of HV turns = 980

Although it is a three-phase transformer, for calculating its leakage impedance on per-phase
basis, only a single-phase is modeled as shown in the following figure. LV is inner winding
surrounded by outer HV winding. For simplicity, tap winding is not considered. HV to core
distance is an equivalent distance calculated by considering 2/3" window width. This distance
has insignificant effect on the leakage inductance.

(1097, 2880)

CORE
~ (557, 2340)
(345, 2140~
,\
(459, 2140)
LV HV CORE
(293, 620) \
(270, 540) (394, 620)
CORE
(0,0)
Dimensions:
Core diameter : 540 mm
Core-LV gap X 23 mm
LV radial depth X 52 mm LV mean diameter: 638 mm
LV-HV gap : 49 mm
HV radial depth : 65 mm HV mean diameter: 853 mm
Heights of LV and HV windings : 1520 mm

The steps to simulate the above problem in any commercial FEM software are as follows.
Specific commands to be used will vary for different softwares.
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1. Draw the given transformer diagram as described above using preprocessor menu.
The problem is solved in Cartesian system. The performance figures computed will be
for a meter depth in z-direction; this approximation is valid for winding having large
diameters. For example, the energy calculated in winding area will then have to be
multiplied by its mean turn length to get the total energy stored in it). For smaller
diameter windings, axisymmetric model should be used to get more accurate results.

2. Use appropriate finite element type from the menu.

3. Define material properties. It should be remembered that relative permeability of winding
zones is 1 (since they consist of copper and insulation). Core should be assigned high
permeability (being made of magnetic steel).

4. Choose small enough mesh size to get accurate results.

5. Define sources: enter current and turns information for each winding. Define exactly
equal number of ampere-turns for both windings (magnetizing ampere-turns are
neglected since we are interested in calculating leakage inductance; shunt branch in the
equivalent circuit of the transformer, consisting of parallel combination of Rc and Xm, is
neglected).

6. Define flux-parallel boundary condition (magnetic vector potential = 0) on the outermost
boundaries.

7. Solve the problem as a magnetostatic one.

8. Plot the equipotential lines (magnetic flux lines in this case). Since the ampere-turns
defined for both the windings are equal but with opposite signs, the net ampere-turns
enclosed by the magnetic circuit is zero. Thus, there should not be a single line in the
core part enclosing both the windings. You will observe a bunch of lines enclosing LV
winding and the remaining ones enclosing HV winding, as shown in the figure 1 below.
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Figure 1. Magnetic vector potential plot

9. Calculate energy in all parts of the problem. The energy values obtained should be close
to that given in the following table:

1. CORE 0.0391982
2. Air 360.805
3. LV 120.653
4. HV 147.144
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It can be seen from the table that the energy stored in the core is negligible as the flux
density in it is insignificant.

It should be noted that if we want to analyze transformer in no-load state, excited
winding (LV or HV) should be fed by a rated voltage source with other winding open-
circuited along with definition of non-linear B-H curve for the core. In this case, rated
flux density (corresponding to mutual flux) would be set up in the core, giving substantial
energy in it.

10. Calculate energies in all the parts by multiplying them with corresponding mean turn
lengths (pi x mean diameters) as shown in the following table (core energy is neglected).

1. Air pi x 0.739 x360.805 = 837.7 J
2. LV pi x 0.638 x120.653 = 241.8J
3. HV pi x 0.853 x 147.144 = 394.3 ]

TOTAL ENERGY =1473.8J

11. Finally, the inductance is calculated by the following formula.

% Li* =1473.8

L (referred to HV side) = 1473.8x 2 = 0.155 Henry
iy, = (137.78)°
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Analytical solution:-

(Ref: S. V. Kulkarni and S. A. Khaparde, Transformer Engineering: Design and Practice, Marcel
Dekker, Taylor & Francis Group, New York, 2004, chapter 3).

Ccore

L H™

o o

Ampere-turn diagram

Leakage inductance calculations
. 1 1
Effective area =| = T,xD, + T, xD, += T,xD, |x#
3 3
where, D;, Dy and D, are the mean diameters and T, Tg and T2 are the radial depths of

LV, gap and HV respectively

Effective area = [(5.2/3)*63.8+4.9*73.9+ (6.5/3)*85.3] x I x 107 m?
= 657.5 x [T x 10 m? = 0.2066 m*
Effective height (HTs) = actual height + {(HVOD-LVID)/2IT} cm

where, HVOD is HV winding outer diameters and LVID is LV winding inner diameter
= 152 + (91.8-58.6)/(2I1) =157.3 cm

=1573m

L (referred to HV side) = (o N*A) / HTe = (4I1x107 x 980° x 0.2066) / 1.573 = 0.158 H
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Tutorial Two: Force on Plunger due to Magnetic Field in a Nonlinear Solenoid

Description:

A solenoid actuator consists of a coil enclosed in a ferromagnetic core with a plunger.

sl

; X3
d a.02
; [ +
ﬁ ~ =
[ =3
‘\
g \
v od'l
Il b \ ¢ 0.04
0.078 .
i ope i _-0.002 ' _—
phunger : Z
All dimensioas are in meters
Given:
Relative permeability of air and coil 1
Current density in coil le6 Amp/m*

The B-H curve for the core and plunger

H (A/m) | 460 640 720 890 1280 1900 3400 6000

B (T) 0.8 0.95 1 1.10 1.25 1.40 1.55 1.65

1. Draw the given electromagnet-plunger diagram as described above using preprocessor
menu. The problem is solved in axisymmetric system. Since the problem is symmetric
about the central vertical axis, only half of the geometry needs to be modeled. This
symmetric half problem domain needs to be enclosed by a fictitious outer boundary on
which boundary conditions can be imposed.



. Use appropriate finite element type from the menu.

. Define material properties. It should be remembered that relative permeability of coil and
air zones is 1. Core and plunger should be assigned B-H characteristics as defined in the
table given above.

Choose small enough mesh size to get accurate results.

. Define sources: enter current or current density for the coil.

. Define flux-parallel boundary condition (magnetic vector potential = 0) on the outermost
boundaries.

Solve the problem as a nonlinear magnetostatic one.

. Plot the equipotential lines (magnetic flux lines in this case).

Calculate force on the plunger using facility available in commercial FEM software. The
force value obtained should be about 357 N.

Analytical solution:-

The core is assumed to have infinite permeability requiring no magnetizing mmf
Cross sectional area of coil = Height x Width
=0.16 meter x (0.078 — 0.04) meter
=6.08 x 10° m’
Let,
Ampere turn density (ATD) = Current density (J)
Current density = 1e6 A/m2
Ampere turn (AT ) = Ampere turn density x Area of coil
= 1e6 x 6.08 x 107
= 6080
H, = AT/g =6080/0.02 = 304000 Ampere/meter
where, g is air gap distance
B, = poHg =47 x 10e” x 304000

=(.382 Tesla

Force exerted on plunger f, = ——%x A
2 p,



where, cross sectional area(A) coil = (1/4) x (d)*
= (n/4) x (0.08)
=5.02¢”> m’
Hence, force f.=291.467 N

The difference in numerical and analytical solution is due to fringing.



Calculation of Leakage Inductance

Ketan P Badgujar

Insulation Diagnostics Lab
Electrical Engineering Department
Indian Institute of Technology, Bombay
India



Overview of presentation

*  Problem Definition
« Geometry
« Discritization and Applying Boundary conditions

 Solution
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Problem Definition

(1097, 2880)

CORE
__—1= (557, 2340)
(345, 2140~ | —
(459, 2140)
LV HV CORE
e | . [
(293, 620)| { '
(270, 540) (394, 620)
CORE
(0,0)
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Tutorial 1.pdf
Tutorial 1.pdf

Geometry

* File-> New-> Magnetics problem-> click on "OK”’

- B
Create a new pmblerl ﬁ

Magnetics Problem
tics Problem

= -
Electrostatics Problem
Heat Flow Problem
s Current Flow Problem

«  Draw the given transformer diagram-

— Clickon | = (operate on nodes)-> left click on the screen -> right
click on the node (node becomes red > press Tab key-> enter the
new node location point-> click "OK’ similarly for all the points,

11 December 2017 ID Lab, Electrical Department, I.1.T. Bombay.
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(0.7930620) \ [/ (0458.0820) -
(0.27.0.54) (0.557.0.54)

on"®
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Co-ordinates

(1.097.2.880)

1.097
1.097

0.27
0.557

0.27
0.557

~(.087.0)

2.88
2.88

0.54
0.54
2.34
2.34
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0.293
0.459
0.345
0.394

0.293
0.459
0.345
0.394

0.62
0.62
0.62
0.62

2.14
2.14
2.14
2.14



« Click on =" (operate on -

segments) -> left click on
first node (node becomes
red)-> left click on the
second node (now both node
are connected through a
line)

11 December 2017 ID Lab, Electrical Department, 1.1.T. Bombay.



« Click on_(operate on
block labels)-> left click on
the each area once

11 December 2017

o : : - =
T m=HNonex
| = Mone =
e qilone=
-k e =

= == |
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 (lick on “Problem” from

. Problem Definition
FEMM main menu-
. . , Problem T Pl
e Click on ‘OK R e =
Length Units Meters

Frequency {Hz) 0

Depth 1

Solver Predision 1e-003

Min Angle 30
AC Solver Succ. Approx
—Comment

Add comments here,

QK I Cancel

11 December 2017 ID Lab, Electrical Department, I.1.T. Bombay.
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Click on “Properties’- flock Propery

MName I Ajr|

>’ ’M ateri al S ”? = > Ad d B-H Curve ILinear B-H Relationship ﬂ

p ro p e rty —Linear Material Properties
Relative ﬂ!x I 1 Relative v I 1

* Click on ‘OK’, similarly | ®*= 1 %= P
—Monlinear Material Properties

fO I a.l I m ate I i d I S Edit B-H Curve | Prmax , deg [o

—Coercivity "EIE::triml Conductivity

H_ o Afm IU— O , MS/m IU—

—oource Current Density

3, MAfm~2 | 0

—Spedal Attributes: Lamination & Wire Type
INut laminated or stranded

Lam thickness, mm I 0 Lam fill factor
Mumber of strands I':I Strand dia, mm | O

oK I Cancel |

1.

11 December 2017 ID Lab, Electrical Department, 1.1.T. Bombay.
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B-H Curve ILinear B-H Relationship j

~Linear Material Properties

Relative I8 50000 Relstive I, 50000

& deq Io ¢, rde Io

Block Property
MName I Lv
B-H Curve ILinear B-H Relationship ﬂ

—Linear Material Properties

Relative fI_ |1 Relative M, |1
&, . deg |o @, de |0

—Monlinear Material Properties

Edit B-H Curve

| ¢hmax,deg ID

—Monlinear Material Properties

Edit B-H Curve

| éhmaxldeg ID

HC IU 0, M5jm IU

rCoergvity ———————————————— "Elech'iml Conductivity

— Coerdvity "EIech'i:BI Conductivity

Hc L Afm |0 T , MS/m |0

—Source Current Density

3, MAJm~2 | 0

r~Special Attributes: Lamination & Wire Type

INot laminated or stranded

Mumber of strands

Strand dia, mm |0

Lam thickness, mm I 0 Lam fill factor
I 0

oK I Cancel |

—Source Current Density

1, MAm~2 | 1.708299595

—5Spedial Attributes: Lamination & Wire Type

B-H Curve ILinear B-H Relationship j

~Linear Material Properties

Relative ML Il Relative M Il
&, . deg In iﬁhy , deg |u

r—Monlingar Material Properties
Edit B-H Curve

| whmax,deg IEI

HC IU O, MSfm |0

rCoercivity ————————————— "EIectrimI Conductivity

—Source Current Density

3, MAfm~2 | -1.366639575

INot laminated or stranded j

Lam thickness, mm IU Lam fill factor I i
I 0 I a

Mumber of strands Strand dia, mm

—Spedal Attributes: Lamination & Wire Type

INot laminated or stranded

Lam thidkness, mm Lam fill factor

I 1]
MNumber of strands I 1] Strand dia, mm |0

Cancel |
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* Click on “Properties”-
>"Boundary”’->Add

property -> CIiCk On Name A=0|

Cancel

. O [< 8 BCType |Prescribed A

—5mall skin depth parameters

M, relative

0, M5/m

0

0

C - coeffident

c 1 coeffident

—Mixed BC parameters

0

0

=~
~Prescribed A parameters

0

|

0
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« Click on__(operate on

block labels)-> Right e
click on a block (point [ e (Prperies forsecsdboct__ )
of block becomes red)-> 1] st :?;1 E
press the space key I Py

* Click on ‘OK’ similarly
for all the blocks
» Here we are defining

meshing size to each WL
material o
11 December 2017 ID Lab, Electrical Department, 1.1.T. Bombay. 12



» Click on¥(operate on
segments)-> Right click

on the one of the four [
outer most lines (Line {[] ]
becomes red)-> press
space key

* Click on ‘OK’ similarly
for three remaining lines

* In this step we are 319y
assigning boundary o
conditions

o Core

11 December 2017 ID Lab, Electrical Department, 1.1.T. Bombay.
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Meshing

e Clickon ->click on 1

e Above button runs mesh
generator

 This step creates mesh o
for the given geometry Ml

11 December 2017 ID Lab, Electrical Department, 1.1.T. Bombay. 14



Output

 (Click on ‘hand crank’

Icon s , It executes the
solver

* Now click on &|. This Is
‘glass’ button to display
the results in post
processing window

11 December 2017 ID Lab, Electrical Department, 1.1.T. Bombay.
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* Click on2%l-> Left
click on one of the four
areas (area becomes
colored)

e Clickon.or ->
e Clickon ‘OK’

« Similarly find energy
for all the areas

11 December 2017 ID Lab, Electrical Department, I.1.T. Bombay.
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1 CORE 0.0262184
2 Air 360.794
3 LvV 120.653
4 HV 147.144
1

L (referred to HV side) = -

Results

1 CORE
2 Air
3 LV
4 HV

> Li* =1473.8672

1473.8672x 2

Pi x 0.540 x 0.0262184 = 0.0445 J
Pi x 0.739 x360.794 = 837.6327 )
Pix 0.638 x120.653 = 241.8292 )
Pix 0.853 x 147.144 = 394.3133 )

TOTAL ENERGY =1473.8672 )

= 0.1553 Henry

2 = (137.7808104)2

11 December 2017 ID Lab, Electrical Department, I.1.T. Bombay.
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Analytical solution

« | eakage inductance calculations
Effective area = [(5.2/3)*63.8+4.9*73.9+ (6.5/3)*85.3] X I'T X 104 m?
= 657.5 X ITx 10* m2 = 0.2066 m?
Effective height =152+ {(HVOD-LVID)/211}
=152+ (91.8-58.6)/(211)
=157.3 cm
=1.573m

— (Ref: S. V. Kulkarni and S. A. Khaparde, Transformer Engineering:
Design and Practice, Marcel Dekker, Taylor & Francis Group, New
York, 2004.)

L (referred to HV side) = (4o N2 A) / HT 4
= (4ITx10" x 980%x 0.2066) / 1.573
=0.158 H

11 December 2017 ID Lab, Electrical Department, I.1.T. Bombay.
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Presentation Layout

Problem Definition

Geometry

Discritization and applying boundary conditions

Step:4 Solution and post processing

i




Problem Definition



Tutorial 2.pdf
Tutorial 2.pdf

Geometry

= File-> New-> Magnetics problem-> click on "OK’

- |

Magnetics Problem

Magnetics Problem

Electrostatics Problem

Heat Flow Problem
L= Current Flow Problem

= Draw the given transformer diagram-

. Click on &1 (operate on nodes)-> left click on the screen -> right
click on the node (node becomes red > press Tab key-> enter the

new node location point-> click "OK’ similarly for all the points




Co-ordinates




Operate on segments

- Click on Pl (operate on
segments) -> left click on first
node (node becomes red)->
left click on the second node
(now both node are
connected through a line)




*Operate on blocks

- Click onl& (operate on block
labels)-> left click on the each
area once




Problem type and length units

- Click on “Problem” from
FEMM main menu-

. Click on ‘OK’

Problem Type Axisymmetric

Length Units M
Frequency (Hz) ID—
Depth |1—
Solver Precision Ir

Min Angle 30

AC Solver Succ. Approx

Comment

| Add comments here,




Material properties

- Click on
“Properties”-
>"Materials”->
Add property

- Set properties
for air and coil
as shown in
figure

Linear Material Properties

Relative M I Relative A2 I
@, 1 deg | $,, +deg |

Monlinear Material Properties
éhmax ,deg ':'

Edit B-H Curve

Coerdivity Electrical Conductivity
H_ o Afm | g , M5/m |

Source Current Density
1, MAfm~2 I 0

Spedal Attributes: Lamination & Wire Type

Not laminated or stranded I
Lam thickness, mm I 0 Lam fill factor 1
Mumber of strands I 0 Strand dia, mm | 0

MName
B-H Curve Linear B-H Relationship

Linear Material Properties

Relative u I Relative A I
@, . deg | $, . s deg |

¢hma:«: ,deg I o

Coercivity Electrical Conductivity
Hooam o fo | o,msm [0
Source Current Density
1, MAjm~2 | 1
Spedal Attributes: Lamination & Wire Type

Not laminated or stranded I
Lam thickness, mm I o Lam fil factor I 1
Mumber of strands I 0 Strand dia, mm I 0

Monlinear Material Properties

Edit B-H Curve




Material properties

For, core & plunger “Properties”->"Materials”-> Add property -
>B-H Curve (Nonlinear BH-Curve)->Click on “Edit B-H Curve”->
click on “OK”

Block Property | Block Property

Name I ore Name I plunger

B-H Curve Datal =
B-H Curve INonIinear BH Curve j B-H Curve INonIinear B-H Curve j —

- | B-H Curve Data u B-H Curve for:
~Linear Material Properties __.A ~Linear Material Proper ties plunger

Relative f2 I 1 Relative f2, I 1 B-H Curve for: Relative pd, 1 Relative £2_ I 1 B, Tesla H, Ampjm

core

0.0 0
By e I':' éhz 1 deg I'J B, Tesla b Py dea I':' GE.hz » deg I':' 0.8 460

0.95 640
0.0 _ _ _ 1.0 720
—Monlinear Material Properties 0.3 460 Nonlinear Material Properties 1.10 890

0.95 640 .
Edit B-H Curve | ¢hmax ,deg IU 1.0 720 Edit B-H Curve | ¢hmax , deg I 0 1% iégg

110 390 1.55 3400
125 1280 ~Coerdvity —————————————— ’—Eectriml Conductivity ————— 165 -~ | B000 -

rCoerdivity ——— ~Electrical Conductivity ————— L4 1900
HC IU ’Vaxmsl,rm IU 1.55 3400 Hc Iu T, MSjm IU

1,65 _ | &o0g|
—Source Current Density
1, MAm "2 |0

Plot BH Curve

-

—Source Current Density

|
- I - Log Plot B-H Curve |
1, MAJm”~2
|
|

Flot B-H Curve

Read B-H points from text file

Log Plot B-H Curve

—Spedal Attributes: Lamination & Wire Type
INot laminated or stranded Read B-H points from text fle

e — I Lam fil factor 1 oK I Cancel Lam thickness, mm I'J Lam fill factor I 1
Number of strands I— Strand dia. mm |0 —-—,— Number of strands I'J Strand dia, mm I'J
r

oK | Cancel |

INot laminated or stranded j 0K I Canicel

| rSpecial Attributes: Lamination & Wire Type

oK | Cancel |




Boundary property

- Click on “Properties”-
>"Boundary”->Add property -
> CliCk On (OK Boundary Property

Cancel |
BC Type |Prescribed & bl

small skin depth parameters Prescribed A parameters

M, relative I a

O, M5/m I 0
Mixed BC parameters

<y coeffident ':'
= i coeffident |:|




. Click on & (operate on block
labels)-> Right click on a

block (point of block | [ propertes for st ook S
I i Block type h
becomes red)-> press the -
) p u" Mesh size |0.0015—
Spa Ce key [ Let Triangle choose Mesh Size
- Click on ‘OK’ similarly for all :

the blocks
[~ Block label located in an external region

- Here we are defining O
meshing size to each material ‘




Set boundary conditions

. Click on E#ll (operate on
segments)-> Right click on
the one of the four outer
most lines (Line becomes

A=0

red)-> press space key Locel sement
- Click on ‘OK’ similarly for Sttt
three remaining lines e

- In this step we are assigning
boundary conditions - '




Meshing

. Click on [B8-> click on ‘OK’

- Above button runs mesh
generator

- This step creates mesh for
the given geometry

i | Created mesh with 19564 nodes




Output

. Click on ‘hand crank’ icon k&,
it executes the solver

- Now click on k& . This is ‘glass’ s W | ]] s porzans
. il [ .ﬁ.i?fmn:ljzﬁc ::Lt:;:)sn
button to display the results ’r.".l;" Feaonay o1

19564 Modes

in pOSt proceSSing WindOW | |:| B - W ITF,:I- 33525 Elements




Post processing

. Click onlE -> Left click on
the plunger (area becomes
colored)

. Click on W H->
. Click on ‘OK’
- Force = 363 N

Block Integrals




Density plot

: ode-
: 9.410e-




Analytical solution

The core is assumed to have infinite permeability requiring no magnetizing mmf
Let, Ampere current density (ATD) = Current density (J)
Ampere current ( AT ) = 6080
H, = AT/g =304000
where, g air gap distance

B, = poH, = 0.382
1B’

where, A=area of cross section of coil
. f,=261N

= The difference in numerical and analytical solution is due to fringing







