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Introduction

Practical electromagnetic problems are complicated and require numerical techniques to obtain approximate
solution. The finite element method (FEM) is an extensively used numerical method. The method was first
proposed in 1940s and applied firstly by Courant, a mathematician, to solve torsion problem. The FEM was
mainly used in mechanical and structural fields. A practical problem ofaircraft designwas first solved by
using FEM. In 1965, Zienkiewicz and Cheung, mathematicians, reported applicability of the FEM for all the
fields having same type of governing equations. Thereafter, FEM became popular also in the applications
of electromagnetics. As compared to other methods in computational electromagnetics, the FEM has many
advantages, viz. better applicability to complex, 3-D, anisotropic, nonlinear and coupled problems. Finite
element formulation can be implemented in Ritz method (or Variational method) and Galerkin method. In the
Ritz method, boundary value problem is formulated in terms of functional (function of functions, e.g., energy
expression), whose minimization gives accurate solution. However, formation of functional is difficult in
some complex problems and hence, it constraints scope of the Variational method. But, the method is simpler
to understand the working of finite element method. It can be explained by considering an example of parallel
plate capacitor in the next section.

Illustrative Example: Parallel Plate Capacitor

Problem definition:- To compute potential distribution over dielectric regionΩ by using FEM.
A geometry of the parallel plate capacitor is as shown in the Fig. 1. The lower plate of the capacitor is at
ground potential whereas, the upper plate is assigned a potential of 10 V. It should be noted that, when fringing
fields are neglected (as done here) the problem becomes a trivial uniform field case having exact analytical
solution. However, the problem is solved using FEM since the explanation of the involved procedure becomes
simpler. The field distribution in this case is governed by Laplace equation:

∇2φ = 0
φ|y=1, 0<x<1 = 10

φ|y=0, 0<x<1 = 0

onΩ (1)

The functional for the system can be taken as expression of the energy stored in the capacitor. The energy
expression for a single-dielectric case can be given by:-

E =
1
2

∫

Ω

| ∇φ |2 dΩ (2)
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Figure 1: A Parallel Plate Capacitor

Additional ε term will appear inside integral for multiple dielectric system. For single dielectric case, consid-
ered here, the term is of no consequence as it will anyway get cancelled when the total energy expression is
minimized later (eq. 36). The procedure of the FEM can be divided into the following four steps.

1. Discretization of the domain

2. Approximation of the solution

3. Assembly of the system

4. Boundary conditions and solution of the final system

The problem domain is discretized into finite number of elements (or sub-domains). Selection of the type
of elements is based on geometry of the problem, shape of the element (i.e., triangular or quadrilateral for
2-D analysis and cubic, tetrahedral or prismatic for 3-D analysis) and nodal or vector formulation. Size of the
element depends on the specific geometry requirements. In case of eddy current problems, selection of the
element size depends upon skin depth. To compute force or torque in the electromagnetic systems (such as
permanent or electro magnets and motors), size of elements is decided by the air-gap in the system. Irregular
boundaries in the problem domain should be divided with more number of elements in order to obtain accurate
solution (refer Fig. 2). The problem domain of the parallel plate capacitor can be discretized as shown in
Fig. 3.

Figure 2: Irregular boundary divided with more number of elements.
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Figure 3: Discretization of the domain for parallel plate capacitor
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Figure 4: Triangular element for 2-D analysis

After discretization of the domain into large (finite) number of elements, approximate solution is assumed
over each element. The best choice for approximating the desired solution ispiece-wise linear polynomial.
The polynomial approximation for 2-D and 3-D analysis can be given by:-

φ̃e = a + bx + cy + dxy ⇒ for 2-D quadrilateral element size (3)

φ̃e = a + bx + cy ⇒ for 2-D triangular element size (4)

φ̃e = a + bx + cy + dz ⇒ for 3-D tetrahedral element size (5)

φ̃e = a + bx + cy + dz + exy + fyz + gzx + hxyz ⇒ for 3-D cubic element size (6)

It should be noted that the number of constants in the above expressions is equal to the number of nodes of
the chosen element type. The global solution over the entire problem domain can be found by augmenting
individual elemental approximate solutions. The system assembly for simple 2-D triangular elemental domain
(refer Fig. 4) can be shown as:-

φ̃e
1 = a + bx1 + cy1 (7)

φ̃e
2 = a + bx2 + cy2 (8)

φ̃e
3 = a + bx3 + cy3 (9)

⇒



a
b
c


 =




1 x1 y1

1 x2 y2

1 x3 y3



−1




φ̃e
1

φ̃e
2

φ̃e
3


 (10)
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We shall, henceforth, drop the∼ on φ̃es for simplicity and understand thatφ refers to the approximate solution.

φe =
[
1 x y

]



a
b
c


 =

[
1 x y

]



1 x1 y1

1 x2 y2

1 x3 y3



−1


φe

1

φe
2

φe
3


 (11)

⇒ φe =
3∑

i=1

Ni(x, y)φe
i (12)

where,

N1(x, y) =
1

2∆
[(x2y3 − x3y2) + (y2 − y3)x + (x3 − x2)y]

N2(x, y) =
1

2∆
[(x3y1 − x1y3) + (y3 − y1)x + (x1 − x3)y]

N3(x, y) =
1

2∆
[(x1y2 − x2y1) + (y1 − y2)x + (x2 − x1)y]

(13)

and,

∆ = Area of the elemental triangular element=
1
2

∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
(14)

Ni(x, y) is the expansion function and has the property that,

Ni(xj , yj) = δij (15)

where,

δij =

{
1 i = j

0 i 6= j
(16)

Thus,Ni(x, y) defined over the particular element vanishes outside the element. Eqn. 12 can be substituted in
Eqn. 2 to obtain expression for the functional (i.e., energyE ). Thus, the functional expression for one element
e can be given by:-

E =
∑

e

1
2

∫

Ωe

∣∣∣∣∣∇
(

3∑

i=1

Ni(x, y)φe
i

)∣∣∣∣∣

2

dΩe (17)

⇒ E =
1
2

∑
e

∫

Ωe

∣∣∣∣∣

(
3∑

i=1

{∇Ni(x, y)}φe
i

)∣∣∣∣∣

2

dΩe (18)

⇒ E =
1
2

∑
e

∫

Ωe

|(∇N1(x, y)φe
1 +∇N2(x, y)φe

2 +∇N3(x, y)φe
3)|2 dΩe (19)

where, the operator∇ is del operator which can be defined in the Cartesian co-ordinate systems as:-

∇ =
∂

∂x
ax +

∂

∂y
ay +

∂

∂z
az (20)

For any vectora, a · a = |a|2

⇒ E =
1
2

∑
e

∫

Ωe

[(∇N1(x, y)φe
1 +∇N2(x, y)φe

2 +∇N3(x, y)φe
3) ·

(∇N1(x, y)φe
1 +∇N2(x, y)φe

2 +∇N3(x, y)φe
3)] dΩe

(21)

⇒ E =
1
2

∑
e

3∑

i=1

3∑

j=1

∫

Ωe

φe
i∇Ni(x, y) · ∇Nj(x, y)φe

jdΩe (22)

whereΩe is the elemental domain.

⇒ E =
1
2

∑
e

3∑

i=1

3∑

j=1

φe
i

(∫

Ωe

∇Ni(x, y) · ∇Nj(x, y)dΩe

)
φe

j (23)
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ae
ij ≡

∫

Ωe

∇Ni · ∇NjdΩe (24)

Ae =




ae
11 ae

12 ae
13

ae
21 ae

22 ae
23

ae
31 ae

32 ae
33


 (25)

Ae is referred to as the elemental stiffness matrix. The elemental energy can, thus, be represented as,

E e = φeTAeφe (26)

where,φe =
{

φe
1 φe

2 φe
3

}T
andE =

∑
e

E e.

For example,

ae
11 =

∫

Ωe

∇N1 · ∇N1dΩe (27)

where, from equation 13,

ae
11 =

1
4∆2

[
(y2 − y3)2 + (x3 − x2)2

] ∫

Ωe

dΩe =
1

4∆
[
(y2 − y3)2 + (x3 − x2)2

]
(28)

Similarly, we have,

ae
12 =

∫

Ωe

∇N1 · ∇N2dΩe =
1

4∆
[(y2 − y3)(y3 − y1) + (x3 − x2)(x1 − x3)] (29)

ae
13 =

∫

Ωe

∇N1 · ∇N3dΩe =
1

4∆
[(y2 − y3)(y1 − y2) + (x3 − x2)(x2 − x1)] (30)

The global connectivity matrix can be given as:-

Figure 5: Connectivity matrix

The global stiffness matrix is of the form:

A =




A11 A12 A13 · · · A19

A21 A22 A23 · · · A29

A31 A32 A33 · · · A39

...
. ..

...
A91 A92 A93 · · · A99




(31)
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Elements in the global stiffness matrix can be understood by referring Fig. 6.

A11 = ae1
11 + ae2

11

A12 = ae2
12 = A21

A1i = Ai1 = 0 i = 3, 6, 7, 8, 9

A22 = ae2
22 + ae3

11 + ae4
11

A23 = ae4
12 = A32

...

A55 = ae1
22 + ae2

33 + ae3
33

+ ae6
22 + ae7

11 + ae8
11

A51 = ae1
21 + ae2

31 = A15

and so on.
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Figure 6: Discretisation of the problem domain by triangular elements

Thus, the global stiffness matrix is:

A =




1 2 3 · · · 9

1 ae1
11 + ae2

11 ae2
12 0 · · · 0

2 ae2
21 ae2

22 + ae3
11 + ae4

11 ae4
12 · · · 0

3 0 ae4
21 ae4

22 · · · 0
...

...
.. .

...

9 0 0 0 · · · ae7
22 + ae8

33




(32)

Thus, equation 23 for the functional can now be expressed as,

E =
1
2
φTAφ (33)

where,A is the matrix in equation 32 andφ is a vector of all nodal potential values,

φ =
{
φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

}T
(34)
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The total energy of the system can be minimized by differentiating it with respect to nodal potential values.

∇E = 0 (35)

⇒




∂E
∂φ1
∂E
∂φ2
...

∂E
∂φ9




= 0 (36)

A set ofn-number of simultaneous equations obtained from the above equation can be written as below:-

⇒

A11φ1 + A12φ2 + A13φ3 + · · ·+ A19φ9 = 0
A21φ1 + A22φ2 + A23φ3 + · · ·+ A29φ9 = 0

...
A91φ1 + A92φ2 + A93φ3 + · · ·+ A99φ9 = 0

(37)

The above set of equations can be written in terms of matrix form.

⇒ Aφ = 0 (38)

The boundary conditions for the problem of parallel plate capacitor are:-

φ1 = φ2 = φ3 = 0
φ7 = φ8 = φ9 = 10

(39)

This specifies six of the nine unknowns in Eqn. 37.
Equation 37 now becomes the reduced order system as shown below:

A44φ4 + A45φ5 + A46φ6 = −10(A47 + A48 + A49)
A54φ4 + A55φ5 + A56φ6 = −10(A57 + A58 + A59)
A64φ4 + A65φ5 + A66φ6 = −10(A67 + A68 + A69)

(40)

⇒ A3×3︸ ︷︷ ︸
Symmetric

φ3×1 = b3×1 (41)

The unknown values of potentials can thus be determined from Eqn. 40, which in this case will be very close
to 5. The values will deviate slightly from the exact solution value on account of inaccuracies introduced due
to the numerical procedure.

References
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Tutorial One:  Calculation of leakage inductance of transformer using FEM 

 

Consider a transformer with the following rating:  

31.5 MVA, 132 kV/33kV, Y/∆, Ampere-turns: 135024, No. of HV turns = 980  

Although it is a three-phase transformer, for calculating its leakage impedance on per-phase 

basis, only a single-phase is modeled as shown in the following figure. LV is inner winding 

surrounded by outer HV winding. For simplicity, tap winding is not considered. HV to core 

distance is an equivalent distance calculated by considering 2/3
rd

 window width. This distance 

has insignificant effect on the leakage inductance.   

 
 

Dimensions:  

Core diameter :  540 mm 

Core-LV gap  :  23 mm 

LV radial depth :  52 mm      LV mean diameter: 638 mm 

LV-HV gap  :  49 mm 

HV radial depth :  65 mm     HV mean diameter: 853 mm 

 

Heights of LV and HV windings : 1520 mm 

 

The steps to simulate the above problem in any commercial FEM software are as follows. 

Specific commands to be used will vary for different softwares.  
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1. Draw the given transformer diagram as described above using preprocessor menu.                                           

The problem is solved in Cartesian system. The performance figures computed will be 

for a meter depth in z-direction; this approximation is valid for winding having large 

diameters. For example, the energy calculated in winding area will then have to be 

multiplied by its mean turn length to get the total energy stored in it). For smaller 

diameter windings, axisymmetric model should be used to get more accurate results.  

2. Use appropriate finite element type from the menu. 

3. Define material properties. It should be remembered that relative permeability of winding 

zones is 1 (since they consist of copper and insulation). Core should be assigned high 

permeability (being made of magnetic steel).  

4. Choose small enough mesh size to get accurate results. 

5. Define sources: enter current and turns information for each winding. Define exactly 

equal number of ampere-turns for both windings (magnetizing ampere-turns are 

neglected since we are interested in calculating leakage inductance; shunt branch in the 

equivalent circuit of the transformer, consisting of parallel combination of Rc and Xm, is 

neglected).  

6. Define flux-parallel boundary condition (magnetic vector potential = 0) on the outermost 

boundaries.   

7. Solve the problem as a magnetostatic one. 

8. Plot the equipotential lines (magnetic flux lines in this case). Since the ampere-turns 

defined for both the windings are equal but with opposite signs, the net ampere-turns 

enclosed by the magnetic circuit is zero. Thus, there should not be a single line in the 

core part enclosing both the windings. You will observe a bunch of lines enclosing LV 

winding and the remaining ones enclosing HV winding, as shown in the figure 1 below. 
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                                          Figure 1.  Magnetic vector potential plot 

 

9. Calculate energy in all parts of the problem. The energy values obtained should be close 

to that given in the following table:  

 

Sr. No. Part Energy in Joules per meter depth 

1. CORE 0.0391982 

2. Air 360.805 

3. LV 120.653 

4. HV 147.144 
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It can be seen from the table that the energy stored in the core is negligible as the flux 

density in it is insignificant.  

It should be noted that if we want to analyze transformer in no-load state, excited 

winding (LV or HV) should be fed by a rated voltage source with other winding open-

circuited along with definition of non-linear B-H curve for the core. In this case, rated 

flux density (corresponding to mutual flux) would be set up in the core, giving substantial 

energy in it.  

10. Calculate energies in all the parts by multiplying them with corresponding mean turn 

lengths (pi x mean diameters) as shown in the following table (core energy is neglected).  

 

Sr. No.  Part  Energy in Joules  

1.  Air  pi × 0.739 ×360.805 = 837.7 J  

2.  LV  pi × 0.638 ×120.653 =  241.8 J  

3.  HV  pi × 0.853 × 147.144 = 394.3 J  

                                         TOTAL ENERGY = 1473.8 J  

11.  Finally, the inductance is calculated by the following formula. 

 

 

L (referred to HV side) =   

 

 

 

 

 

2 2

HV

1473.8 2
0.155 Henry

i (137.78)

21
Li 1473.8

2
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Analytical solution:- 

(Ref: S. V. Kulkarni and S. A. Khaparde, Transformer Engineering: Design and Practice, Marcel 

Dekker, Taylor & Francis Group, New York, 2004, chapter 3). 

Leakage inductance calculations 

 1 1 2 2

1 1
Effective  area 

3 3
g gT D T D T D

 

where, gDD ,1 and 2D  are the mean diameters and gTT ,1 and 2T  are the radial  depths  of    

LV, gap and HV respectively 

 

           Effective area = [(5.2/3)*63.8+4.9*73.9+ (6.5/3)*85.3] x  x 10
-4

 m
2
 

                                       = 657.5 x  x 10
-4

 m
2
 = 0.2066 m

2 

Effective height (HTeff) = actual height + {(HVOD-LVID)/2 }  cm 

    where, HVOD is  HV winding outer diameters and LVID is LV winding inner diameter                                                               

= 152 + (91.8-58.6)/(2  ) =157.3 cm                                         

 = 1.573 m 

                                      

L (referred to HV side) = ( 0 N
2 

A) / HTeff  = (4 x10
-7

 x 980
2
 x 0.2066) / 1.573 = 0.158 H 



Tutorial Two:  Force on Plunger due to Magnetic Field in a Nonlinear Solenoid 

 

Description: 

A solenoid actuator consists of a coil enclosed in a ferromagnetic core with a plunger.  

 

Given: 

Relative permeability of air and coil 1 

Current density in coil 1e6 Amp/m2 

                    The B-H curve for the core and plunger 

 H (A/m) 460 640 720 890 1280 1900 3400 6000 
B (T) 0.8 0.95 1 1.10 1.25 1.40 1.55 1.65 

 

1. Draw the given electromagnet-plunger diagram as described above using preprocessor 
menu. The problem is solved in axisymmetric system. Since the problem is symmetric 
about the central vertical axis, only half of the geometry needs to be modeled. This 
symmetric half problem domain needs to be enclosed by a fictitious outer boundary on 
which boundary conditions can be imposed.  



2. Use appropriate finite element type from the menu. 
3. Define material properties. It should be remembered that relative permeability of coil and 

air zones is 1. Core and plunger should be assigned B-H characteristics as defined in the 
table given above.  

4. Choose small enough mesh size to get accurate results. 
5. Define sources: enter current or current density for the coil.  
6. Define flux-parallel boundary condition (magnetic vector potential = 0) on the outermost 

boundaries.   
7. Solve the problem as a nonlinear magnetostatic one. 
8. Plot the equipotential lines (magnetic flux lines in this case).  

Calculate force on the plunger using facility available in commercial FEM software. The 
force value obtained should be about 357 N.  

Analytical solution:- 

The core is assumed to have infinite permeability requiring no magnetizing mmf 

Cross sectional area  of coil = Height × Width 

                                             = 0.16 meter × (0.078 – 0.04) meter 

            = 6.08 × 10-3 m2 

 Let, 

 Ampere turn density (ATD) = Current density (J) 

                   Current density = 1e6 A/m2 

Ampere turn (AT )  = Ampere turn density  × Area of coil 

        = 1e6 × 6.08 × 10-3  

        = 6080            

                          Hg  = AT/g =6080/0.02 = 304000 Ampere/meter 

where, g is air gap distance  

                          Bg  = µ0Hg  = 4π × 10e-7 × 304000  

        = 0.382 Tesla 

Force exerted on plunger g
e

0

B1f A
2 µ

= ×  



                  

 

where, cross sectional area(A)  coil = (π/4) × (d)2 

               = (π/4) × (0.08)2 

               = 5.02e-3 m2 

           Hence, force   fe = 291.467 N   

The difference in numerical and analytical solution is due to fringing.  
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Overview of presentation

• Problem Definition

• Geometry 

• Discritization and Applying Boundary conditions

• Solution
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Problem Definition

Tutorial 1.pdf
Tutorial 1.pdf
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Geometry 

• File-> New-> Magnetics problem-> click on `OK’

• Draw the given transformer diagram-

– Click on  (operate on nodes)-> left click on the screen -> right      

click   on the node (node becomes red > press Tab key-> enter the 

new node location point-> click `OK’ similarly for all the points,  
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Co-ordinates

x y X y

0 0 0.293 0.62

0 2.88 0.459 0.62

1.097 2.88 0.345 0.62

1.097 0 0.394 0.62

0.27 0.54 0.293 2.14

0.557 0.54 0.459 2.14

0.27 2.34 0.345 2.14

0.557 2.34 0.394 2.14
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• Click on       (operate on 

segments) -> left click on 

first node (node becomes 

red)-> left click on the 

second node (now both node 

are connected through a 

line)
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• Click on     (operate on 

block labels)-> left click on 

the each area   once
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• Click on “Problem” from 

FEMM main menu-

• Click on ‘OK’
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• Click on “Properties”-

>”Materials”-> Add 

property   

• Click on ‘OK’, similarly 

for all materials
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• Click on “Properties”-

>”Boundary”->Add 

property -> click on 

‘OK’
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• Click on     (operate on 

block labels)-> Right 

click on a block (point 

of block becomes red)-> 

press the space key

• Click on ‘OK’ similarly 

for all the blocks

• Here we are defining 

meshing size to each 

material
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• Click on  (operate on 

segments)-> Right click 

on the one of the four 

outer most lines (Line 

becomes red)-> press 

space key

• Click on ‘OK’ similarly 

for three remaining lines

• In this step we are 

assigning boundary 

conditions   
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Meshing

• Click on  -> click on 

‘OK’

• Above button runs mesh 

generator

• This step creates mesh 

for the given geometry
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Output

• Click on ‘hand crank’ 

icon  , it executes the 

solver

• Now click on     . This is 

‘glass’ button to display 

the results in post 

processing window
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• Click on      -> Left 

click on one of the four 

areas (area becomes 

colored)

• Click on  ->

• Click on ‘OK’

• Similarly find energy 

for all the areas
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Results

Sr. No. Part Energy in Joules 

per meter depth

1 CORE 0.0262184

2 Air 360.794

3 LV 120.653

4 HV 147.144

Sr. No. Part Energy in Joules 

1 CORE Pi × 0.540 × 0.0262184 = 0.0445 J 

2 Air Pi × 0.739 ×360.794 = 837.6327 J 

3 LV Pi × 0.638 ×120.653 =  241.8292 J 

4 HV Pi × 0.853 × 147.144 = 394.3133 J 

TOTAL ENERGY = 1473.8672 J 

1711 December 2017

21
Li 1473.8672

2


2 2

HV

1473.8672 2
L (referred to HV side) =  0.1553 Henry

i (137.7808104)





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Analytical solution

• Leakage inductance calculations

Effective area = [(5.2/3)*63.8+4.9*73.9+ (6.5/3)*85.3] x  x 10-4 m2

= 657.5 x  x 10-4 m2 = 0.2066 m2

Effective height =152+ {(HVOD-LVID)/2}

=152+ (91.8-58.6)/(2 ) 

=157.3 cm 

= 1.573 m

– (Ref: S. V. Kulkarni and S. A. Khaparde, Transformer Engineering: 

Design and Practice, Marcel Dekker, Taylor & Francis Group, New 

York, 2004. )

L (referred to HV side)  = (µ0 N2 A) / HTeff

= (4x10-7 x 9802x 0.2066) / 1.573

= 0.158 H
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Presentation Layout

Problem Definition

Geometry

Solution and post processing

Step:1

Step:2

Step:3

Step:4

Discritization and applying boundary conditions
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Problem Definition

Tutorial 2.pdf
Tutorial 2.pdf


 File-> New-> Magnetics problem-> click on `OK’

 Draw the given transformer diagram-

• Click on  (operate on nodes)-> left click on the screen -> right      

click   on the node (node becomes red > press Tab key-> enter the 

new node location point-> click `OK’ similarly for all the points  

IDLAB, IIT Bomaby4

•Geometry



x y x y

0 0 0 0.2

0.14 0 0 0.22

0.14 0.30 0 0.28

0 0.30 0.12 0.28

0 0.02 0.08 0.24

0.042 0.04 0.042 0.24

0.12 0.04 0.042 0.22

0.042 0.08 0.04 0.2

0.08 0.08 0.04 0.02
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•Co-ordinates



• Click on       (operate on 
segments) -> left click on first 
node (node becomes red)-> 
left click on the second node 
(now both node are 
connected through a line)

6 IDLAB, IIT Bomaby

Operate on segments



• Click on      (operate on block 
labels)-> left click on the each 
area   once
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•Operate on blocks



• Click on “Problem” from 
FEMM main menu-

• Click on ‘OK’
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Problem type and length units



• Click on 
“Properties”-
>”Materials”-> 
Add property   

• Set properties 
for air and coil 
as shown in 
figure
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Material properties 



• For, core & plunger “Properties”->”Materials”-> Add property -
>B-H Curve (Nonlinear BH-Curve)->Click on “Edit B-H Curve”-> 
click on “OK”

10 IDLAB, IIT Bomaby

Material properties



• Click on “Properties”-
>”Boundary”->Add property -
> click on ‘OK

11 IDLAB, IIT Bomaby

Boundary property



• Click on       (operate on block 
labels)-> Right click on a 
block (point of block 
becomes red)-> press the 
space key

• Click on ‘OK’ similarly for all 
the blocks

• Here we are defining 
meshing size to each material
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• Click on    (operate on 
segments)-> Right click on 
the one of the four outer 
most lines (Line becomes 
red)-> press space key

• Click on ‘OK’ similarly for 
three remaining lines

• In this step we are assigning 
boundary conditions   
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Set boundary conditions



• Click on    -> click on ‘OK’

• Above button runs mesh 
generator

• This step creates mesh for 
the given geometry
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Meshing



• Click on ‘hand crank’ icon  , 
it executes the solver

• Now click on      . This is ‘glass’ 
button to display the results 
in post processing window
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Output



• Click on        -> Left click on 
the plunger  (area becomes 
colored)

• Click on   ->

• Click on ‘OK’

• Force  =  363 N
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Post processing
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•Density plot



The core is assumed to have infinite permeability requiring no magnetizing mmf

Let, Ampere current density (ATD) = Current density (J)

Ampere current ( AT )  = 6080           

Hg  = AT/g =304000

where, g air gap distance 

Bg = µ0Hg  = 0.382

where, A=area of cross section of coil

 fe = 261 N      

 The difference in numerical and analytical solution is due to fringing
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Analytical solution 

2

g

e

0

B1
f = ×A

2 μ
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Thank you


