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Abstract—Dynamic Spectrum Access technology enables two
types of users to operate on a channel– primary users and
secondary users, which can use the channel when it is not in
use by the primaries. We consider a scenario in which multiple
primaries own bandwidth in a large region which is divided into
smaller locations. A primary that has unused bandwidth in a
time slot would like to lease it out to secondaries in return for
a fee. This results in price competition among the primaries. In
prior work, this price competition has only been studied under
the approximation, made for analytical tractability, that the price
of each primary takes values from a continuous set. However, in
practice, the set of available prices is discrete. In this paper, we
investigate the fundamental question of how the behaviour of
the players involved in the price competition changes when this
continuity assumption is removed. Our analysis reveals several
important differences between the games with continuous and
discrete price sets. However, we show that as the number of
available prices becomes large, the strategies of the primaries
under every symmetric NE converge to the unique NE strategy
of the game with continuous price sets.

I. INTRODUCTION

The last decade has seen a tremendous growth in the use
of wireless devices, thus increasing the demand for spectrum.
Traditionally, a static spectrum allocation policy has been used,
where network operators have exclusive spectrum rights. This
has created an artificial scarcity of spectrum wherein most of
the usable radio spectrum is allocated, but under-utilised [1].
Dynamic spectrum access (DSA) technology [3] has been
proposed as a solution for a more efficient use of spectrum.
This technology enables two types of users to operate on a
channel– primary users, which have prioritised access to the
channel and secondary users, which can use the channel when
it is not in use by the primaries [3].

We consider a scenario in which multiple primaries own
bandwidth in a large region (e.g., a state), which is divided into
smaller locations (e.g., towns). Time is divided into slots of
equal duration. During each slot, a primary can lease its unused
(free) channels to secondaries for the duration of that slot. At
each location, secondaries lease bandwidth from the primaries
who set the lowest prices. This results in price competition
among the primaries to lease their free channels. This is
similar to the classic Bertrand price competition [4], wherein
a few firms compete among themselves to sell their goods to
customers. However, there are several important differences
between Bertrand price competition and that in a DSA market.
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Specifically, a primary may or may not have a free channel
in a given slot and hence a primary that has a free channel
does not know how many other primaries are selling their
channels in the slot. The primary will unnecessarily get a low
revenue if it sells its bandwidth at a low price when only a few
primaries have free channels since its channel would have been
bought even if it set a higher price. Conversely, a primary’s
free channel may remain unsold if it chooses a high price
when a large number of primaries have free channels. The
other important difference between Bertrand price competition
and that in a DSA market is that radio spectrum allows
spatial reuse: the same band can be simultaneously used
at multiple locations provided these locations are far apart;
however, transmissions at neighboring locations interfere with
each other. Thus, each primary must jointly select a set of
mutually non-interfering locations at which to offer bandwidth
as well as the price at each location in the set. We formulate
the above price competition between the primaries as a game
and seek Nash equilibria (NE) [5] in it.

Spectrum pricing games have been studied in [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. Price
competition between secondaries in which a single operator
senses and leases the free channels is studied as a Stack-
elberg game in [12]. Price competition between multiple
primaries with uncertain bandwidth availability is studied
in [11], [12], [14], [16], [17]. In [16], [17] the quality of bands
is taken into account in addition to uncertainty in spectrum
availability. NE in the spectrum pricing game are studied
in [11], [14], [16], [17]. Our model for the case where there is
a single location is similar to the general Bertrand competition
with uncertainty model formulated in [22] in which multiple
sellers compete through their price selection strategies to sell
a homogenous product to a single buyer. However, a seller
does not know the number of other sellers with which it
is competing. Under this uncertainty the NE of the game
is obtained in [22]. However, in all the above papers, it is
assumed that each player chooses a price from a continuous
set, e.g., an interval [a, b], where a and b are real numbers.
The continuity of the price set is assumed as an approximation
to simplify the mathematical analysis. However, note that in
practice, a player can only choose a price from a discrete
set (e.g., multiples of one cent). This restricts the number of
prices a player can choose to a finite number. Also, learning
algorithms such as Softmax and Q-learning, which are often
used to compute (converge to) NE in games [23], [24], require
that a finite number of strategies be available to each player,
which is not true when the continuity approximation is used.
In this paper we investigate the fundamental question of how



the behaviour of the players involved in the price competition
changes when this continuity assumption is removed. To the
best of our knowledge this work is the first to investigate the
effects of the continuity assumption on the NE of a spectrum
pricing game.

In this paper, we study the NE in a scenario where multiple
primaries, each of which may or may not have free bandwidth
in a given slot in a region, which is divided into multiple
locations, sell their free bandwidth to secondaries at individual
locations; we assume that the number of prices the players can
choose is finite (as in practice). The same model was studied
in [11], but under the approximation that players choose prices
from a continuous set. Also, this model is important since
several generalizations of this model have been studied in
prior work [15], [16], [17], [19], [20], [21]. In Section II,
we formulate the price competition among the primaries as
a game for the case when there is a single location. In
Section III, the main results obtained for the single location
game in [11] are summarized. In Section IV, we analyse
the NE of the single location game (with a finite number
of prices) for the case when there are two primaries and
one secondary. This game, though simple, reveals several
important differences between the games with continuous
and discrete price sets. For example, no pure strategy NE
exists in the game with continuous price sets, whereas a
pure strategy NE may exist in the game with discrete price
sets. Also, in the game with discrete price sets, there exist
multiple symmetric NE. Moreover, the expected payoff that
each primary gets under the symmetric NE may be different
under different NE. This is in sharp contrast to the game
with continuous price sets in [11], where there is a unique
symmetric NE. However, in Section V, we analyse the price
competition between the primaries at a single location when
there are an arbitrary number of primaries and secondaries
and show that, as the number of available prices becomes
large, the strategies of the primaries under every symmetric
NE converge pointwise to the unique symmetric NE strategy of
the game with continuous price sets. In Section VI, we extend
the analysis in Section V to the multiple locations case. In
Section VII, we provide the proofs of the analytical results
stated in Sections IV and V. The results in Sections IV, V
and VI show that although, as is consistent with intuition, the
equilibrium behaviour of the players in the game with discrete
prices is similar to that in the game with continuous prices
when the number of prices is large, it is significantly different
when the number of prices is small; thus caution must be
exercised while using the continuous prices approximation in
the context of price competition in spectrum markets. Also,
the results in Sections V and VI provide a formal justification
for the continuous prices approximation; to the best of our
knowledge, our work is the first to provide such a justification
for any spectrum pricing game. In Section VIII, we study
the infinitely repeated version of the single location game
described in Section II via simulations. We find that when each
primary independently uses the well-known Softmax learning
algorithm [28] to adapt its strategy based on the payoffs it got

in the past slots, the long run strategies of the players converge
to a NE of the corresponding one-shot game only when there
exists a pure strategy NE. However, when only mixed strategy
NE exist in the one-shot game, the long run strategies do not
converge to a NE. We conclude the paper in Section IX.

Finally, our results for the case where there is a single
location more generally apply to any setting where the sellers’
supply is uncertain. In particular, microgrids [25] are a newly
emerging technology for distributed electricity generation,
which consist of a connected network of generators (e.g., solar
panels, wind turbines) and loads (e.g., households, factories).
There is uncertainty in the power generated by a generator at
a given time, e.g, the power produced by a solar panel on a
given day depends on the availability of sunlight. Our results
provide an analysis of the effects of the continuity assumption
on the NE in such electricity markets [19].

II. NETWORK MODEL

Suppose there are n ≥ 2 primaries and k ≥ 1 secondaries
in a location. Each primary owns one channel (one unit of
bandwidth) and each secondary has a demand of one channel.
Time is divided into slots and trade takes place at the beginning
of each slot. In every slot, each primary has a free channel with
probability (w.p.) q ∈ (0, 1). Each primary with a free channel
selects a price at which to offer its channel to secondaries.
Now, a primary that leases a channel to a secondary may incur
some cost, e.g., if the secondary uses some of the former’s
infrastructure. Let this cost be c ≥ 0 for each primary. A
primary does not sell its bandwidth below this price as it
would incur a loss. We will also assume that there is a limit,
say v, to the maximum price a primary can select. This limit
may be due to the following reasons [11]: (i) The spectrum
regulator may impose this limit to prevent the primaries from
charging excessively when they collude or when the number
of primaries with free bandwidth is less than the number of
secondaries. (ii) Each secondary may have a valuation of v for
a channel and would not buy a channel for a price greater than
v. Thus, if we denote primary i’s price by pi, then c < pi ≤ v.

Recall that in practice, there is only a finite set of prices
a primary can choose from. Let this set be {a1, a2, . . . , aM},
where aj = c +

(
v−c
M

)
j. Secondaries buy bandwidth from

the primaries that set the lowest prices. Specifically, if Z pri-
maries have free bandwidth, then the bandwidth of min (Z, k)1

primaries gets sold. We model the above price competition
among the primaries as a game [5] in which the actions of the
primaries (players) are the prices they choose. Note that when
primary i has free bandwidth, pi ∈ {a1, . . . , aM}; with a slight
abuse of notation, we assume that pi = v+1 when a primary
does not have free bandwidth 2. Also, let aM+1 = v + 1.
Next, recall that the utility or payoff represents the level of

1min (a, b), where a, b ∈ R, denotes the minimum of a and b.
2As explained later, the expected payoff of a primary is a function of

whether or not each of the other primaries has free bandwidth. This notation
simplifies the exposition by eliminating the need to condition on whether they
have free bandwidth. Also, the choice pi = v+1 is arbitrary; any price above
v can be chosen.



satisfaction of a player [4]. If a primary does not sell its
bandwidth, its utility is defined to be 0. Let ui (p1, . . . , pn)
denote the utility of primary i when primary j selects price
pj , j = 1, . . . , n. Consider primary 1 and let Xk denote the
k′th lowest price among pj , j ∈ {2, . . . , n}. Since there are k
secondaries, primary 1 sells its bandwidth w.p. 1 if p1 < Xk

and does not sell its bandwidth if p1 > Xk. If p1 = Xk, then
note that more than one primary chooses the price Xk. In this
case, the tie is broken randomly 3. Thus:

u1(p1, p2, . . . , pn) =


p1 − c, if Xk > p1,
(k−l)(p1−c)

m , if Xk = p1,

0, if Xk < p1,

where in the second case, l < k primaries choose a price
less than Xk and m primaries (including primary 1) choose
Xk. (Note that when primary 1 does not have free bandwidth,
its utility is 0 even if p1 = Xk.) The utilities of primaries
j = 2, . . . , n are computed similarly. Each primary i is
allowed to randomly choose its price pi using an arbitrary
distribution function (d.f.) φi(·). This d.f. is called the strat-
egy [5] of primary i. The vector of strategies of all the
players (φ1(·), . . . , φn(·)) is called the strategy profile [5].
Let φ−i(·) = (φ1(·), . . . , φi−1(·), φi+1(·), . . . , φn(·)) denote
the strategy profile of all the players except player i. Also, let
E(ui(φ1(·), . . . , φn(·))) denote the expected utility of primary
i when the strategy profile selected is (φ1(·), . . . , φn(·)).
We will use the concept of NE, which is widely used as
a solution concept in game theory [5]. A strategy profile
(φ∗1(·), . . . , φ∗n(·)) constitutes a NE [5] if ∀i ∈ {1, 2, . . . , n}:

E
(
ui
(
φ∗i (·), φ∗−i(·)

))
≥ E

(
ui
(
φi(·), φ∗−i(·)

))
, ∀φi(·).

That is, a NE is a strategy profile such that no player can
improve its expected utility by unilaterally deviating from its
strategy [5]. When n ≤ k, then clearly pi = v ∀i = 1, . . . , n
is the unique NE of the game since by setting pi = v, primary
i can sell its bandwidth regardless of the choices made by
the other primaries and also it gets the maximum possible
payoff. So henceforth we assume that n > k. Note that the
game described above is a finite symmetric game [5] since
all the primaries have the same action sets (available prices),
same utility functions and have free bandwidth with equal
probabilities. We will seek symmetric NE, which are those
in which φ1(·) = φ2(·) = . . . = φn(·) = φ(·) (say) [5].
Symmetric NE have been advocated as a solution concept
for symmetric games by several game theorists [18], since
in practice, it is challenging to implement a NE that is not
symmetric. Also, it is shown in [18] that every finite symmetric
game has atleast one symmetric NE.

III. BACKGROUND

We now briefly summarise the results obtained in [11],
which are for the model described in Section II with the

3For example, suppose k − 1 primaries choose a price less than Xk , 2
primaries (including primary 1) choose the price Xk and the rest choose a
price more than Xk . Then, primary 1 sells its bandwidth w.p. 1

2
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Fig. 1: φ(x) is continuous and strictly increasing in the interval
[p̃, v].

difference that the price a primary selects is allowed to be
any real number in the interval (c, v]. It was proved in [11]
that this game has no pure strategy NE 4. Let:

w(q, n) =

n−1∑
i=k

(
n− 1

i

)
qi(1− q)n−1−i. (1)

Since each primary independently has unused bandwidth w.p.
q, w(q, n) is the probability that k or more out of n − 1
primaries have unused bandwidth. Let:

p̃ = c+ (v − c) (1− w (q, n)) (2)

and note that c < p̃ < v. It was shown in [11] that in the
above price competition game, there is a unique symmetric
NE. Also, in this NE, each primary selects its price randomly
using a d.f. φ(·), whose support set 5 is the interval [p̃, v].
Moreover, φ(·) is continuous and strictly increasing on [p̃, v]
as illustrated in Fig. 1. The function φ(·) can be computed
as follows [11]. Let Xk be as in Section II and F (·) denote
the d.f. of Xk. It was shown in [11] that under the unique
symmetric NE:

F (x) =

{
0, x ≤ p̃,
x−p̃
x−c , p̃ < x ≤ v.

(3)

Also, the symmetric NE price selection d.f. φ(·) is the unique
solution of the following equation [11]:

F (x) =

n−1∑
i=k

(
n− 1

i

)
(φ(x))i(1− φ(x))n−1−i. (4)

Note that (4) is consistent with the facts that F (x) = P (Xk ≤
x) and Xk ≤ x if and only if k or more out of primaries

4A pure strategy NE is one in which each primary plays a single price w.p.
1 [5].

5Recall that the support set of a d.f. is the smallest closed set whose
complement has probability 0 under the d.f. [26]. Also, since we defined
pi = v+1 if primary i does not have free bandwidth, the price v+1 is always
in the support set of the price selection strategy of a primary. However, we
ignore it throughout the paper since we are concerned with the price selection
strategies of primaries that have free bandwidth.



2, . . . , n select a price that is ≤ x. Also, note that since φ(·)
is strictly increasing on [p̃, v], prices in every sub-interval of
the interval [p̃, v] are played with positive probability by each
primary in this NE; also, prices in (c, p̃) are not played. The
utility of each primary under the above symmetric NE was
shown to be [11]:

E (u1 (φ(·), φ−1(·))) = p̃− c = umax (say). (5)

Next, consider the model with discrete price sets described
in Section II and let φ(·) be as defined in that section. We
state a lemma [4], which provides necessary and sufficient
conditions for φ(·) to constitute the price selection strategy
of each primary under a symmetric NE, and which we will
extensively use in the following sections. Let S be the support
set of the d.f. φ(·), i.e., the subset of prices from {a1, . . . , aM}
that are selected with positive probabilities under φ(·), and let
Sc = {a1, . . . , aM} \ S.

Lemma 1: The d.f. φ(·) constitutes the price selection
strategy of each primary under a symmetric NE iff:

E (u1 (al, p2, . . . , pn)) = E (u1 (am, p2, . . . , pn)) ,

∀al, am ∈ S,

E (u1 (al, p2, . . . , pn)) ≥ E (u1 (a
′
l, p2, . . . , pn)) ,

∀al ∈ S, a′l ∈ Sc.

Lemma 1 states that the expected payoffs that primary 1 gets
at all prices that it plays with positive probability under the
symmetric NE are equal, and are ≥ the payoff at each price
that it does not play under the NE. For ease of terminology,
henceforth we refer to the game with continuous price sets as
the continuous game and the game with discrete price sets as
the discrete game.

IV. PRICE COMPETITION IN THE SPECIAL CASE n = 2,
k = 1

We now analyse the special case of the discrete game with
n = 2 and k = 1. Our analysis reveals the following important
differences between the NE in the continuous game and the
discrete game:
1) No pure strategy NE exists in the continuous game, whereas
a pure strategy NE may exist in the discrete game.
2) There exist multiple symmetric NE in the discrete game
unlike in the continuous game where there exists a unique
symmetric NE. Moreover, the expected payoff that each pri-
mary gets under the symmetric NE may be different under
different symmetric NE.
3) Recall from Section III that in the continuous game, for
each value of q ∈ (0, 1), the support set of the symmetric
NE price selection strategy φ(·) of each primary is the set
[p̃, v]. However, in the discrete game, this type of symmetric
NE, i.e., one in which the support set of each primary’s price
selection strategy is the set, {aM−P , . . . , aM−1, aM}, of all
the available prices above a threshold, exists only for some
values of q ∈ (0, 1) and not for others, and no matter how
large M is, there are certain values of q for which this type

of NE does not exist. Fig. 2 shows, for an example, the set
of values of q where this type of NE exists when n = 2
and k = 1. For ease of terminology, henceforth we refer to a
symmetric NE in the discrete game whose support set consists
of all the prices above a threshold as a symmetric NE of type
C.

Fig. 2: The shaded area represents the set of values of q for
which a symmetric NE of type C exists.

Note that the game with n = 2, k = 1, and a finite
number of prices for each player to choose from, is a fi-
nite symmetric game and thus has atleast one symmetric
NE [18]. Suppose in this NE each primary selects a price from
{a1, a2, . . . , aM , aM+1} using the probability mass function
(PMF) R(·). Then, R(·) satisfies the following equations:

M∑
i=1

R(ai) = q, (6a)

R(aM+1) = 1− q. (6b)

Now, primary 1 sells its free bandwidth w.p. 1 when p1 < p2
and w.p. 1

2 when p1 = p2. So its expected utility is:

E(u1(p1, p2)) = (p1− c)
[
P (p1 < p2) +

P (p1 = p2)

2

]
, (7)

where P (A) denotes the probability of event A. Fix q and
suppose the PMF R(·) has support set {ai1 , ai2 , . . . , aim},
where ij ∈ {1, 2, . . . ,M} and i1 < i2 < . . . < im. Primaries
select aim+1

= v + 1 if they do not have a free channel. By
Lemma 1, we get ∀ ij , il ∈ {i1, i2, . . . , im}:

E
(
u1
(
aij , p2

))
= E (u1 (ail , p2)) , (8a)

E
(
u1
(
aij , p2

))
≥ E (u1 (ai, p2)) ∀i ∈ {1, 2, ...,M} .

(8b)
By (7) and the fact that ai = c + v−c

M i ∀i = 1, . . . ,M , the
utility of primary 1 when it chooses the price aim is:

E (u1 (aim , p2)) = (aim − c)
[
P (p2 > aim) +

P (p2 = aim)

2

]
=
v − c
M

im

[
R
(
aim+1

)
+
R (aim)

2

]
=
v − c
M

im

[
1− q + R (aim)

2

]
(by (6b))

(9)

Similarly we can write for j = 1, . . . ,m− 1:

E
(
u1
(
aij , p2

))
=
v − c
M

ij

 m+1∑
l=j+1

R(ail) +
R(aij )

2

 . (10)



TABLE I: Support sets of symmetric NE at different values
of q for M = 4

Support Set Valid q
{a4} (0, 0.5]
{a3} [0.4, 0.67]
{a2} [0.67, 1]
{a1} [0.86, 1]
{a3, a4} [0.4, 0.5]
{a2, a4} [0.67, 0.75]
{a1, a4} [0.86, 0.9]
{a2, a3} [0.57, 0.67]
{a1, a3} [0.84, 0.89]
{a1, a2} [0.8, 1]
{a2, a3, a4} [0.57, 0.75]
{a1, a3, a4} [0.84, 0.9]
{a1, a2, a4} [0.8, 0.875]
{a1, a2, a3} [0.82, 0.89]
{a1, a2, a3, a4} [0.82, 0.875]

By (8a), we get E(u1(aij , p2)) = E(u1(aim , p2)) ∀
j = 1, . . . ,m − 1 . This gives us a set of m − 1 linear
equations (one for each j = 1, . . . ,m− 1) with m unknowns
(R(ai1), . . . , R(aim)). These m−1 linear equations along with
(6a) result in m linear equations with m unknowns. By solving
these linear equations, we get the following expressions for
R(aij ), j = 1, 2, . . . ,m.

Case (i): When m is even:

R(aim) = −2 + (2Q− 1)

Q− 1
q,

R(ai2l+1
) = 2−

2Qi2l+1

Q− 1
q,

R(ai2l) = −2 +
2Qi2l
Q− 1

q,

(11)

where l = 0, 1, . . . , m2 − 1, Q = im
i1
− im

i2
+ . . . + im

im−1
,

Qi2l =
im
i1
− im

i2
+ . . .+ im

i2l−1
− im

2i2l
and Qi2l+1

= im
i1
− im

i2
+

. . .− im
i2l

+ im
2i2l+1

.
Case (ii): When m is odd:

R(aim) = − 2Q

Q+ 1
+

(2Q+ 1)q

Q+ 1
,

R(ai2l) = −2 +
4Qi2l − 2Qi2lq

Q+ 1
,

R(ai2l+1
) = 2−

4Qi2l+1
− 2Qi2l+1

q

Q+ 1
,

(12)

where l = 0, 1, . . . , m−12 , Q = im
i1
− im

i2
+ . . .+ im

im−2
− im

im−1
,

Qi2l = im
i1
− im

i2
+ . . . + im

i2l−1
− im

2i2l
, Qi2l+1

= im
i1
− im

i2
+

· · · − im
i2l

+ im
2i2l+1

.
For the special case n = 2, k = 1 and M = 4,

Table I provides an exhaustive list of all possible support
sets, {ai1 , ai2 , . . . , aim}, of a symmetric NE price selection
PMF R(·) in the first column, and the set of all values of
q for which symmetric NE with these support sets exist in
the second column. For example, consider the fifth entry:
{a3, a4} constitutes the support set of a symmetric NE price
selection PMF R(·) for q ∈ [0.4, 0.5]. The table is obtained
by calculating R(·) for every possible combination of prices,
{ai1 , ai2 , . . . , aim}, as support set and noting that only the
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Fig. 3: The plot compares the upper bound on the fraction N(M)
M

obtained by Theorem 1 with the actual number of PNE obtained
by exhaustive search for the game with n = 15, k = 10 as M
varies from 1 to 1000.

combinations which satisfy (8b) constitute a valid support set.
Table I along with our analysis of the special case of the game
with n = 2, k = 1 reveals the following differences between
the symmetric NE in the continuous game and the discrete
game.

A. Pure Strategy NE

Recall from Section III that in the continuous game, no pure
strategy NE exists. However, the first four entries in Table I
show that a pure strategy NE may exist in the discrete game.
For some values of q, the discrete game has a pure strategy
NE. From Table I, in the discrete game with n = 2, k = 1 and
M = 4 there are a total of 4 pure strategy NE. We now state
a theorem which gives an upper bound on the total number of
pure strategy NE in the discrete game with n primaries and k
secondaries.

Theorem 1: For a fixed k, ∀M > 4k+5, there exist at most
4k pure strategy NE.

The proof of Theorem 1 is provided in Section VII. Let
N(M) denote the total number of pure strategy NE (PNE)
that exist for all values of q ∈ (0, 1) when there are a total of
M prices. Then for the special case of n = 2, k = 1, the above
theorem limits N(M) to 4 whenever M > 9. Fig. 3 compares
the actual fraction of the prices that constitute a PNE in the
discrete game with n = 15, k = 10 with the upper bound
obtained from Theorem 1. Since no pure strategy NE exists
in the continuous game, intuitively, Theorem 1 says that as
M →∞, the discrete game becomes similar to the continuous
game in terms of fraction of prices that constitute a PNE.

B. Multiple NE

Recall from Section III that in the continuous game, there
is a unique symmetric NE for a given value of q. In contrast,
there are multiple symmetric NE in the discrete game. For



example Table I shows that at q = 0.5, {a4}, {a3} and
{a3, a4} all constitute support sets of symmetric NE price
selection PMFs R(·). Also, it is easy to check that the expected
payoff that each primary gets may also be different under the
different symmetric NE for a given value of q. In the above
example, the expected payoffs under the three symmetric NE
at q = 0.5 are 3

4 (v − c),
9
16 (v − c) and 3

4 (v − c) respectively.
The above observations show that the actions (price selection
strategies) taken by players as well as the rewards (expected
payoffs) they get at equilibrium may differ substantially in the
continuous game and the discrete game.

More importantly, the differences between the NE in the
continuous game and the discrete game observed for M = 4
in Section IV-A and in the previous paragraph in fact hold for
every value of M , no matter how large. Specifically, it is easy
to verify using the above analysis that selection of the price
aM w.p. 1 by each primary that has a free channel constitutes
a symmetric NE when q ∈

(
0, 2

M

]
. Hence, no matter how

large the value of M is, there exists a pure strategy NE in
the discrete game for certain values of q, in contrast to the
continuous game, in which no pure strategy NE exists for any
value of q. It can also be checked using the above analysis
that {aM−1, aM} constitutes the support set of a symmetric
NE price selection PMF R(·) when q ∈

[
2

M+1 ,
2
M

]
. Hence,

for q ∈
[

2
M+1 ,

2
M

]
, {aM} as well as {aM−1, aM} constitute

support sets of symmetric NE price selection PMFs. Thus,
no matter how large the value of M is, there exist multiple
symmetric NE in the discrete game for certain values of q, in
contrast to the continuous game, in which there is a unique
symmetric NE for every value of q.

C. Symmetric NE of type C
Next, recall from Section III that for every value of q ∈

(0, 1), the support set of the unique symmetric NE price
selection strategy in the continuous game is of the form [p̃, v].
Hence, the support set is the set of all the available prices
above a threshold (p̃). We are interested in symmetric NE
with a similar support set in the discrete game, i.e., a support
set consisting of all the available prices above a threshold;
we refer to such an NE as a symmetric NE of type C.
Suppose under a symmetric NE of the discrete game with
n = 2, k = 1, the price selection strategy support set is
{aM−P , aM−P+1, . . . , aM−1, aM}; note that there are P + 1
consecutive prices in the support set. The expressions for
the symmetric NE price selection PMF R(·) are obtained
by substituting i1 = M − P, i2 = M − P + 1, ..., iP =
M−1, iP+1 =M in (11) when P is odd or in (12) when P is
even. Now, since the prices ai, i =M −P,M −P +1, ...,M
are in the support set:

R(ai) > 0, i =M − P,M − P + 1, ...,M. (13)

Also, for R(·) to constitute a symmetric NE price selection
strategy, (8b) must be satisfied. Let V P denote the set of values
of q for which inequalities (13) and (8b) are satisfied. The
following lemma characterizes the set V P .

Lemma 2: V P is an open interval. For P odd, V P is:(
2(Q− 1)

2Q− 1
,
Q− 1

QP−1

)
,

where Q = M
M−P −

M
M−P+1 + . . .+

M
M−3 −

M
M−2 +

M
M−1 and

QP−1 = M
M−P −

M
M−P+1 + . . .− M

M−2 + M
2(M−1) and for P

even, V P is: (
2Q

2Q+ 1
, 2− Q+ 1

QP−1

)
,

where Q = M
M−P −

M
M−P+1 + . . . + M

M−2 −
M
M−1 and

QP−1 = M
M−P −

M
M−P+1 + . . .+ M

M−2 −
M

2(M−1) .

We provided the proof of above Lemma in Appendix. Let
LP and UP denote the lower and upper endpoints of the
interval V P respectively. The following Lemma states that for
P ∈ {0, 1, 2, . . .}, UP < LP+1.

Lemma 3: For P ∈ {0, 1, 2, . . .}, UP < LP+1.

Fig. 4: The figure illustrates LP and UP for P = 0, 1, 2, 3 on
the q line.

We provided the proof of above Lemma in Appendix.
Fig. 4 shows an example of the endpoints LP and UP . From
Lemma 3, it follows that for certain values of q (e.g., for
the values in

[
U0, L1

]
,
[
U1, L2

]
and

[
U2, L3

]
in Fig. 4, and

in general, for the values in
[
UP , LP+1

]
, P = 0, 1, 2, . . .),

there does not exist a symmetric NE whose price selection
strategy support set is the set of all the available prices above
a certain threshold (aM−P ). Also, surprisingly, this is true no
matter how large M is. This is in sharp contrast to the NE in
the continuous game where for every q ∈ (0, 1), the support
set of the unique symmetric NE price selection strategy is
the set [p̃, v], which is the set of all the available prices
above p̃ (see Section III). Also, note that as q increases from
a value in

(
LP , UP

)
to a value in

(
LP+1, UP+1

)
, a price

(aM−P−1) gets added to the lower end of the support set. This
is consistent with the intuition that as q, the probability that a
primary has free bandwidth, increases, the price competition
becomes more intense, and hence each primary chooses lower
prices to get its bandwidth sold.

We now state a theorem which establishes the existence of
large regions in the interval q ∈ (0, 1) where a symmetric
NE of type C does not exist in the discrete game with n =
2, k = 1 for values of M greater than some threshold. Let
IPM denote the length of the interval V P when there are a
total of M available prices. The following theorem states that
for a fraction of approximately 3

8 of the interval q ∈ (0, 1),
there does not exist a symmetric NE of type C for values of
M greater than some threshold. This is in contrast to the
continuous game, in which there exists a symmetric NE of
type C for every value of q ∈ (0, 1).
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Fig. 5: The plot gives the actual fraction of the interval q ∈
(0, 1) where there exists a symmetric NE of type C and the
upper bound obtained in Theorem 2 for various numbers of
prices.

Theorem 2: For every ε > 0, there exists an M(ε) such that

for all M > M(ε),
M−1∑
i=0

IiM < 5
8 + ε.

The proof of Theorem 2 is provided in Section VII. Fig. 5
compares the upper bound obtained in Theorem 2 to the
actual fraction6 of the interval q ∈ (0, 1) where there exists a
symmetric NE of type C.

V. PRICE COMPETITION FOR ARBITRARY n, k AND LARGE
M

In this section, we show that, as M →∞, the price selection
strategies of the primaries under every symmetric NE of the
discrete game converge to the unique symmetric NE strategy
of the continuous game.

As in Section IV, let R(·) denote the PMF that each
primary adopts over the price set {a1, a2, . . . , aM , aM+1}
in a symmetric NE. Then R(·) satisfies (6a) and (6b). Let
φM (·) denote the d.f. corresponding to R(·). Then φM (ai) =
i∑
l=1

R(al) ∀i ∈ {1, . . . ,M,M + 1}. Recall from Section III

that in the continuous game, the symmetric NE strategy φ(·)
of a primary is continuous on its support set (p̃, v]. However,
φM (·) is a discontinuous function with jumps 7 at the prices in
its support set (the prices ai such that R(ai) > 0). Also, φ(·) is
unique. In contrast, as we have seen in Section IV, there may
exist multiple symmetric NE in the discrete game. So φM (·)
may not be unique. However, we prove that as M → ∞,
all the possible functions φM (·) that constitute a symmetric
NE price selection strategy converge to φ(·). Since φ(·) is a

6The actual fraction for each M is obtained by summing the lengths of all
intervals V P , P = 0, 1, . . . ,M − 1 where V P is as in Lemma 2.

7Recall that the function φM (·) has a jump at x, if φM (x)−φM (x−) >
0 [26].

continuous d.f., to prove that a discrete d.f. φM (·) converges
pointwise to the former, we first show in Lemma 4 that the
sizes of the jumps in φM (·) decrease to 0 as M →∞.

Lemma 4: Fix q ∈ (0, 1). For every ε > 0, ∃ Mε such that
if M > Mε then in every symmetric NE strategy φM (·), each
price x ∈ (c, v] is played with probability ≤ ε.

The proof of Lemma 4 is provided in Section VII. Note that
Lemma 4 does not contradict the result stated in Section IV
that selection of the price aM w.p. 1 by each primary that has
a free channel constitutes a symmetric NE when q ∈ (0, 2

M ].
This is because, since each primary has a free channel w.p. q,
under this symmetric NE, the effective probability with which
a primary selects price aM is q, which decreases to 0 as M →
∞. Now, let umax(M) be the best response8 payoff under the
symmetric NE when there are M available prices. We state a
lemma which says that as M → ∞, umax(M) converges to
umax in (5), which is the best response payoff with continuous
prices.

Lemma 5: For every ε′ > 0, ∃Mε′ such that if M ≥ Mε′ ,
then in every symmetric NE:

|umax(M)− umax| < ε′.

The proof of Lemma 5 is provided in Section VII. Next, we
state the main result of this section, which shows that as M →
∞, the price selection d.f. φM (·) under every symmetric NE
of the discrete game approaches the price selection d.f., φ(·),
in the continuous game.

Theorem 3: As M →∞, the sequence of functions φM (x)
converges pointwise to φ(x) ∀ x ∈ (c, v].

The proof of Theorem 3 is provided in Section VII. The-
orem 3 shows that as M → ∞, the price selection d.f.s
of the primaries under every symmetric NE of the discrete
game converge pointwise to the price selection d.f. under
the unique symmetric NE of the continuous game. This is
a surprising result since as shown in Section IV, important
differences exist between the NE in the continuous game
and the discrete game for every value of M , no matter how
large. Also, Theorem 3 provides a formal justification for the
continuous prices approximation, which has not been provided
in prior work for any spectrum pricing game to the best of our
knowledge.

VI. SPATIAL REUSE

In this section, we study a generalization of the model in
Section II, in which primaries sell their unused bandwidth at
multiple locations. There are n primaries and each primary
owns one channel over a large region (e.g., a state) which is
divided into several small locations (e.g., towns). There are
k secondaries at each location, where k ∈ {1, . . . , n − 1}.
In every slot, a primary either uses its channel over the
entire region or does not use it anywhere in the region. A
typical example of this scenario is when a primary uses its
channel to broadcast the signal throughout the region (e.g., TV

8The price selection strategy that gives the highest utility to a player given
the price selection strategies of the other players is called the former’s best
response [5].



broadcasting). Like in the single location case, each primary
has a free channel w.p. q. A primary that has a free channel in
a time slot can lease it out to secondaries at multiple locations.
However, simultaneous transmissions on the same channel at
two neighbouring locations interfere with each other. So a
primary cannot sell its free bandwidth at two locations which
are neighbours of each other. The overall region is represented
by an undirected graph [27] G = (V,E) where V is the set
of nodes (representing locations) and E is the set of edges
between the nodes. Two nodes are connected by an edge
if transmissions at the corresponding locations interfere with
each other. Recall that an independent set [27] (I.S.) in a graph
is a set of nodes such that there is no edge between any pair
of nodes in the set. So a primary can only sell its unused
bandwidth at multiple nodes provided they constitute an I.S.
Let I denote the set of all I.S. in G. A primary has to jointly
select (i) an I.S. from I at which to offer bandwidth, and (ii)
the price at each node in the selected I.S. As in Section II, each
price must be from the set {a1, . . . , aM}. A primary incurs an
operational cost c at each node at which it sells bandwidth.
So if primary i offers bandwidth at the nodes in I.S. I and
selects price pi,z at node z ∈ I , its utility is

∑
z∈I(pi,z − c).

A primary faces the following tradeoff: if it offers bandwidth
at nodes of a large I.S., the number of nodes at which it
potentially gets revenue is large; however, it is likely to face
intense competition from other primaries who would prefer
to offer bandwidth at the nodes of the large I.S. to get high
revenues. We study symmetric NE in the above game.

Consider a symmetric NE in which each primary selects I.S.
I ∈ I w.p. β(I), where

∑
I∈I β(I) = 1. The probability,

say αz , with which a primary offers bandwidth at a node
z ∈ V equals the sum of the probabilities associated with
all the I.S. that contain the node, i.e., αz =

∑
I∈I :z∈I

β(I).

A set of probabilities, {αz , z ∈ V }, is said to be a valid
distribution [14] if there exists a PMF {β(I), I ∈ I } such
that αz =

∑
I∈I :z∈I β(I) ∀z ∈ V . We analyse the above

price competition for a special class of graphs called mean
valid graphs, which were introduced in [14] and which model
the conflict graphs of several topologies that commonly arise in
practice, including line graphs, two and three dimensional grid
graphs, the conflict graph of a cellular network with hexagonal
cells and a clique of size e ≥ 1. A graph G is mean valid if it
satisfies the following two conditions [14]: (i) Its nodes can be
divided into d disjoint maximal 9 I.S. I1, . . . , Id. Let |Ij | =Mj

and aj,l, l = 1, . . . ,Mj be the nodes in I.S. Ij . Assume that
M1 ≥ M2 ≥ . . . ≥ Md. (ii) For every valid distribution in
which a primary offers bandwidth at a node aj,l w.p. αj,l,
j = 1, . . . , d, l = 1, . . . ,Mj :

d∑
j=1

αj ≤ 1, where αj =

∑Mj

l=1 αj,l
Mj

, j ∈ {1, . . . , d}.

An example of a mean valid graph is the m×m grid graph,
which we denote as Hm,m, in part (a) of Fig. 6. In this

9An I.S. I is maximal if for every z ∈ V \ I , I ∪ z is not an I.S [27].

Fig. 6: Part (a) shows a grid graph Hm,m with m = 7. It is
mean valid with d = 4 and the disjoint maximal I.S. I1, . . . , I4
(in the notation of the definition of a mean valid graph in
Section VI), where the nodes labelled j, j ∈ {1, 2, 3, 4},
constitute I.S. Ij . Part (b) shows a tiling of a plane with
squares, e.g. cells in a cellular network. Transmissions at
neighboring cells interfere with each other. The corresponding
conflict graph is H6,6.

graph, m2 nodes (locations) are arranged in a square grid.
For example, Hm,m may represent a shopping complex, with
the nodes corresponding to the locations of shops with Wi-
Fi Access Points (AP) for Internet access. Hm,m is also the
conflict graph of a cellular network with square cells as shown
in part (b) of Fig. 6.

We now state a separation lemma due to which once the
PMF, {β(I), I ∈ I }, that each primary uses in selecting I.S.
under a symmetric NE is known, its price selection strategy
at each node follows.

Lemma 6: Suppose a primary selects each node z ∈ V w.p.
αz under a symmetric NE. Then the price selection d.f. that
each primary uses at node z in the symmetric NE will be
φM (·), which is as in Section V but with q replaced with qαz
throughout.

The proof of Lemma 6 is similar to that of Lemma 2 in [14]
and is omitted. Next, let W (α) = (v−c)(1−w(qα, n)), where
w(q, n) is as in (1). For the continuous game, i.e., the above
game with the change that the price of a primary at a node
can be any real number from the interval (c, v], it was shown
in [14] that there exists a unique symmetric NE. The following
result from [14] characterizes that NE.

Theorem 4: In a mean valid graph, for every q ∈ (0, 1),
there is a unique symmetric NE in the continuous game. In
this NE, each primary offers bandwidth at every node in Ij ,
j ∈ {1, . . . , d}, w.p. tj , i.e., αj,l = tj , l = 1, . . . ,Mj , where
(t1, . . . , td) is the unique distribution satisfying the following
conditions:

1. There exists d′ ∈ {1, . . . , d} such that tj = 0 if j > d′.
2. M1W (t1) = . . . =Md′W (td′) > Md′+1(v − c).



It was shown in [14] that when primaries 2, . . . , n play their
symmetric NE strategies, primary 1 gets an expected payoff
of MjW (tj) if it selects Ij . Thus, condition 2 in Theorem 4
states that a primary gets equal expected payoffs by choosing
I.S. in I1, I2, . . . , Id′ and this payoff exceeds the maximum
payoff it could have got by selecting an I.S. in Id′+1, . . . Id;
hence, it never opts for the latter choice, i.e., condition 1 holds.

Next, we state a theorem that characterizes the symmetric
NE in the discrete game in which there are M available prices
at each location, for the case where M is large.

Theorem 5: Let {αMz : z ∈ V } be node selection proba-
bilities that constitute a symmetric NE in the discrete game
with M available prices at each location. Let {αz : z ∈ V }
be the node selection probabilities that constitute the unique
symmetric NE in the continuous game described in Theorem
4, i.e., αz = tj if z ∈ Ij . Given ε > 0, there exists Mε such
that for all M ≥Mε, |αMz − αz| < ε for all z ∈ V .

Theorem 5 says that as M → ∞, the strategies of the
primaries under all symmetric NE in the discrete game con-
verge to those in the unique symmetric NE in the continuous
game. Thus, Theorem 5 provides a formal justification for the
continuous prices approximation for the above price competi-
tion game with spatial reuse. Theorem 5 can be proved using
Theorem 3 and techniques similar to the proof of Theorem 4
in [14]. We omit the proof for brevity.

VII. PROOF OF ANALYTICAL RESULTS

In this section we prove the analytical results stated in
Sections IV and V.

A. Proofs of Analytical Results in Section IV

Proof of Theorem 1: Consider a price aM−P ,
where P ∈ {1, . . . ,M − 2}. Let the strategy profile
(aM−P , aM−P , . . . , aM−P ) constitute a pure strategy NE, i.e.,
each primary with available bandwidth selects the price aM−P
w.p. 1. The utility of primary 1 under this pure strategy NE
is:

E [u1(aM−P , Xk)] = (14)

(v − c)
M

(M − P )

[
k−1∑
i=0

(
n− 1

i

)
qi(1− q)n−1−i

+

n−1∑
i=k

k

i+ 1

(
n− 1

i

)
qi(1− q)n−1−i

]
. (15)

The first term,
k−1∑
i=0

(
n−1
i

)
qi(1 − q)n−1−i, in the RHS of the

above equation represents the probability of the event where
the number of primaries with free bandwidth is less than
or equal to k, in which case, primary 1’s bandwidth gets
sold w.p. 1 and the second term represents the probability
of the event where p1 = Xk (atleast k primaries other than
primary 1 have free bandwidth and choose the price aM−P )
and primary 1’s bandwidth gets sold. For the strategy profile

(aM−P , aM−P , . . . , aM−P ) to constitute a pure strategy NE,
the following inequalities should hold:

E [u1 (aM−P , Xk)] ≥

{
E [u1 (aM , Xk)] ,

E [u1 (aM−P−1, Xk)] .
(16)

where E [u1 (aM , Xk)] =
(v−c)
M M [

k−1∑
i=0

(
n−1
i

)
qi (1− q)n−1−i]

and E[u1(aM−P−1, Xk)] =
v−c
M (M − P − 1). We substitute

these expressions along with (14) in the above two inequalities
in (16). By some rearrangement of terms we get:

n−1∑
i=k

(
P

(
1− k

i+ 1

)
+

Mk

i+ 1

)(
n− 1

i

)
qi(1−q)n−1−i ≥ P,

(17)

n−1∑
i=k

(
1− k

i+ 1

)(
n− 1

i

)
qi(1− q)n−1−i ≤ 1

M − P
. (18)

Substituting the above result in (18) into the LHS of (17), we
get an upper bound on the LHS of (17). The upper bound on
the LHS of (17) is P

M−P +
Mk
M−P . Clearly, if this upper bound is

less than P , then the strategy profile (aM−P , . . . , aM−P ) does
not constitute a pure strategy NE. Thus a sufficient condition
for the strategy profile (aM−P , . . . , aM−P ) not to constitute
a pure strategy NE is:

P +Mk < P (M − P ) . (19)

Note that the LHS of (19) increases with P and the RHS
increases initially and later decreases with P (with a maximum
at M2 ). Also, the RHS has the same value for P = i and P =
M − i. So, if we prove that the RHS is greater than the LHS
for P =M−i, where M−i > M

2 , then it can be said that the
RHS is greater than the LHS for all P ∈ {i, i+1, . . . ,M− i}.
For k = 1, it can be easily shown that the inequality in (19) is
not satisfied for only P = 0, 1,M − 2,M − 1 for all M > 6.
Consider the case when k > 1. We now show that if we choose
M > 4k + 5, (19) is satisfied for all P ∈ {2k, . . . ,M − 2k}.
Substituting P = M − 2k in (19), we get M − 2k +Mk <
2k(M − 2k). This is equivalent to:

2k (2k − 1)

k − 1
< M (20)

It can be checked that (20) is satisfied when M > 4k+5 and
k > 1. Hence (19) holds for all P ∈ {2k, . . . ,M − 2k} . Thus,
the strategy profile (aM−P , . . . , aM−P ) does not constitute
a pure strategy NE for P ∈ {2k, . . . ,M − 2k}. The result
follows.



We now prove some lemmas (Lemmas 7, 8 and 9) which
will be used to prove Theorem 2. From Lemma 2 and the fact
that IPM is the length of interval V P , we have

IPM =
Q+ 1

2 (M − 1)
(
Q+ 1

2

) (
Q+ M

2(M−1)

) for P even and

(21)

IPM =
Q− 1

2 (M − 1)
(
Q− 1

2

) (
Q− M

2(M−1)

) for P odd (22)

where Q = M
M−P −

M
M−P+1 + . . .+ M

M−2 −
M
M−1 when P is

even and Q = M
M−P −

M
M−P+1 + . . .+ M

M−3 −
M
M−2 + M

M−1
when P is odd. We assume that M is odd (the proof is similar
when M is even). Consider the case when P is odd. We have
the following lemma.

Lemma 7:
M−3

2∑
i=0

I2i+1
M < 1

2
(
1+
√

M−2
M−1

)2 .

Proof: IPM , the length of the interval V P , is given by (22)
when P is odd. It can be checked that Q > 1 when P is
odd. From this fact and (22), it follows that IPM > 0 for all
P ∈ {1, 3, . . . ,M − 2}. Taking the derivative of (22) w.r.t. Q,
we get:

−Q2 + 2Q− M
4(M−1) −

1
2

2(M − 1)
(
Q− 1

2

)2 (
Q− M

2(M−1)

)2 .
From the above equation, IPM has a stationary point10 at Q =

1 + 1
2

√
M−2
M−1 at which it is maximum11. Substituting Q =

1+ 1
2

√
M−2
M−1 into the RHS of (22), we get that the maximum

value of IPM is less than or equal to 1

(M−1)
(
1+
√

M−2
M−1

)2 . This

implies that
M−3

2∑
i=0

I2i+1
M < M−1

2
1

(M−1)
(
1+
√

M−2
M−1

)2 .

We now consider the case when P is even. Let α = IM−1M .
Lemma 8: 2

M

(
1− P

M−1

)
+ Pα

M−1 − IPM ≥ 0 ∀P ∈
{0, 2, . . . ,M − 1}.
The above Lemma can be proved by simple algebraic com-
parisons. The proof can be found in Appendix. We now upper

bound the sum
M−1

2∑
i=0

I2iM using Lemma 8.

Lemma 9:
M−1

2∑
i=0

I2iM < 1
2 + 1

2M + 1
M + 1

M2 .

Proof: We have from (21) that:

IM−1M =
1

2(M − 1)
(
Q+ M

2(M−1)

) (23)

+
1

4(M − 1)
(
Q+ 1

2

) (
Q+ M

2(M−1)

) (24)

10Note that out of the two stationary points 1± 1
2

√
M−2
M−1

, we select the
one that is greater than 1 as our maximizer.

11It can be easily verified that the second derivative is negative at this
stationary point.

where Q = M
1 −

M
2 + . . . + M

M−2 −
M
M−1 . It can be easily

verified that Q+ 1
2 >

M
2 and Q+ M

2(M−1) >
M
2 . Substituting

this result in (23), we can write IM−1M < 1
M(M−1)+

1
M2(M−1) .

From the above inequalities and Lemma 8, we get:
M−1

2∑
i=0

I2iM <

M−1
2∑
i=0

(
2

M
+

(
α− 2

M

)
2i

M − 1

)
=
M + 1

2M
+
M + 1

4
α

<
1

2
+

1

2M
+

1

M
+

1

M2

The last inequality is due to the fact that IM−1M = α <
1

M(M−1) +
1

M2(M−1) and M+1
4(M−1) < 1 for all M ≥ 2.

Proof of Theorem 2: The proof follows from Lemmas 7
and 9.

B. Proofs of Analytical Results in Section V

Proof of Lemma 4: Choose ε′ < (v − c)P (Xk > v).
When a primary chooses a price x < c+ ε′, then its utility is
at most ε′, which is less than the utility it gets by selecting v in
which case the primary gets a utility of atleast (v−c)P (Xk >
v). So a primary does not choose a price less than c+ ε′. Let
x ∈ (c + ε′, v] be the smallest price where a jump of more
than ε occurs. Let I(x) be the probability that Xk = x and
primary 1’s bandwidth is sold when p1 = x. The expected
utility of primary 1 at x is:

E(u1(x,Xk)) = (x− c)P (Xk > x) + (x− c)I(x).

As x is the lowest price of jump greater than ε, let us consider
the price x− δ, where δ = v−c

M . Then the expected utility of
primary 1 at x− δ is:

E(u1(x−δ,Xk)) = (x−δ−c)P (Xk > x−δ)+(x−δ−c)I(x−δ).

Taking the difference of the above two equations, we get:

E(u1(x− δ,Xk))− E(u1(x,Xk)) =

(x− c)(P (Xk = x) + I(x− δ)− I(x))
−δ(P (Xk ≥ x) + I(x− δ)).

The RHS is greater than 0 if

(x− c)(P (Xk = x) + I(x− δ)− I(x)) >
δ(P (Xk ≥ x) + I(x− δ)),

which, since δ = v−c
M , is equivalent to

M >
(v − c)(P (Xk ≥ x) + I(x− δ))

(x− c)(P (Xk = x)− I(x) + I(x− δ))
. (25)

The RHS of the above inequality is bounded above by
v−c

ε′(P (Xk=x)−I(x)) . Also, the term P (Xk = x) − I(x) is the
probability of the event, say E1, that primary 1 does not sell
its bandwidth when it chooses x and Xk = x. The probability
of this event is greater than the probability of the event, say E2,
that all n−1 primaries 2, . . . , n choose price x and primary 1’s
bandwidth is not sold. It is easy to check that the probability of
event E2 is atleast ε

n−1

n . So by (25) and the above arguments,



if we choose M > n(v−c)
εn−1ε′ , then primary 1’s expected utility is

greater when it chooses the price x− δ than when it chooses
the price x. This contradicts the assumption that price x is
selected w.p. more than ε. By the above facts the proof of
Lemma 4 follows.

We first prove some Lemmas which will be used to prove
Lemma 5 and Theorem 3. Let zl(M) (respectively, zr(M))
be the lowest (respectively, highest) price from {a1, ..., aM}
in the support set of φM (·). There may be prices from the set
{a1, .., aM} within the interval (zl(M), zr(M)) that are not
in the support set; however, we prove in the following lemma
that the distance between neighbouring prices which are in
the support set decreases to 0 as M → ∞. Consider a price
y ∈ (zl(M), zr(M)) which is not in the support set. Let yl(M)
(respectively, yr(M)) be the highest (respectively, lowest)
price such that yl(M) < y (respectively, yr(M) > y) which
is in the support set of φM (·). Note that y, yl(M), yr(M) ∈
{a1, . . . , aM}. For ease of presentation we omit M from the
variables zl(M), zr(M), yl(M) and yr(M).

Lemma 10: For every price y ∈ (zl, zr) which is not in the
support set, yr − yl → 0 as M →∞.

Proof: Since no primary chooses a price in the interval
(yl, yr) and also yl < y, we have P (Xk > y) = P (Xk > yl).
Also yl, yr are in the support set and by Lemma 1 we can
write:

E(u1(yl, Xk)) = E(u1(yr, Xk)).

As yl, yr are in the support set and y is not, by Lemma 1 we
can write:

E(u1(yl, Xk)), E(u1(yr, Xk)) ≥ E(u1(y,Xk)). (26)

We also have:

E(u1(yl, Xk)) = (yl − c)(P (Xk > yl) + I(yl)), (27)

E(u1(y,Xk)) = (y − c)P (Xk > y) = (y − c)P (Xk > yl).
(28)

By (26), (27) and (28):

(yl − c)P (Xk > yl) + (yl − c)I(yl) ≥ (y − c)P (Xk > yl).

Hence:
(yl − c)I(yl) ≥ (y − yl)P (Xk > yl).

So:

(y − yl) ≤
(yl − c)I(yl)
P (Xk > yl)

. (29)

We can write for any price x in the support set:

I(x) < P (Xk = x) ≤ (n− 1)ε, (30)

by Lemma 4 and since P (Xk = x) < P (atleast one of the
primaries chooses price x). By (29) and (30):

(y − yl) <
(v − c)

P (Xk > v)
(n− 1)ε, (31)

where P (Xk > v) =
k−1∑
i=0

(
n−1
i

)
qi(1 − q)n−1−i. (31) is valid

for all y ∈ (yl, yr). We complete the proof by choosing a y
just below yr and we have:

yr − y =
v − c
M

→ 0 as M →∞. (32)

Combining (31), (32) we can say yr − yl → 0 as M →∞.

Lemma 10 shows that the support set of φM (·) contains
most of the available prices from the set {a1, . . . , aM} that lie
in the interval (zl, zr). Recall from Section III that the support
set of φ(·) is (p̃, v]. Next, we prove that zl and zr, which are
the lowest and highest prices from the set {a1, . . . , aM} in the
support set of φM (·), converge to p̃ and v respectively.

Lemma 11: For every ε′ > 0, ∃Mε′ such that if M ≥Mε′ ,
then in every symmmetric NE:

1)
zr > v − ε′.

2)
|zl − p̃| < ε′.

Proof: Since zr is in the support set and v may or may
not be in the support set, by Lemma 1, we can write:

E(u1(zr, Xk)) ≥ E(u1(v,Xk)).

So:

(zr− c)(P (Xk > zr)+ I(zr)) ≥ (v− c)(P (Xk > v)+ I(v)).
(33)

Since zl (respectively, zr ) is the lowest (highest) price in the
set {a1, . . . , aM} which is in the support set, we have:

P (Xk > zl) = 1− P (Xk = zl), (34a)

P (Xk > zr) = P (Xk > v). (34b)

Substituting (34b) in (33) we get:

(zr − c)(P (Xk > v) + I(zr)) ≥ (v − c)(P (Xk > v) + I(v))

From the above inequality, (30) and the fact that I(v) ≥ 0:

(v − zr) ≤
(zr − c)I(zr)
P (Xk > v)

≤ (v − c)
P (Xk > v)

(n− 1)ε (35)

Thus, part 1) of Lemma 11 follows. Since zl, zr are in the
support set, we can write:

E(u1(zl, Xk)) = E(u1(zr, Xk)), (36a)

E(u1(zl, Xk)) = (zl − c)(P (Xk > zl) + I(zl)), (36b)

E(u1(zr, Xk)) = (zr − c)(P (Xk > zr) + I(zr)). (36c)

Using (34a), (36b):

E(u1(zl, Xk)) = (zl−c)−(zl−c)(P (Xk = zl)−I(zl)), (37)



and using (34b), (36c), (2) with the fact that P (Xk > v) =
1− w(q, n):

E(u1(zr, Xk)) = (zr − v + v − c)(P (Xk > v) + I(zr))

= p̃− c− (v − zr)P (Xk > v)

+ (zr − c)I(zr).
(38)

Substituting (37) and (38) in (36a) and simplifying we get:

zl − p̃ = (zl − c)(P (Xk = zl)− I(zl))− (39)
(v − zr)P (Xk > v) + (zr − c)I(zr). (40)

By (35), we can upper bound the negative term in the RHS
of the above equation by (zr − c)I(zr) which results in:

zl − p̃ ≥ (zl − c)(P (Xk = zl)− I(zl)) ≥ 0 (41)

The second inequality is the result of the fact that zl is in the
support set. The above inequality shows that the lowest price
of the support set of a symmetric NE in the discrete game is
≥ p̃. By applying triangle inequality to (39) and by using the
fact that P (Xk = zl)− I(zl) < P (Xk = zl) < (n− 1)ε and
zr − c, zl − c < v − c and by (30), (35) we can write:

|p̃− zl| ≤ 3(v − c)(n− 1)ε. (42)

Thus, part 2) of Lemma 11 follows.
Proof of Lemma 5: This can be shown using part 1 of

Lemma 11. Since zr is in the support set of φM (·):

umax(M) = (zr − c)(P (Xk > v) + I(zr))

By (2) and (5), umax = (v−c)(1−w(q, n)) = (v−c)P (Xk >

v) as P (Xk > v) =
k−1∑
i=0

qi(1− q)n−1−i = 1− w(q, n). So:

umax(M)− umax = (zr − c)I(zr)− (v − zr)P (Xk > v).

By triangle inequality:

|umax(M)− umax| ≤ (zr − c)I(zr) + (v − zr)P (Xk > v)

≤ (v − c)I(zr) + (v − zr)P (Xk > v).
(43)

By using (30) and (35) in the above inequality, we get:

|umax(M)− umax| ≤ 2(v − c)(n− 1)ε. (44)

The result follows.
Proof of Theorem 3: Fix x ∈ (zl, zr). If x is in the

support set of φM (·) then

E(u1(x,Xk)) = E(u1(zl, Xk)). (45)

We have:

E(u1(x,Xk)) = (x− c)(P (Xk > x) + I(x)) (46)

Also from (43) we have:

|umax(M)− umax| ≤ (v − c)I(zr) + (v − zr)P (Xk > v).
(47)

By substituting the result from (46) and from the equation
umax = (x− c)(1− F (x)) (which follows from (3) and (5))
into (47) we get:

(x− c)|F (x)− P (Xk ≤ x) + I(x)| ≤
(v − c)I(zr) + (v − zr)P (Xk > v)

Since x is in the set (zl, zr) and by (41) we have x − c ≥
zl− c ≥ p̃− c = (v− c)P (Xk > v). Also from (35) and (30),
we have the following inequalities

|F (x)− P (Xk ≤ x) + I(x)|

≤ (v − c)I(zr)
p̃− c

+
(v − zr)P (Xk > v)

p̃− c
.

≤ 2I(zr)

P (Xk > v)
≤ 2(n− 1)ε

P (Xk > v)
.

Since I(x) ≥ 0 and from (30) it can be shown that

|F (x)− P (Xk ≤ x)| ≤
3(n− 1)ε

P (Xk > v)
(48)

For any point z ∈ {a1, ..., aM} which is not in the support
set of φM (·), we can say by Lemma 10 that z is bounded by
prices which are in the support set and the gap reduces to 0 as
M →∞. Since d.f.’s P (Xk ≤ x) converge pointwise to F (x)
for all x in the support set and since F (.) is a continuous and
increasing function we can say that P (Xk ≤ z) converges
pointwise to F (z). Next, consider the function F(y) =
n−1∑
i=k

yi(1 − y)n−1−i. Note that by (4), F(φ(x)) = F (x);

also, F(y) is a continuous and strictly increasing function of
y ∈ [0, 1]. Thus F(·) is invertible and F−1 itself is continuous.

The d.f. P (Xk ≤ x) = F(φM (x)) =
n−1∑
i=k

φM (x)i(1 −

φM (x))n−1−i converges pointwise to F(φ(x)) = F (x). So
it follows that φM (·)→ φ(·) in pointwise convergence.

VIII. SIMULATIONS

So far, we have studied NE in the price competition game in
a single time slot. However, in practice, primaries in a region
would repeatedly interact with each other in different time
slots. To model this situation, in this section, we consider a
scenario in which there are an infinite number of time slots,
and in each slot, n primaries sell bandwidth to k secondaries
as in the model in Section II. Also, in practice, the players
(primaries) would not know all the parameters of the game
(e.g., n, k, q) and hence would use learning algorithms to
adapt their price selection strategies based on the prices they
selected and the payoffs they got in previous slots. We assume
that each primary independently adapts its price selection
strategy using the Softmax learning algorithm, which was
proposed to solve the multi-armed bandit problem in [28],
and investigate under what conditions the strategies of the
primaries converge to the NE of the one-shot game. The
algorithm is initiated by each player i by playing all the
available prices {a1, ..., aM} randomly atleast once. Then, the
utilities obtained by primary i in time slots 1, ..., t−1 are used



to compute the PMF that is used by primary i to select the
price in time slot t. Specifically, in slot t, primary i selects
price aj , j ∈ {1, ...,M} with the following probability:

Ri,t(aj) =
exp

(
ui,t−1(aj)
τNi,t−1(aj)

)
∑M
l=1 exp

(
ui,t−1(al)
τNi,t−1(al)

) , (49)

where Ni,t−1(aj) is the number of time slots in which primary
i played the price aj so far, ui,t−1(aj) is the total utility that
primary i got in the time slots in which it played the price
aj so far, and τ is the temperature constant [28]. Note that
the algorithm assigns a probability to each price which is an
increasing function of the payoffs that player i got by playing
that price in the time slots elapsed so far.
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Fig. 7: The figure shows the steady state probability distribu-
tions versus the temperature constant τ for different values of
n, k and q.

We simulated a scenario in which primaries adapt their price
selection strategies using the Softmax algorithm and the steady
state probability distributions to which the price selection
PMFs, Ri,t(·), of the primaries converge after the simulation
has run for a large number of time slots were obtained for
different values of n, k, M , q and τ . Throughout, we observed
that whenever a pure strategy symmetric NE exists in the one-
shot game for given values of n, k, M and q (i.e., the NE price
selection strategy support set contains a single price), the price
selection PMFs of the primaries under the Softmax algorithm
converge to their price selection PMFs under at least one of
the pure strategy NE for some values of τ . However, when
only mixed strategy NE exist in the one-shot game, the price
selection PMFs of the primaries under the Softmax algorithm
do not converge to the NE price selection PMFs for any value
of τ . For example, with M = 7 throughout, (i) with n = 8,
k = 4 and q = 0.2, one pure strategy NE exists and has
support set {a7}; the top-left plot in Fig. 7 shows that the

Softmax algorithm converges to this NE at τ = 0.4, (ii) with
n = 8, k = 4 and q = 0.8, there exist two pure strategy NE
with support sets {a2} and {a3}, and the top-right plot shows
that the Softmax algorithm converges to {a2} at τ = 0.1,
(iii) with n = 2, k = 1 and q = 0.5, only a mixed strategy
NE exists, and the bottom-left plot shows the steady state
probability distributions under Softmax. It is easy to check that
the probabilities in the plot do not equal the price selection
strategy probabilities under the mixed NE for any value of
τ . The design of learning algorithms that converge to the NE
even when only mixed strategy NE exist is a direction for
future work.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the fundamental question of
how the behavior of the players involved in price competition
in a DSA market changes when the widely used continuous
prices approximation is removed. Our analysis reveals several
important differences between the discrete game and the
continuous game. Although our results show that for the
games at a single location as well as at multiple locations, as
the number of available prices becomes large in the discrete
game, the strategies of the primaries under every symmetric
NE converge to the unique NE strategy of the continuous
game, they are significantly different when the number of
prices is small. Hence caution must be exercised while using
the continuous prices approximation in the context of price
competition in spectrum markets. For simplicity, we assumed
in this paper that q, the probability with which a primary has
unused bandwidth, is the same for each primary. A direction
for future work is to generalize our results to the case where
these probabilities are different for different primaries.

X. APPENDIX

Proof of Lemma 2: Let P is odd. For each price in
the support set, the corresponding probability R(aM−P+i) for
i = 0, ...., P must be strictly positive. Since P is odd, and the
number of prices in the support set is P + 1, we use (12) to
obtain the probabilities. For R(aM−P+i) > 0 for i = 0, .., P ,
we need

q >
2(Q− 1)

2Q− 1
(50)

Similarly,

q >
Q− 1

Q2k+1
for R(aM−P+2k+1), k = 0, 1, ...,

P − 3

2
(51a)

q <
Q− 1

Q2k
for R(aM−P+2k), k = 0, 1, ...

P − 1

2
(51b)

Let Vj denote the interval where R(aM−P+j), j = 0, 1, ..P
is valid. The interval ∩Pj=0Vj satisfies all the inequalities in
(50), (51a), (51b). To get ∩Pj=0Vj we take the highest lower
bound and least upper bound of all the inequalities. Out of
all the upper bounds for Q−1

Q2k
, k = 0, 1, ..., P−12 , numerator

term is the same. Consider the denominator term Q2k,
Q2k = M

M−P −
M

M−P+1 + ... − M
M−P+2k−1 + M

2(M−P+2k) .
The least upper bound correspond to the term which has the



highest denominator. For an even number i

Qi+2 −Qi = M
2(M−P+i) −

M
M−P+i+1 + M

2(M−P+i+2)

= M
2(M−P+i)(M−P+i+1) −

M
2(M−P+i+1)(M−P+i+2) > 0

Q2k increases as k increases. So, the highest of all Q2k, k =
0, 1, ..., P−12 is QP−1 and thus the least upper bound is Q−1

QP−1
.

The lower bounds are Q−1
Q− 1

2

for R(aM ) and q > Q−1
Q2k+1

for

k = 0, 1, .., P−32 . Again, the numerators are the same in all
the bounds. So, we take the term with least denominator as the
overall lower bound. Consider the denominator term Q2k+1 =
M

M−P −
M

M−P+1 + ....+ M
M−P+2k −

M
2(M−P+2k+1) . Let i be

an odd number. Then

Qi+2 −Qi = − M
2(M−P+i+2) +

M
M−P+i+1 −

M
2(M−P+i) < 0

Thus Q2k+1 decreases as k increases. So the lowest term is
QP−2 = M

M−P −
M

M−P+1 + .... + M
M−3 −

M
2(M−2) which is

greater than Q− 1
2 = M

M−P −
M

M−P+1 + ...+ M
M−3 −

M
M−2 +

M
M−1−

1
2 . So, the highest lower bound is 2(Q−1)

2Q−1 . Thus P odd,
we have

2(Q− 1)

2Q− 1
< q <

Q− 1

QP−1

We can obtain the bounds for even P on similar comparison.

Proof of Lemma 3: Let P is odd. Then the upper
bound of the interval V P , is UP = Q−1

Q− M
2(M−1)

and the lower

bound of the interval V P+1 is LP+1 =
M

M−P−1−Q
M

M−P−1−Q+1
where

Q = M
M−P −

M
M−P+1 + ... + M

M−3 −
M
M−2 + M

M−1 . The
difference UP − LP+1 is

Q−1
Q− M

2(M−1)

−
M

M−P−1−Q
M

M−P−1−Q+ 1
2

The numerator part (after neglecting the positive denominator
part) of the difference is

Q− 1 + 1
M−1 [

M
M−P−1 −Q]− [ M

M−P−1 −Q]

Since,

Q− 1 = M
(M−P )(M−P+1) + ...+ M

M(M−1)

and

M
M−P−1 −Q = M

(M−P−1)(M−P ) + ...+ M
(M−2)(M−1)

so,

Q− 1−
[

M
M−P−1 −Q

]
=

−2M
(M−P−1)(M−P )(M−P+1) + ...+ −2M

(M−2)(M−1)M

and we have,

1
M−1

[
M

M−P−1 −Q
]
=

M
(M−P−1)(M−P )(M−1) + ...+ M

(M−2)(M−2)(M−1)

finally,

Q− 1−
[

M
M−P−1 −Q

]
+ 1

M−1

[
M

M−P−1 −Q
]
=

M
(M−P−1)(M−P ) (

−2
M−P−1 + 1

M−1 ) + ...+ M
(M−2)(M−1) (

−2
M +

1
M−1 ) < 0

So, LP+1 is greater than UP . This proves that the intervals
V P and V P+1 are not contiguous when P is odd. We can
prove on similar lines if we take P as an even number.

Proof of Lemma 8: Clearly for P = 0 and M − 1,
2
M (1 − P

M−1 ) +
Pα
M−1 − I

P
M = 0 . We consider the cases for

P ∈ {2, 4, . . . ,M−3}. Consider the term 2
M (1− P

M−1 )−I
P
M ,

where IPM is as in (21). Considering only the numerator part
of the difference, we get

= 4(1− P

M − 1
)(M − 1)(QP +

1

2
)(QP +

M

2(M − 1)
)

−M(QP + 1)

= 4(M − P − 1)(QP + 1)(QP +
M

2(M − 1)
)

−M(QP + 1)− 2(M − P − 1)(QP +
M

2(M − 1)
)

= (M − P − 1)(QP + 1)(4(QP +
M

2(M − 1)
)− M

M − P − 1
)

− 2(M − P − 1)(QP +
M

2(M − 1)
) (52)

We can easily show that 3(QP+ M
2(M−1) )−

M
M−P−1 ≥ 0 where

QP = M
M−P −

M
M−P+1 + . . . + M

M−2 −
M
M−1 . Substituting

this result in (52), the difference is

= (M − P − 1)(QP + 1)(X +
M

2(M − 1)
+QP +

M

2(M − 1)
)

−2(M − P − 1)(QP +
M

2(M − 1)
)

= (M − P − 1)((QP + 1)(QP +X +
M

M − 1
)− 2QP −

M

M − 1
)

= (M − P − 1)(Q2
P +QPX +

QP
M − 1

+X) > 0

∀P ∈ {2, 4, . . . ,M − 3}.
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