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Abstract—Machine-to-Machine (M2M) networks are an
emerging technology with applications in various fields including
smart grids, healthcare, vehicular telematics, smart cities etc.
Heterogeneous M2M networks contain different types of nodes,
e.g., nodes that send emergency, periodic and normal type data.
An important problem is to rapidly estimate the number of active
nodes of each node type in every time frame in such a network.
In this paper, we design an estimation scheme for estimating the
active node cardinalities of each node type in a heterogeneous
M2M network with three types of nodes. Our scheme consists of
two phases– in phase 1, coarse estimates are computed and these
estimates are used to compute the final estimates to the required
accuracy level in phase 2. We analytically derive a condition that
can be used to decide as to which of two possible approaches is to
be used in phase 2. Using simulations, we show that our proposed
scheme requires significantly fewer time slots to execute compared
to separately executing a well-known estimation protocol designed
for a homogeneous network in prior work thrice to estimate the
cardinalities of the three node types, even though both these
schemes obtain estimates with the same accuracy.

I. Introduction

Machine-to-Machine (M2M) communications is emerging
as a key technology for connecting together a very large num-
ber of autonomous devices that require minimal to zero human
intervention in order to generate, process and transmit data [1].
M2M networks have extensive applications in various fields
including smart grids, health care, vehicular telematics, smart
cities, security and public safety, agriculture and industrial
automation [2].

The design of efficient networking protocols to cater to the
increasing number of M2M devices is turning out to be an im-
portant research field [2]. In particular, the design of medium
access control (MAC) protocols for M2M networks is challeng-
ing because they have a number of unique characteristics, e.g.,
(i) network access needs to be provided to an extremely large
number of M2M devices, (ii) most M2M devices are battery
powered and have limited power availability, (iii) the quality of
service (QoS) requirements in M2M applications differ from
those in Human-to-Human (H2H) communications and are
also different for different M2M devices [3]. A key component
of a MAC protocol for M2M networks is an estimation protocol
that rapidly estimates the number of active devices (i.e., the
devices that currently have some data that needs to be sent
to the base station) in every time frame [3]. These estimates
can be used to find the optimal values of various parameters
of the MAC protocol, e.g., contention probability, contention
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period, data transmission period etc, in each time frame [4]–
[6]. For example, recall that for the Slotted ALOHA protocol,
the optimal contention probability is the reciprocal of the
number of active nodes [7].

There has been extensive research on the problem of
node cardinality estimation in M2M networks and in Radio
Frequency Identification (RFID) systems (see the following
paragraphs for a review of these papers); however, with the
exception of our prior work [8], all the papers in the existing
research literature address the problem of node cardinality es-
timation in a homogeneous network, i.e., a network consisting
of only one type of nodes. In contrast, in this paper, we address
the problem of obtaining separate estimates of the number of
active nodes of each type in a heterogeneous network, i.e.,
a network with multiple types of nodes. Note that executing
a node cardinality estimation protocol for a homogeneous
network multiple times to obtain the active node cardinalities
of each type in a heterogeneous network is inefficient. In this
paper, we consider an M2M network containing three different
types of nodes, which we refer to as Type 1 (T1), Type 2
(T2), and Type 3 (T3) nodes; e.g., these may be emergency,
periodic and normal data type nodes respectively. We design
an estimation protocol to rapidly obtain separate estimates of
the number of active nodes of each data type.

Owing to the importance of active node cardinality estima-
tion as part of the design of a MAC protocol, a lot of research
has been carried out in estimating the number of active devices
in a homogeneous M2M network [4]–[6]. Also, in [4]–[6],
using the estimates obtained, the contention probabilities that
maximize the throughput of their respective MAC protocols
for M2M networks are determined. The problem of node
cardinality estimation in M2M networks is similar to that of
tag cardinality estimation in the context of RFID technology.
In particular, in the latter context, an RFID reader estimates
the number of tags, similar to the former context, in which a
base station estimates the number of active nodes in an M2M
network. Schemes for estimating the number of tags in an
RFID system have been proposed in [9]–[15]. However, all
of the above node cardinality estimation schemes [4]–[6], [9]–
[15] are designed for homogeneous networks.

To the best of our knowledge, in prior literature there is
only one paper, viz., our prior work [8], which designs a node
cardinality estimation scheme for heterogeneous networks. We
now compare the estimation scheme proposed in this paper
with that proposed in [8]. After carefully reviewing various
estimation protocols, including Enhanced Zero-Based estima-
tor [9], Lottery Frame (LoF) based estimator [11], Probabilistic
Estimating Tree estimator [12], Zero-One estimator [13], and
Arbitrarily Accurate Approximation estimator [14], the authors
of [16] have shown that for an estimation protocol for a
homogeneous network to be efficient, i.e., for it to take the



minimum possible number of time slots to estimate the node
cardinality for a given set of specifications of accuracy, it
is necessary that the protocol have two phases– a phase for
obtaining a coarse estimate, followed by a phase that uses
the coarse estimate to achieve an accuracy target. Also, the
authors of [16] have devised an improved protocol, viz., the
simple RFID counting (SRCS) protocol, which has two phases,
for tag cardinality estimation in homogeneous RFID networks.
Our proposed scheme in this paper is designed by extending the
SRCS protocol to estimate the active node cardinalities of each
node type in a heterogeneous M2M network with three types of
nodes. The estimation protocol proposed in our prior work [8]
was designed by extending the LoF protocol [11], which is
a node cardinality estimation protocol for a homogeneous
network, for node cardinality estimation in a heterogeneous
network; the estimation scheme proposed in this paper outper-
forms that in [8] since the former is designed by extending the
SRCS protocol [16], which has been shown to outperform the
LoF protocol [11] in [16] in terms of number of slots required,
for node cardinality estimation in a heterogeneous network.

The rest of this paper is organized as follows. The network
model and problem formulation are described in Section II-A.
The SRCS protocol [16] is reviewed in Section II-B. The
estimation protocol designed for a heterogeneous M2M net-
work in our prior work [8] is reviewed in Section II-C. The
node cardinality estimation scheme for heterogeneous M2M
networks proposed in this paper is described in Section III-A.
In Section III-B, we compute the expected number of slots
required by our scheme to execute. Our proposed scheme
consists of two phases and one of two possible approaches
is used in phase 2; the condition that is used to decide as
to which approach is to be used in phase 2 is derived in
Section III-C. We evaluate the performance of our proposed
estimation scheme via simulations in Section IV. Finally, we
provide conclusions and directions for further research in
Section V.

II. Model, Problem Formulation and Background

A. The Node Cardinality Estimation Problem in a Heteroge-
neous M2M Network

Consider a heterogeneous M2M network consisting of a
base station (BS) and three different types– say Type 1 (T1),
Type 2 (T2), and Type 3 (T3)– of nodes within its range as
shown in Fig. 1. Time is divided into frames of equal durations,
and in each frame only a subset of the nodes of each type have
data to send to the BS. We call these nodes as active nodes. Let
nb be the number of active nodes of Type b, b ∈ {1,2,3}, in a
given frame. Our objective is to rapidly estimate the number
of active nodes, nb, b ∈ {1,2,3}, of each type.

B. Review of SRCS Protocol [16]

We now review the SRCS protocol [16], which is a node
cardinality estimation protocol for homogeneous networks, and
which we extend for node cardinality estimation in heteroge-
neous networks.

The goal of a cardinality estimation protocol for a homo-
geneous network is to produce an estimate, say n̂, for n (the
actual number of active nodes), so that P(|n̂−n| ≤ εn) ≥ 1−δ ,
where ε , the relative error, and δ , the required accuracy, are

Type 1 nodes

Base Station

Type 2 nodes Type 3 nodes

Figure 1: A base station with three different types of nodes within its range.
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Figure 2: The figure shows the frame structure used in the SRCS protocol.

user specified. SRCS is a two phase protocol (see Fig. 2); at
the end of the first phase (respectively, second phase), it finds
a rough estimate ñ (respectively, the final estimate n̂) [16]. The
first (respectively, second) phase of the protocol consists of a
sequence of trials (respectively, a single trial), and each trial
consists of a certain number of slots. The number of slots in a
trial is called the length of the trial. At the beginning of each
trial, the BS sends a command to the nodes. This causes the
nodes to initialize their local state machines and potentially
load new random numbers. Next, in each slot within that trial,
a node transmits or does not transmit based on the command,
its local state, and its random number. After a trial, a slot can
be in one of the following three states: (i) Empty: There are no
nodes that have transmitted in that slot, (ii) Success: Exactly
one node has transmitted in that slot, (iii) Collision: More than
one node have transmitted in that slot.

The first phase of the SRCS protocol consists of a sequence
of independent trials of the LoF protocol [11]; let tn,max be the
number of trials of the LoF protocol conducted. Fig. 3 shows a
single trial of the LoF protocol. Let nall be the total number of
nodes manufactured and t = dlog2 nalle. In each trial of the LoF
protocol, every active node randomly chooses a slot according
to the following distribution: for i∈ {1,2, . . . , t−1}, the ith slot
is chosen with probability (1/2i) and the tth slot is chosen with
probability (1/2t−1). Each active node transmits in its chosen
slot. For each tn ∈ {1,2, . . . , tn,max}, let j(tn) be the smallest
number j ∈ {1,2, . . . , t}, such that the jth slot is empty in the
tth
n trial. The estimate of the number of active nodes found in



the tth
n trial is ñ(tn) = 1.2897×2 j(tn)−1. At the end of all tn,max

trials, the average of their outputs is the estimated number of
active nodes, i.e., ñ=mean{ñ(1), ñ(2), . . . , ñ(tn,max)}. Now, the
number of trials, tn,max, is determined based on the required
accuracy δ . For example, for δ = 0.2, tn,max = 10 is used.
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Figure 3: The figure shows a trial of the LoF protocol.

Phase 2 of the SRCS protocol consists of a single trial of l
slots; each active node independently participates (respectively,
does not participate) in the trial with probability p (respec-
tively, 1− p). Also, each node that participates transmits in a
slot selected uniformly at random from the l slots (see Fig. 2).
The parameter value p=min(1,1.6l/ñ) is used. The parameter
l is a function of the relative error ε and it is found from
a numerical lookup table, which is constructed by executing
the SRCS protocol for different values of n, and finding the
value of l required to achieve a given value of ε [16]. Note
that the expected fraction of empty slots, out of the l slots,
is (1− p/l)n. The protocol counts the number of empty slots,
say z, out of the l slots. The final estimate generated by the
protocol is n̂ = ln(z/l)/ln(1− p/l).

C. Review of Node Cardinality Estimation Protocol for Het-
erogeneous M2M Networks Proposed in [8]

We now briefly review the node cardinality estimation
scheme proposed in our prior work [8] since we use it as part
of the estimation scheme proposed in this paper. The scheme
proposed in [8] extends the LoF protocol [11] for obtaining
separate estimates of the active node cardinalities of each node
type in a heterogeneous M2M network with three types of
nodes (see Section II-A). Also, the scheme proposed in [8]
consists of 3 stages (see Fig. 4) and we henceforth refer to it
as the “3-stage technique”.

As in Section II-B, let t be the number of slots required
for the execution of a single trial of the LoF protocol. Stage 1
of the 3-stage technique consists of t blocks, Bi, i ∈ {1, . . . , t}
(see Fig. 4). Each block, Bi, is divided into two slots Si,1 and
Si,2. Each active node of each of the three types chooses a
block number at random according to the distribution used in
LoF (see Section II-B), i.e., for i ∈ {1,2, . . . , t− 1}, block Bi
is chosen with probability (1/2i) and block Bt is chosen with
probability (1/2t−1). T1 active nodes whose chosen block is
Bi transmit symbol α in both slots, Si,1 and Si,2, of block Bi.
T2 (respectively, T3) active nodes whose chosen block is Bi
transmit symbol β only in slot Si,1 (respectively, Si,2). Stage
1 concludes with this. Now, it has been shown in [8] that if
a collision occurs in at most one slot of a given block Bi,
then the set of types of nodes that transmitted in block Bi
can be unambiguously inferred by the BS. However, for some
blocks Bi of stage 1, collisions in both slots of the block may
occur; in this case, the BS has ambiguity about the types of
nodes that transmitted in those particular blocks. To resolve
the ambiguity, after the end of this stage, the BS transmits the

list of all block numbers for which collisions in both their slots
occured via a broadcast packet (BP) (see Fig. 4). In stage 2,
there are K slots, where K is the number of blocks in stage
1 in which a collision occurred in both of its slots. In the ith
slot of stage 2, T1 nodes that transmitted in the ith block of
stage 1 in which collisions occurred in both the slots, transmit
symbol α . T2 and T3 nodes do not transmit in stage 2. Now, it
is easy to see that at the end of stage 2, the BS unambiguously
knows the set of block numbers of stage 1 in which T1 nodes
transmitted. However, if in stage 2, there are collisions in some
of the slots, ambiguity remains with the BS on whether T2 and
T3 nodes transmitted in the corresponding blocks of stage 1 or
not. To resolve this ambiguity, after the end of stage 2, the
BS transmit a BP containing the list of blocks of stage 1 for
which collisions occurred in the corresponding slots of stage
2. Suppose there are R blocks in this list. In stage 3, 2R slots
are used. For i ∈ {1, . . . ,R}, T2 (respectively, T3) active nodes
corresponding to the ith block in the above list transmit symbol
β in the (2i− 1)th (respectively, (2i)th) slot of stage 3. It is
easy to see that at the end of stage 3, the BS unambiguously
knows the sets, say I1, I2 and I3, of block numbers of stage
1 in which T1, T2 and T3 nodes respectively transmitted. For
k ∈ {1,2,3}, let jk be the smallest number j such that no Tk
node transmitted in the jth block of stage 1. Then the estimate
of the number of active nodes of Tk is 1.2897× 2 jk−1 (see
Section II-B).

S1;1 S1;2 S2;1 S2;2 St;1 St;2 BP BP

B1 B2 Bt 1 K 1 2 2R

1
st Stage 2

nd Stage 3
rd Stage

Figure 4: The figure shows the frame structure used in the 3-stage technique proposed
in [8].

Now, the node cardinality estimate of each Tk obtained
using the protocol proposed in [8] equals, and hence is as
accurate as, the estimate that would have been obtained if
the LoF protocol were separately executed thrice to estimate
the number of active nodes of each type. However, under
mild conditions, the amount of time needed by the estimation
protocol proposed in [8] is much lower than the amount of
time that would have been needed if the LoF protocol were
separately executed thrice.

III. Proposed Node Cardinality Estimation Scheme for
Heterogeneous M2M Networks

A. Proposed Node Cardinality Estimation Scheme

We now describe the proposed scheme, which is an ex-
tension of the SRCS protocol for estimating the number of
active nodes of each type in the model with a BS and three
different types of nodes in its range described in Section II-A.
The proposed scheme consists of two phases– they correspond
to the two phases of the SRCS protocol as explained below.

Recall from Section II-B that the first phase of the SRCS
protocol is a series of independent trials of the LoF protocol.
Since it is shown in [8] that, under mild conditions, the 3-stage
technique (described in Section II-C) takes less time compared
to three separate executions of the LoF protocol for estimating
the active node cardinalities of the three types of nodes, we
use a series of independent executions of the 3-stage technique
in the first phase of the proposed scheme.



At the end of the first phase of the proposed scheme, we
obtain rough estimates, say ñ1, ñ2, and ñ3, of the numbers of
active nodes of T1, T2, and T3 respectively. Note that these
estimates are the same as those that would have been obtained
if the first phase of the SRCS protocol were separately executed
thrice for the three node types. Next, recall from Section II-B
that the second phase of the SRCS protocol has a single trial.
The number of slots, l, in the trial depends on the relative error
ε we want (see Section II-B). We take the value of ε to be
the same for all the three node types; hence, the length, l, of
the trial would be the same for all the three node types. Let
pb = min

(
1, 1.6l

ñb

)
for b ∈ {1,2,3} (see Section II-B).

Now, one possible approach to execute the second phase
of the proposed scheme is to separately execute phase 2 of
the SRCS protocol for each of the three node types. Note that
this requires a total of 3l time slots to execute. An alternative
approach to execute the second phase of the proposed scheme
is to use the 3-stage technique described in Section II-C
with the change that in stage 1, l blocks are used and for
b∈ {1,2,3}, each node of Type b independently transmits with
probability pb in a block chosen uniformly at random from the
l blocks and does not transmit with probability 1− pb. It is
easy to see that at the end of stage 3, the BS unambiguously
knows the sets, say I1, I2 and I3, of block numbers of stage
1 in which T1, T2 and T3 nodes respectively transmitted. From
the sets I1, I2 and I3, for each b∈ {1,2,3}, zb, which is the
number of slots that would have been empty if phase 2 of the
SRCS protocol were executed for Tb nodes, can be deduced.
For each b∈{1,2,3}, the final estimate of the number of active
nodes of Type b is calculated at the end of the second phase
as n̂b = ln(zb/l)/ln(1− pb/l) (see Section II-B). Note that
irrespective of which of the above two approaches is used, the
final node cardinality estimate, n̂b, of each Type b ∈ {1,2,3},
obtained using the proposed scheme equals, and hence is as
accurate as, the estimate that would have been obtained if the
SRCS protocol were separately executed thrice to estimate the
number of active nodes of each type.

In order to minimize the execution time of the second phase
of the proposed scheme, we have obtained a condition which,
if satisfied, we use the 3-stage technique, else we separately
execute phase 2 of the SRCS protocol thrice for the three node
types. This condition is derived in Section III-C.

B. Expected Number of Slots Required in Second Phase of the
Proposed Scheme

Clearly, if three separate executions of the second phase
of the SRCS protocol are used in the second phase of the
proposed scheme, then 3l slots are required. Now we compute
the expected number of slots required in the second phase
assuming that the 3-stage technique is used. This will be used
in Section III-C to derive the condition using which we decide
as to which approach to use in the second phase.

The number of slots required in the first stage is 2l. Using
the notation introduced in Section II-C, let K (respectively, 2R)
be the number of slots required in stage 2 (respectively, stage
3). Let Sr

i,1 (respectively, Sr
i,2), i∈ {1,2, . . . , l} represent the re-

sult (collision, success or empty slot) of the first (respectively,
second) slot of block Bi of stage 1. Also, let Iυ denote the

indicator random variable corresponding to event υ , i.e., Iυ is
1 if υ occurs, else it is 0.

From Sections II-C and III-A, it is easy to see that K =
Σl

i=1I{Sr
i,1=C,Sr

i,2=C}, where C denotes collision. So,

E(K) = Σ
l
i=1P(Sr

i,1 =C,Sr
i,2 =C). (1)

The conditions under which collisions occur in both the
slots of block Bi are as follows:

1) At least two nodes of T1 transmit in block Bi.
2) Exactly one node of T1 and at least one node each of

T2 and T3 transmit in block Bi.
3) At least two nodes each of T2, T3 and none of T1

transmit in block Bi.

Let Q1(i), Q2(i), and Q3(i) denote the probabilities of the
events in 1), 2), and 3) respectively. Since the probability of
selecting a block Bi by the nodes of a given type j ∈ {1,2,3}
is the same for all the blocks Bi irrespective of i, we can write:
Q j(i) = Q j, j ∈ {1,2,3}, i ∈ {1, . . . , l}. Hence,

P(Sr
i,1 =C,Sr

i,2 =C) = Q1 +Q2 +Q3. (2)

Also, Q1 = 1−u(n1)−v(n1), Q2 = v(n1)(1−u(n2))(1−u(n3))
and Q3 = u(n1)(1− u(n2)− v(n2))(1− u(n3)− v(n3)). Here,
u(nb) is the probability that none of the nodes of Type b select
a given block and v(nb) is the probability that exactly one
node of Type b selects a given block. So for b ∈ {1,2,3},
u(nb) = (1− pb

l )
nb and v(nb) = nb

pb
l (1−

pb
l )

nb−1, where pb =

min
(

1, 1.6l
nb

)
(see Section III-A).

By (1) and (2):

E(K) = l(Q1 +Q2 +Q3). (3)

Also:
E(R) = lQ1, (4)

since in stage 3, only those nodes of T2 and T3 transmit for
which collisions occurred in both the slots of the corresponding
blocks of stage 1 due to two or more T1 nodes transmitting (see
Sections II-C and III-A). The total expected number of slots
required by the 3-stage technique is 2l + 2+E(K)+ 2E(R).
(Note that two slots are required for BPs (see Fig. 4)).

C. Condition Used to Select Approach to be Used in Phase 2

From the description of the 3-stage technique in Sec-
tions II-C and III-A, it can be seen that in stage 1, if a T1
node chooses block Bi, it transmits in both the slots Si,1 and
Si,2, whereas if nodes of T2 or T3 select block Bi, they transmit
only in one of Si,1 or Si,2. So, the number of collisions due
to T1 nodes is high compared to those due to T2 or T3. Also,
clearly the numbers of slots required in stage 2 and stage 3
increase with the number of collisions in stage 1. Therefore,
the numbers of slots required in stage 2 and stage 3 increase
rapidly when the number of T1 nodes is increased. Hence, we
develop a condition on n1: if it is less than a certain value, we
use the 3-stage technique in phase 2 of the proposed scheme,
else we use three separate trials of the second phase of the
SRCS protocol. It is possible to check whether the condition
holds because we already have a rough estimate of n1, i.e.,



ñ1, from phase 1 using which it can be checked whether the
condition holds.

Now, to derive the condition, note that the use of the 3-stage
technique is profitable only if the number of slots required
when this technique is used is less than 3l; also, note that the
number of slots required increases with increase in ñ2 and ñ3.
So, we keep ñ2 and ñ3 very large, i.e., we let them approach
infinity, and we derive a condition on ñ1 for which the expected
number of slots required when the 3-stage technique is used is
less than 3l. This ensures that when this condition is satisfied,
the expected number of slots required by the 3-stage technique
is ≤ 3l regardless of the values of n2 and n3. Now, recall from
Section III-B that the expected number of slots required by the
3-stage technique is 2l + 2+E(K)+ 2E(R). So the required
condition is: 2l +2+E(K)+2E(R)≤ 3l, i.e.,

E(K)+2E(R)≤ l−2. (5)

Since ñ2 and ñ3 are assumed to be very large, they are
>> 1.6l. Therefore p2 = min

(
1, 1.6l

ñ2

)
= ( 1.6l

ñ2
) and similarly

p3 = ( 1.6l
ñ3

) (see Section III-A). Let the functions u(·) and v(·)
be as defined in Section III-B. For very large values of ñ2:

lim
ñ2→∞

u(ñ2) = lim
ñ2→∞

(
1− 1.6

ñ2

)ñ2
= e−1.6. (6)

lim
ñ2→∞

v(ñ2) = lim
ñ2→∞

1.6
(

1− 1.6
ñ2

)ñ2
= 1.6e−1.6. (7)

Similarly for very large values of ñ3: limñ3→∞ u(ñ3) = e−1.6

and limñ3→∞ v(ñ3) = 1.6e−1.6. Now, we consider the cases (I)
ñ1 < 1.6l and (II) ñ1 ≥ 1.6l separately, and in each case, find
the values of ñ1 for which the condition in (5) holds.

1) Case I: ñ1 < 1.6l: This implies p1 = min
(

1, 1.6l
ñ1

)
= 1.

By (3) and (4), we get:

E(K) = l
[
1−

(
1− 1

l

)ñ1
− ñ1

l

(
1− 1

l

)ñ1−1
+

ñ1

l

(
1

− 1
l

)ñ1−1(
1− e−1.6

)2
+
(

1− 1
l

)ñ1
(

1− 2.6e−1.6
)2]
(8)

E(R) = l
[
1−
(

1− 1
l

)ñ1
− ñ1

l

(
1− 1

l

)ñ1−1]
(9)

Hence:

E(K)+2E(R) = l
[
3
(

1−
(

1− 1
l

)ñ1
− ñ1

l

(
1− 1

l

)ñ1−1)
+0.6370

ñ1

l

(
1− 1

l

)ñ1−1
+0.2257

(
1− 1

l

)ñ1
]

(10)

Now, substituting from (10) into (5) and simplifying, the
condition in (5) becomes:

(11)2.7743
(

1− 1
l

)ñ1
+ 2.3630

ñ1

l

(
1− 1

l

)ñ1−1
≥ 2 +

2
l

Proposition 1: Assume that l ≥ 100. Inequality (11) holds
when ñ1 ≤ 0.864l. Also, it does not hold when 0.883l ≤ ñ1 <
1.6l.

The proof of Proposition 1 is relegated to the Appendix.
Assuming that l ≥ 100 (which would most likely be the
case in practice), Proposition 1 shows that whenever ñ1 ≤
0.864l (respectively, 0.883l≤ ñ1 < 1.6l), E(K)+2E(R)≤ l−2
(respectively, E(K) + 2E(R) > l − 2) and hence the 3-stage
technique takes less (respectively, more) time on average than
doing separate trials for each type of node in phase 2 of the
proposed scheme.

2) Case II: ñ1 ≥ 1.6l: This implies p1 = 1.6l/ñ1. Using
(3) and (4) and simplifying, we get:

E(K)+2E(R) = l
[
3−2.7743

(
1− 1.6

ñ1

)ñ1

−3.7808
(

1− 1.6
ñ1

)ñ1−1]
(12)

= h(l, ñ1) (say).

Proposition 2: h(l, ñ1)≥ 1.4221l for l ≥ 4.

The proof of Proposition 2 is relegated to the Appendix.
Assuming that l ≥ 4 (which would most likely be the case in
practice), Proposition 2 shows that whenever ñ1≥ 1.6l, E(K)+
2E(R)≥ 1.4221l > l−2, and hence the condition in (5) is not
met and doing separate trials for each type of nodes takes less
time on average than using the 3-stage technique in phase 2 of
the proposed scheme.

In summary, the analysis of Cases I and II shows that when
ñ1 ≤ 0.864l (respectively, ñ1 ≥ 0.883l), the 3-stage technique
takes less (respectively, more) time on average than doing
separate trials for each type of node in phase 2 of the proposed
scheme. It is unclear from the analysis as to which technique
takes less time when ñ1 ∈ (0.864l,0.883l). This question is
addressed via simulations in Section IV.

IV. Simulations

In this section, we evaluate the performance of the proposed
node cardinality estimation scheme via simulations. Through-
out, we assume that the targeted accuracy is δ = 0.2.

In Figs. 5a and 5b, the average number of slots required
in the second phase of the proposed scheme when the 3-stage
technique is used is plotted versus n2 and n3 for n1 = 1500 and
n1 = 4000 respectively. It can be seen that in Fig. 5a, for all the
values of n2 and n3 considered, the 3-stage technique takes less
time than doing separate trials (which takes 3l = 9027 slots).
Also, in Fig. 5b, the 3-stage technique takes more time than
doing separate trials. Since 1500 < 0.864×3009 and 4000 >
0.883×3009, these observations are consistent with the result
derived in Section III-C that for ñ1≤ 0.864l (respectively, ñ1≥
0.883l), the 3-stage technique takes less (respectively, more)
time than doing separate trials.

Fig. 6a (respectively, Fig. 6b) shows the number of slots
required in the second phase of the proposed scheme when
the 3-stage technique is used and when separate trials are
used versus n1 (respectively, n2) for three different pairs of
values of n2 (respectively, n1) and n3. It can be seen that
for each set of values of n2 (respectively, n1) and n3, the
number of slots required by the 3-stage technique increases in
n1 (respectively, n2); this is because the number of collisions in
stage 1 increases. Also, as n2 (respectively, n1) and n3 increase,
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Figure 7: Plot (a) shows n∗1/l versus l and the two bounds 0.864 and 0.883 in
Proposition 1. Plot (b) shows the average number of slots required by the proposed
scheme and by the scheme in which three separate executions of the SRCS scheme are
used. In both plots, the following parameters are used: ε = [0.02,0.03,0.04,0.05] and
corresponding l = [6638,3009,1674,1075] [16].

0
0.5

1
1.5

2

x 10
4

0

1

2

x 10
4

6500

7000

7500

8000

n
2

Number of slots required for n
1
 = 1500

n
3

N
u

m
b

er
 o

f 
sl

o
ts

(a)

0
0.5

1
1.5

2

x 10
4

0

1

2

x 10
4

9000

9500

10000

10500

n
2

Number of slots required for n
1
 = 4000

n
3

N
u

m
b

er
 o

f 
sl

o
ts

(b)
Figure 5: These plots show the average number of slots required in the second phase of
the proposed scheme when the 3-stage technique is used for n1 = 1500 and n1 = 4000.
The following parameters are used: ε = 0.03 and l = 3009.
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Figure 6: These plots show the average number of slots required in the second phase of
the proposed scheme when the 3-stage technique is used and when separate trials are
used for different values of n1, n2 and n3. The following parameters are used: ε = 0.03
and l = 3009.

the number of slots required by the 3-stage technique increases;
again, this is because the number of collisions increases.

Next, for given values of n2 and n3, let n∗1 be the value
of n1 for which the 3-stage technique and doing separate
trials require equal numbers of slots to execute on average
in the second phase of the proposed scheme; note that the
value of n∗1 can be obtained by using a plot such as Fig. 6a
and noting the value of n1 at which the curve for the 3-
stage technique intersects the horizontal line corresponding to
doing separate trials. Fig. 7a shows a plot of n∗1/l versus l
for two different pairs of values of n2 and n3. It can be seen
that 0.864 < n∗1/l < 0.883 for all values considered, which
is consistent with the result derived in Section III-C that for
ñ1 ≤ 0.864l (respectively, ñ1 ≥ 0.883l), the 3-stage technique
takes less (respectively, more) time than doing separate trials.
Also, by using a plot such as Fig. 7a, we can find out n∗1,
using which we can in turn find out, for given values of ñ1, ñ2
and ñ3, whether using the 3-stage technique or separate trials

would take fewer slots in the second phase in practice– note
that if ñ1 < n∗1 (respectively, ñ1 > n∗1), the 3-stage technique
(respectively, separate trials) would take fewer slots.

Fig. 7b shows the total number of slots required (in both
phases) by the scheme proposed in this paper and by the
scheme in which three separate executions of the SRCS scheme
are used for estimating the node cardinalities of the three
types of nodes versus the relative error ε for two different
sets of values of n1,n2 and n3. It can be seen that for all
the values considered, the total number of slots required by
the proposed scheme is much lower than that required by the
scheme that uses separate executions; this shows the efficacy
of the proposed scheme.

V. Conclusions and Future Work

We designed an estimation scheme for rapidly obtaining
separate estimates of the number of active nodes of each type
in a heterogeneous M2M network with three types of nodes.
Our scheme consists of two phases; we analytically derived
a condition that can be used to decide as to which of two
possible approaches is to be used in the second phase. Using
simulations, we showed that our proposed scheme requires
significantly fewer time slots to execute compared to separately
executing the underlying estimation protocol, SRCS [16], for
homogeneous networks thrice, even though both these schemes
obtain estimates with the same accuracy. In this paper, we
considered a heterogeneous M2M network with three types
of nodes. A direction for future research is to generalize our
scheme to estimate the node cardinalities of each node type in
a heterogeneous M2M network with T types of nodes, where
T ≥ 2 is an arbitrary integer.
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Appendix

Proof of Proposition 1: Consider

2.7743
(

1− 1
l

)ñ1
+2.3630 ñ1

l

(
1− 1

l

)ñ1−1

= 2.7743
(

1− 1
l

)ñ1
+2.3630

ñ1
l

(
1− 1

l

)ñ1

1− 1
l

≥ 2.7743
(

1− 1
l

)ñ1
+2.3630 ñ1

l

(
1− 1

l

)ñ1
(13)

Let ñ1 = xl. Then the quantity in (13) equals:
(1− 1

l )
xl(2.7743 + 2.3630x). Now, it can be easily shown

that the function g(l) = (1− 1
l )

l is increasing in l. Since
l ≥ 100, g(l) ≥ g(100) = 0.366. Hence, the quantity in (13):
≥ (0.366)x(2.7743+2.3630x) = f (x) (say).

It can be easily shown that: f ′(x) = −(0.366)x(0.4255+
2.3751x) < 0, ∀x > 0. So f (x) is a decreasing function for
x > 0. Also, f (0.864) = 2.021 ≥ 2 + 2/l (since l ≥ 100).
Hence, for x≤ 0.864, f (x)≥ 2.021. It follows that the quantity
in (13) is ≥ 2.021 for x≤ 0.864, or equivalently, ñ1 ≤ 0.864l.
Hence, inequality (11) holds for ñ1 ≤ 0.864l and l ≥ 100.

Next, consider

2.7743
(

1− 1
l

)ñ1
+2.3630

ñ1
l

(
1− 1

l

)ñ1

1− 1
l

≤ 2.7743
(

1− 1
l

)ñ1
+2.3630

ñ1
l

(
1− 1

l

)ñ1

0.99
(since l ≥ 100)

= 2.7743
(

1− 1
l

)ñ1
+2.3869

ñ1

l

(
1− 1

l

)ñ1

=
(

1− 1
l

)xl(
2.7743+2.3869x

)
(14)

Now, g(l) = (1− 1
l )

l < g(∞) = e−1 = 0.3679. Hence, the
quantity in (14): < (0.3679)x(2.7743+2.3869x) = f1(x) (say).
Now, it is easy to show that f ′1(x) = −(0.3679)x(0.3874 +
2.3869x)< 0,∀x> 0. So f1(x) is decreasing function for x> 0.
Also, f1(0.883) = 2.019 < 2.02 ≤ 2 + 2/l (since l ≥ 100).
Hence, for x ≥ 0.883, f1(x)< 2+2/l. Hence, inequality (11)
does not hold when 0.883l ≤ ñ1 < 1.6l.

Proof of Proposition 2: It is easy to show that (1− 1.6
ñ1
)ñ1

is increasing in ñ1 and its maximum value is e−1.6 at ñ1=∞.
Also,

(1− 1.6
ñ1

)ñ1−1 =
(1− 1.6

ñ1
)ñ1

1− 1.6
ñ1

≤ e−1.6

1− 1.6
ñ1

≤ e−1.6

1− 1
l

(since ñ1 ≥ 1.6l)

≤ e−1.6

1− 1
4

(since l ≥ 4).

= 0.2692

Hence, h(l, ñ1)≥ l[3−2.7743×e−1.6−3.7808×0.2692] =
1.4221l.


