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Complexity Analysis, Potential Game Characterization and
Algorithms for the Inter Cell Interference Coordination with Fixed

Transmit Power Problem
Vaibhav Kumar Gupta, Ashwathi Nambiar and Gaurav S. Kasbekar

Abstract—We study the Inter Cell Interference Coordination
(ICIC) problem in a multi-cell OFDMA based cellular network
employing universal frequency reuse. In each cell, only a subset
of the available subchannels are allocated to mobile stations (MS)
in a given time slot so as to limit the interference to neighboring
cells; also, each base station (BS) uses a fixed transmit power
on every allocated subchannel. The objective is to allocate the
available subchannels in each cell to the MSs in the cell for
downlink transmissions taking into account the channel qualities
from BSs to MSs as well as traffic requirements of the MSs
so as to maximize the weighted sum of throughputs of all the
MSs. First, we show that this problem is NP-Complete. Next, we
show that when the potential interference levels to each MS on
every subchannel are above a threshold (which is a function of
the transmit power and the channel gain to the MS from the
BS it is associated with), the problem can be optimally solved
in polynomial-time via a reduction to the matching problem in
bipartite graphs. We also formulate the ICIC problem as a non-
cooperative game, with each BS being a player, and prove that
although it is an ordinal potential game in two special cases,
it is not an ordinal potential game in general. Also, we design
two heuristic algorithms for the general ICIC problem: a greedy
distributed algorithm and a simulated annealing (SA) based
algorithm. The distributed algorithm is fast and requires only
message exchanges among neighboring BSs. The SA algorithm
is centralized and allows a tradeoff between quality of solution
and execution time via an appropriate choice of parameters. Our
extensive simulations show that the total throughput obtained
using the better response (BR) algorithm, which is often used in
game theory, is very small compared to those obtained using the
SA and greedy algorithms; however, the execution time of the BR
algorithm is much smaller than those of the latter two algorithms.
Finally, the greedy algorithm outperforms the SA algorithm in
dense cellular networks and requires only a small fraction of
the number of computations required by the latter algorithm for
execution.
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I. INTRODUCTION

Modern cellular systems, including those based on the
3GPP Long Term Evolution Advanced (LTE-A) [9] and IEEE
802.16 [13] standards, are based on Orthogonal Frequency
Division Multiple Access (OFDMA) technology, and are often
deployed with universal frequency reuse, wherein the entire
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available spectrum is reused in every cell. In addition, dense
deployments of a large number of small cells are often used to
enhance capacity resulting in high inter cell interference [20].
Thus, avoidance of inter cell interference is an important
challenge 1 in these networks.

Interference avoidance techniques can be broadly classified
into (i) static schemes, wherein the available frequency band
is divided into sub-bands, with different sub-bands being
statically assigned to different cells (the frequency reuse factor
is greater than 1 and possibly fractional), and (ii) dynamic
schemes, wherein frequency resources are assigned to different
cells in real-time [16]. An important class of dynamic schemes,
which are the focus of this paper, are Inter Cell Interfer-
ence Coordination (ICIC) techniques, in which different base
stations (BS) coordinate among themselves and restrict the
transmit power used on a subset of the OFDMA subcarriers in
each cell so as to limit interference to neighboring cells [16].

In particular, the available spectrum is divided into groups
of consecutive OFDMA subcarriers, each of which is called a
subchannel and constitutes the basic unit of resource allocation
in a time slot [29]. The ICIC problem is to decide what
restrictions on transmit power to apply on various subchan-
nels in different cells, taking into account the current traffic
requirements of mobile stations (MS) in each cell as well as
channel qualities (gains) from BSs to MSs in the current time
slot, so as to achieve some objective such as maximization
of sum of throughputs of MSs across the network, fairness
etc [16], [29]. Two variants of this problem have been widely
studied in the literature: (i) a BS may select any transmit power
level from a range of power levels on a given subchannel and
allocate the subchannel to any MS in its cell [26], [30], and (ii)
each BS uses a fixed transmit power level on each subchannel
that is allocated to a MS and 0 transmit power on the other
subchannels, so that the problem becomes that of deciding,
for each subchannel, which MS to allocate it to, if any, in
each cell [5], [18], [29]. We refer to problem (i) (respectively,
(ii)) as the ICIC with variable (respectively, fixed) transmit
power problem. Although the ICIC with variable transmit
power model allows a more flexible allocation than the ICIC
with fixed transmit power model, the latter is simpler, easier
to implement, and its performance loss can be negligible
relative to the former especially for dense deployments of
BSs [14], [16], [31]. Hence, we focus on the ICIC with fixed
transmit power problem in this paper.

1Although it is expected that in 5G cellular networks, mmWave spectrum
will be used, on which communication will take place using highly directional
antennas, which reduces the amount of inter-cell interference, it is likely that
lower-frequency bands will continue to be used in the future (e.g., to achieve
wide coverage, support high mobility users etc), on which a large amount of
inter-cell interference can potentially take place [2].
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The novel contributions of this paper are as follows:

• We provide a proof of NP-Completeness of the ICIC
with fixed transmit power problem with the objective of
maximizing the weighted sum of throughputs of all the
MSs in the network.

• We show that when the potential interference levels to
each MS on every subchannel are above a threshold,
the ICIC with fixed transmit power problem can be
optimally solved in polynomial time.

• We formulate the ICIC problem as a non-cooperative
game with each BS being a player, and show that
although two special cases of this game are ordinal
potential games, the game is not an ordinal potential
game in general, which is surprising given the results in
prior work [1], [6], [8], [12], [34]–[36].

• We design two low complexity heuristic subchannel
allocation algorithms for the ICIC problem– a distributed
greedy algorithm and a simulated annealing (SA) based
algorithm– and evaluate the performance of these two al-
gorithms and the better response (BR) algorithm, which
is often used in game theory, via extensive simulations.

We now describe our contributions in detail. First, from the
results in [11], [22], it follows that the ICIC problem with
the objective of maximizing the weighted sum of throughputs
of MSs is NP-hard under the variable transmit power model.
Intuitively, the ICIC with fixed transmit power problem seems
to be a simpler problem than the ICIC with variable transmit
power problem since the transmit powers that each BS uses
on different subchannels are decision variables in the latter
problem, but are constants in the former problem. In prior
work, the similarity of the ICIC with fixed transmit power
problem to various NP-hard problems (e.g., 3D matching [29])
has been pointed out, or it has been noted that the problem
is a special case of the integer programming problem that is
in general NP-hard [5], [18]. However, note that this does
not imply that the ICIC with fixed transmit power problem
is NP-hard. To the best of our knowledge, a formal proof
of NP-hardness has not been provided in prior work. In
this paper, we provide a rigorous proof of the fact that the
ICIC with fixed transmit power problem with the objective
of maximizing the weighted sum of throughputs of all MSs
in the network is NP-Complete. In fact, we show that even
the special case of this problem wherein there is only one
subchannel and only one MS associated with each BS is NP-
Complete (see Section IV-A). This result and its proof provide
insight into the structure of the ICIC with fixed transmit power
problem, which would be useful to future work on the design
of approximation algorithms with a guaranteed approximation
ratio for the problem.

Next, we show that when the potential interference levels to
each MS on every subchannel are above a threshold (which is a
function of the transmit power and the channel gain to the MS
from the BS it is associated with), the ICIC with fixed transmit
power problem can be optimally solved in polynomial-time
via a reduction to the matching problem in bipartite graphs
(see Section IV-B). The above threshold turns out to be a
decreasing function of the transmit power that each BS uses
on a subchannel allocated to one of its MSs, and approaches 0
as the transmit power goes to ∞. Equivalently, if the transmit

power is above a threshold, which is a function of the channel
gains (which can be arbitrary), the ICIC with fixed transmit
power problem can be optimally solved in polynomial-time.
This shows that if sufficiently high transmit powers are used,
then the ICIC with fixed transmit power problem is solvable
in polynomial-time, which is a surprising result given the fact
that this problem is NP-complete in general (see the previous
paragraph).

Now, since the general ICIC with fixed transmit power prob-
lem is NP-Complete, we seek efficient algorithms to obtain
an approximate solution of this problem. Game theory [23]
is a promising tool which was used to design distributed
algorithms for solving various versions of the ICIC problem in
prior literature (see Section II). Specifically, the problem was
formulated as a non-cooperative game in which each BS is a
player and an action of a BS is an allocation of subchannels
to MSs associated with it [23]. Distributed iterative algorithms
were devised to obtain a pure strategy Nash equilibrium
(PSNE) [23] of the game, which often approximately maxi-
mizes the objective function [6], [8], [34]–[36]. The iterative
best/ better-response dynamics are frequently used in game
theory to reach a PSNE [6], but they are not guaranteed
to converge in general. Nonetheless, they are guaranteed to
converge for specific classes of games, such as potential
games [25]. It has been proved in [1], [6], [8], [12], [34]–[36]
that the subchannel allocation game corresponding to the ICIC
problem with different objective functions is a potential game
and therefore, the simple better response (BR) algorithm can
be used to find a PSNE of the game, which is an approximate
solution of the ICIC problem (see Section II). In most of the
above papers, the objective function (cost) is a measure of the
total inter-cell interference in the network; however, note that
this objective function does not directly map to the Quality
of Service (QoS) experienced by the MSs. Also, frequency
selective channel gains are not considered in most of the above
papers. On the other hand, in this paper, the objective function
is the weighted sum of throughputs of all the MSs in the
network, which directly maps to the QoS they experience;
also, our model includes frequency selective channel gains (see
Section III). In Section V, we study the subchannel allocation
game corresponding to the ICIC with fixed transmit power
problem with the objective of maximizing the weighted sum
of throughputs of all the MSs in the network. To the best of our
knowledge, the question of whether this game is a potential
game has not been resolved in prior work; we show that it is
not a potential game in general, which is surprising given the
results in [1], [6], [8], [12], [34]–[36]. Nonetheless, we show
that some special cases of the above game are potential games.
Since the above game is not a potential game in general, the BR
algorithm is not guaranteed to converge to a PSNE. We study
the convergence probability of the BR algorithm to a PSNE
through simulations in Section VII-A. Our simulation results
show that the convergence probability of the BR algorithm to
a PSNE decreases as the number of MSs, BSs or subchannels
is increased.

The fact that the BR algorithm is not guaranteed to converge
to a PSNE motivates us to seek other algorithms to solve the
ICIC with fixed transmit power problem with the objective of
maximizing the weighted sum of throughputs of all the MSs
in the network. Accordingly, we design two low complexity
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heuristic subchannel allocation algorithms for this problem– a
distributed greedy algorithm and a simulated annealing based
algorithm (see Section VI). The greedy algorithm is fast and
requires direct connections among only neighboring BSs (over
which messages are exchanged 2 during the execution of the
algorithm). Also, it is flexible in that it can be implemented
irrespective of how many other BSs a given BS is directly
connected to; our simulation results show that the perfor-
mance of the algorithm improves as the numbers of directly
connected BSs of different BSs in the network increase (see
Section VII-B). The simulated annealing (SA) based algorithm
is centralized and can be implemented if a central entity (e.g.,
radio network controller [18]) to which all the BSs in the
network are directly connected is available. This algorithm
allows a tradeoff between quality of the obtained solution
and execution time by means of an appropriate choice of
parameters. Also, we compare the performance of the BR
algorithm, greedy algorithm and SA algorithm via simulations
in Section VII-C. Our simulation results show that the total
throughput obtained by the BR algorithm is very small com-
pared to those obtained using the SA and greedy algorithms;
however, the execution time of the BR algorithm is much
smaller than those of the latter two algorithms. Finally, the
greedy algorithm outperforms the SA algorithm and uses only
a small fraction of the number of computations in dense
cellular networks (see Section VII-C).

The rest of the paper is organized as follows. Section II
provides a review of related research literature. We describe
the system model and problem definition in Section III. The
complexity of the problem defined in Section III is analyzed
in Section IV. In Section V, the ICIC problem is formulated
as a non-cooperative game and the question of whether this
game is a potential game is investigated. In Section VI,
we propose two heuristic algorithms for the ICIC problem.
Section VII provides performance evaluation results obtained
via simulations, and we conclude the paper in Section VIII.

II. RELATED WORK

We now briefly review prior literature on the ICIC problem;
see [16], [20] for detailed surveys. The ICIC with variable
transmit power problem is considered in [26], [30], [33]. How-
ever, as explained in Section I, our model differs from the ICIC
with variable transmit power model in [26], [30], [33] since
the transmit power on each allocated subchannel is assumed
to be fixed. The ICIC with fixed transmit power problem was
studied in [5], [18], [29]. A centralized graph-based algorithm
for the downlink allocation problem is presented in [5]. In [18],
a two-level scheme is developed, in which the algorithm for
radio resource allocation is partly run at a central controller
and partly at BSs. In [29], a two-level scheme that seeks
to improve the throughput of cell-edge users is presented.

2Note that under our proposed greedy, simulated annealing based and BR
algorithms, some channel gain and other information is exchanged among
neighboring BSs or between the BSs and a central controller. This is because
if no coordination among different BSs were used, then there would be a
large amount of inter-cell interference resulting in poor network performance.
Hence, most algorithms proposed in prior research literature to solve the ICIC
problem (e.g., those in [1], [3], [7], [8], [12], [24], [32], [35]) also require the
channel gain information and other information to be shared among different
BSs.

However, in all of the above papers [5], [18], [29], some or
all of the allocation decisions are taken at a central controller
that is connected to all the base stations; our greedy and BR
algorithms do not require the availability of such a controller.

A distributed ICIC scheme to maximize the critical and
overall performance of a multi-cell system was proposed
in [17]. The throughput maximization problem using inter-
ference avoidance through ICIC was formulated as a com-
plex optimization problem. This optimization problem was
decomposed into two sub-problems, viz., user allocation and
inter-cell restriction, which are solved at eNodeB (eNB) level
and central controller level respectively. A linear programming
relaxation by rounding the solution to the nearest binary
value was used to solve the inter-cell restriction sub-problem.
Since a network controller is required, the proposed scheme
in [17] is not a fully distributed scheme. In contrast, our
greedy and BR algorithms are fully distributed because no
such network controller is required. A multi-cell resource
allocation problem to maximize the weighted sum rate of
user terminals using ICIC was studied in [3]. A relaxed
linear programming problem corresponding to this problem
was formulated. A primal-decomposition based scheme was
proposed to decompose the formulated problem into a master
problem and multiple sub-problems. The master problem was
solved using projected-subgradient method. The other sub-
problems were transformed into an equivalent minimum-cost
network flow (MCNF) optimization problem and network flow
based algorithms were used to solve them. In the proposed
algorithm, each user terminal reports the channel gains from
its associated BS and from its first tier interfering BSs to its
associated BS. Also, in each iteration of the proposed scheme,
each BS needs to exchange the N subgradient values obtained
by primal-decomposition and N binary variable values with its
neighboring BSs, where N is the number of resource blocks.
The ICIC with fixed transmit power problem was considered
in [3], [17]. However, no proof was provided to show that
this problem is NP-hard. In contrast, a rigorous proof of the
fact that the ICIC with fixed transmit power problem is NP-
complete is provided in this paper. A joint optimization of user
BS association and subchannel and transmit power allocation
to different users for ICIC in the downlink of heterogeneous
networks was studied in [7]. A factor graph model was used to
decompose the overall optimization problem into multiple local
maximization problems. A belief propagation (BP) algorithm
was proposed to solve the local maximization problems by
converting them into marginal distribution estimation prob-
lems. In each iteration of the BP algorithm, each BS exchanges
the mean and variance of the variable to be optimized with its
neighboring BSs. To reduce the computational complexity, a
Gaussian approximation was used to calculate the intercell
interference. In contrast, we have used exact intercell interfer-
ence without any approximation.

A joint user association and downlink interference manage-
ment problem in two-tier heterogeneous networks was studied
in [19]. An optimization problem to maximize the network
utility over user association and resource partitioning was
formulated and an algorithm was proposed to obtain an integer
solution. The algorithm can be implemented in a centralized
or semi-distributed manner. In contrast, our proposed greedy
algorithm is completely distributed. In [24], a scheduler
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that performs dynamic fractional frequency reuse (FFR) while
maximizing the sum throughput of the cell users in an LTE-A
network was proposed. In each scheduling interval, vulnerable
user protection bitmaps are exchanged between an eNodeB and
its neighboring eNodeBs to avoid interference. In contrast
to dynamic FFR, we consider universal frequency reuse in
this paper. A centralized and a distributed dynamic ICIC
algorithms were proposed for LTE-A networks in [32]. The
expected resource usage of a BS needs to be shared for taking
muting decisions. In the centralized scheme, BSs exchange this
information with the central controller while in the distributed
scheme, this information is exchanged among BSs.In the model
in [32], the transmit powers are decision variables, whereas
it is fixed in our model.

Recently, the problem of allocation of subchannels to miti-
gate inter-cell interference has been extensively studied using
the theory of potential games [25]. The ICIC problem in
the downlink of an OFDMA cellular system was addressed
in [1]. The problem was modelled as a non-cooperative game
in which BSs are the players, selecting a subset of the available
resource blocks (RBs) is the strategy of a player and the cost
function of a BS is the total delay experienced by the BS to
transmit data over the assigned RBs to its associated MSs.
This game was shown to be an exact potential game. Two
iterative distributed algorithms were proposed to reach a pure
strategy Nash equilibrium (PSNE). Potential game theory was
used in [6], but it was in the context of database-assisted white-
space spectrum sharing not ICIC. The problem was modelled
as a non-cooperative game with each access point as a player;
selecting a subset of channels from the available set of TV
channels was the strategy of a player and downlink throughput
was the utility of a player. It was shown that the above non-
cooperative channel selection game is a potential game and
hence has a PSNE and the best response update algorithm was
used to find a PSNE. In [8], a distributed channel allocation
algorithm was proposed for the ICIC problem. A channel
allocation game was formulated with each BS as a player,
the set of orthogonal frequency channels as the action set of
a player and the utility function of a player as the negative
of the total interference experienced by the player. The game
was proved to be an exact potential game. A deterministic best
response and a probabilistic better response algorithm were
proposed to obtain a PSNE of the game. In [34], downlink
interference avoidance by distributed channel selection in
heterogeneous small cell networks was studied. The channel
selection problem was modelled as a stochastic game with
each femtocell BS as a player, the selection of a subset of the
set of available channels as the strategy of the player and the
negative of the total interference received by a player from
other femtocell BSs and the macro BS as the utility function
of the player. The game was proved to be an exact potential
game. A fully distributed, no-regret learning algorithm was
used to obtain a PSNE of the game. To mitigate the inter-cell
interference, a novel BS coordination method was proposed
in [35]. The problem of network sum-throughput maximization
through intercell interference mitigation was formulated as a
local cooperation game with each BS as a player. The strategy
of a player consists of joint subchannel and power allocation
in its own cell. Mean opinion score (MOS), a new metric, was
the utility function of a player. The above game was shown to
be an exact potential game and a γ-logit based decentralized

iterative algorithm was proposed to obtained a PSNE of the
game. In each iteration of the proposed algorithm, each BS
exchanges information with its neighboring BSs to calculate
its current utility. A channel selection problem for interference
mitigation in spectrum access networks was formulated as
a stochastic game in [36]. Each communication node was a
player and the available set of channels was the action set
of each player. The expected utility function of a player was
defined to be a constant minus the interference experienced by
the player. The game was proved to be an exact potential game.
A stochastic learning automata (SLA) based dynamic channel
selection algorithm was proposed to find a PSNE of the game.
However, it was assumed that only BSs that are within a certain
range of a given BS can cause interference to users of that
BS. In contrast, in our work interference is not range limited,
i.e., a BS at any distance causes interference to another BS
that is using the same subchannel. A semi-static ICIC scheme
was proposed in [12], which involves two algorithms: intercell
primary subchannel self-configuration and intracell resource
allocation. The primary subchannel coordination problem was
formulated as a non-cooperative game with each femtocell
access point (FAP) as a player; selecting a subset of subchan-
nels from the available set of subchannels was the strategy
of a player and the sum of the interference caused to its
neighboring FAPs and the received interference was the utility
of a player. The game was shown to be an exact potential
game. Frequency selective channel gains were not considered
in [1], [6], [8], [35]. In contrast, the model in this paper takes
into account frequency selective channel gains. Also, the utility
function of a player (BS) in the channel allocation game was
considered to be the total time delay experienced by the BS to
transmit the data in [1], the negative of the total interference
received at the BS in [6], [12], [34], [36] and MOS in [35].
In contrast, we have considered the total throughput of all the
MSs associated with a BS to be its utility function. We show
that the game in this paper is not a potential game in general,
which is surprising, since the games in [1], [6], [8], [12], [34]–
[36], which are similar, are potential games 3.

III. MODEL AND PROBLEM DEFINITION

Consider a multicell OFDMA based cellular network and
let B denote the set of all base stations (BS). The set of
all OFDMA subcarriers is divided into groups of consecutive
subcarriers referred to as subchannels, which have equal band-
width, and are used as the basic units for resource allocation.
Let N = {1, . . . , N} be the set of all available subchannels.
We assume that universal frequency reuse is used; thus, a
given subchannel in N may potentially be used by any subset
of the BSs in B simultaneously. Let 4 Ma be the set of
mobile stations (MS) associated with BS a ∈ B, |Ma| =Ma,
M = ∪a∈BMa be the set of all MSs and M =

∑
a∈BMa be

the total number of MSs in the network.

3Note that within the class of subchannel allocation games corresponding
to the ICIC problem with different objective functions, the property of being
a potential game is a common characteristic, and hence our proof that the
subchannel allocation game corresponding to the ICIC with fixed transmit
power problem with the objective of maximizing the weighted sum of
throughputs of all the MSs in the network is not a potential game is surprising.

4|A| denotes the cardinality of a set A.
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For concreteness, we consider the problem of allocating
subchannels to MSs for downlink transmissions in a given
time slot. We model the traffic requirements of different MSs
in the time slot under consideration as follows. Let wa,j ,
a ∈ B, j ∈Ma denote the weight of MS j associated with BS
a. It is a non-negative number and is a measure of the priority
of the downlink traffic intended for MS j. Weights may be
assigned to MSs so as to achieve various objectives, e.g.: (i)
MSs to which delay-sensitive traffic (e.g., voice, video) is to
be sent may be assigned higher weights than those to which
elastic traffic (e.g., file transfer) is to be sent, (ii) weights may
be selected to be proportional to the lengths of data packet
queues waiting to be transmitted to MSs, (iii) weights may
be assigned so as to achieve fairness across MSs by assigning
high weights to MSs that have received low bandwidth in the
recent time slots and vice-versa.

Let zna,j equal 1 if subchannel n is allocated to MS j ∈Ma

and 0 otherwise and Z = {zna,j : a ∈ B, j ∈ Ma, n ∈ N}
denotes the overall allocation. Let

yna =
∑
j∈Ma

zna,j . (1)

We assume that within each cell a, a given subchannel n
is allocated to at most one MS so as to avoid intra-cell
interference; thus, we get the constraint:

yna ∈ {0, 1}, ∀a ∈ B, n ∈ N . (2)
Note that yna equals 1 if BS a assigns subchannel n to one of
its MSs and 0 otherwise.

If zna,j = 1 for some a ∈ B, j ∈ Ma, n ∈ N , then the BS
a uses a fixed transmit power P on subchannel n; otherwise,
the transmitted power is 0. Let N0 be the noise power per
subchannel. We assume that the bandwidth of each subchannel
n ∈ N is smaller than the channel coherence bandwith, so that
fading is approximately flat on each subchannel. Let Hn

a,j be
the channel gain from BS a to MS j on subchannel n in the
time slot under consideration 5. The channel gains {Hn

i,j :
i ∈ B, j ∈ M, n ∈ N} can be estimated using cell-specific
reference signals that are orthogonal across cells [16] and their
knowledge can be used in the resource allocation process.

We define a feasible allocation to be an allocation Z =
{zna,j : a ∈ B, j ∈ Ma, n ∈ N} that satisfies (1) and (2).
Also, we define the utility of the network under a feasible
allocation Z to be the weighted sum of throughputs of MSs:

U(Z) =

∑
a∈B

∑
j∈Ma

∑
n∈N

zna,jwa,j log

1 +
PHn

a,j

P
∑

i∈B,i6=a

Hn
i,jy

n
i +N0

 .

(3)
Note that as a normalization, the bandwidth of each subchannel
is taken to be unity and the throughput of each MS j ∈ Ma

is assumed to be the Shannon capacity of the channel from
a to j. Let Z denote the set of all feasible allocations. Our
objective is to find a utility-maximizing feasible allocation Z:

5The duration of a time slot is selected to be some value that is less than
the channel coherence time, so that channel gain values are approximately
constant in a time slot.

Problem 1: Find an allocation Z ∈ Z that maximizes the
utility in (3).

For later use, let:

Un(Z) =
∑
a∈B

∑
j∈Ma

zna,jwa,j log

1 +
PHn

a,j

P
∑

i∈B,i6=a

Hn
i,jy

n
i +N0

 .

(4)
denote the contribution of subchannel n to the utility U(Z) in
(3). Note that:

U(Z) =
∑
n∈N

Un(Z). (5)

Remark 1: For ease of exposition, in the above formulation,
we have assumed that each MS requires one subchannel per
slot. Our formulation and results can be readily generalized
to the case where different MSs may require different and
arbitrary numbers of subchannels in a slot as follows. The
number of subchannels needed by a MS, i.e., the demand, is
modelled with the help of “virtual MSs”. In particular, if a MS
needs m ≥ 0 subchannels, then it is represented by m virtual
MSs and one subchannel needs to be assigned to each virtual
MS. Note that depending on its demand, different weights may
be assigned to the virtual MSs corresponding to a given MS.
However, all the virtual MSs corresponding to a given MS
j ∈ Ma have the same channel gains {Hn

i,j : i ∈ B, n ∈
N}. All our results apply without change if MSs in the above
formulation are replaced with virtual MSs.

IV. COMPLEXITY

A. NP-Completeness of the General Problem

The decision version of Problem 1 is as follows: given a
number D, does there exist a feasible allocation Z such that
U(Z) ≥ D? The following result shows the NP-Completeness
of (the decision version of) Problem 1.

Theorem 1: Problem 1 is NP-Complete.
Proof: Given an allocation Z, we can check in

polynomial-time using (1) and (2) whether Z is feasible. Also,
in polynomial-time, U(Z) can be found using (3) and it can
be checked whether U(Z) ≥ D. Thus, Problem 1 is in class
NP [15].

Now, we show that the Maximum Independent Set 6

(MIS) problem, which is known to be NP-Complete [15], is
polynomial-time reducible to Problem 1, i.e., MIS <p Prob-
lem 1. Consider the following instance of the MIS problem:
given a graph G = (V,E) with vertex set V and edge set E
and a positive integer k, does G contain an independent set of
size at least k?

From this instance, we construct the following instance of
Problem 1: suppose there is only one subchannel 7 (N = 1),
wa,j = 1 for all a ∈ B, j ∈Ma, and every BS has 1 associated
user (i.e., Ma = 1 for all a ∈ B). Corresponding to each node

6Recall that an independent set [15] in a graph is a set of nodes such that
there is no edge between any pair of nodes in the set.

7Since N = 1, we drop the superscript n (subchannel number) in the rest
of this proof for simplicity.
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u ∈ V , we have a BS u (i.e., B = V ). Let ju denote the
MS associated with BS u and (u, v) denote the edge between
nodes u and v, u 6= v. The channel gains are as follows:

Hu,ju = 1 ∀u ∈ V, (6)

Hu,jv = Hv,ju =

{
∞, if (u, v) ∈ E
0, else, ∀u, v ∈ V, v 6= u.

(7)
Let Z = {zu,ju ∈ {0, 1} : u ∈ V } be an allocation in the

above instance of Problem 1. By (1) and the fact that Mu = 1
for all u ∈ V , it follows that yu ∈ {0, 1} for all u ∈ V ; so (2)
is true. Thus, every allocation Z = {zu,ju ∈ {0, 1} : u ∈ V }
is feasible in the above instance.

Next, in the above instance of Problem 1, we ask: does
there exist a (feasible) allocation Z such that U(Z) ≥
k log

(
1 + P

N0

)
? We claim that the answer is yes if and only

if there exists an independent set of size at least k in G. To
show sufficiency, suppose there exists an independent set, I ,
of size k′ ≥ k in G. Then the following allocation:

zu,ju =

{
1, if u ∈ I,
0, else, (8)

has utility k′ log
(
1 + P

N0

)
by (3), (6) and (7), which shows

sufficiency. To show necessity, let Z = {zu,ju ∈ {0, 1} : u ∈
V } be an allocation such that:

U(Z) ≥ k log
(
1 +

P

N0

)
, (9)

and I = {u ∈ V : zu,ju = 1}. If there is an
edge between two nodes u, v ∈ I , then by (6) and
(7), it follows 8 that log

(
1 +

PHu,ju
P
∑
i∈V,i6=uHi,juyi+N0

)
=

log
(
1 +

PHv,jv
P
∑
i∈V,i 6=v Hi,jvyi+N0

)
= 0. By this fact and by (3),

it follows that:
U(Z′) = U(Z), (10)

where Z′ is the following allocation:

z′u,ju =

{
1, if u ∈ I ′,
0, else, (11)

and I ′ is the independent set obtained by dropping all nodes
u, v ∈ I such that there is an edge between u and v from I .
Let |I ′| = k′. Then:

U(Z′) = k′ log

(
1 +

P

N0

)
(12)

by (3), (6) and (7). By (9), (10) and (12), we get k′ ≥ k. Thus,
an independent set of size at least k exists in G, which shows
necessity. The result follows.

8Note that Hu,ju = 1 by (6). If there is an edge between u and v,
i.e., (u, v) ∈ E, then Hu,jv = Hv,ju = ∞ by (7). Also, since v ∈ I ,

yv = zv,jv = 1. Hence, log

(
1 +

PHu,ju
P
∑
i∈V,i 6=uHi,juyi+N0

)
=

log

(
1 +

PHu,ju
PHv,juyv+P

∑
i∈V,i 6=u,v Hi,juyi+N0

)
=

log

(
1 +

P (1)
P (∞)(1)+P

∑
i∈V,i 6=u,v Hi,juyi+N0

)
= 0. Similarly,

log

(
1 +

PHv,jv
P
∑
i∈V,i 6=v Hi,jv yi+N0

)
= 0.

Our proof of Theorem 1 in fact shows that even the special
case of Problem 1 wherein there is only one subchannel, every
BS has only 1 associated MS and all weights are unity is NP-
complete [10]:

Proposition 1: Problem 1 with N = 1, Ma = 1 for all
a ∈ B and wa,j = 1 for all a, j is NP-Complete.

B. Polynomial-Time Solution of the High Interference or
Transmit Power Case

Throughout this subsection, we assume that all channel gains
are positive, i.e., Hn

i,j > 0 for all i ∈ B, j ∈ M, n ∈ N .
However, the gains are allowed to be arbitrarily small, so this
is a mild assumption.

For BS a ∈ B, MS j ∈Ma and subchannel n ∈ N , let:

τ(a, j, n) =
PHn

a,j

N0
, (13)

and

β(a, j, n) =
minb∈B\{a}H

n
b,j

Hn
a,j

. (14)

Consider the following condition:
Condition 1:

β(a, j, n) >
1

log (1 + τ(a, j, n))
, (15)

for all a ∈ B, j ∈Ma and n ∈ N .
Theorem 2: When Condition 1 is satisfied, Problem 1 can

be optimally solved in O((M+N)3) time using the algorithm
in Fig. 1.

We now explain Condition 1 and Theorem 2. Note that
for a given MS j ∈ Ma and subchannel n ∈ N , β(a, j, n)
in (14) is the ratio of the smallest crosstalk coefficient Hn

b,j
across all BSs b other than the BS a to which MS j is
associated to the gain, Hn

a,j , from BS a to j on channel
n. Thus, β(a, j, n) is a measure of, and increasing in, the
strength of the potential 9 interference to MS j on subchannel
n relative to the signal from BS a. Condition 1 requires that
β(a, j, n) be above a threshold for all a, j and n, and hence
that the potential interference levels across all BSs, MSs and
subchannels be sufficiently high. Thus, Theorem 2 states that
when the potential interference levels are sufficiently high,
Problem 1 can be solved in polynomial-time.

Also, note that the threshold interference level,
1

log(1+τ(a,j,n)) , in Condition 1 is decreasing in τ(a, j, n)
and hence, by (13), in the transmit power P used by each BS
on a subchannel allocated to one of its MSs. In particular,
note that for fixed channel gains and noise level N0, the
threshold approaches 0 as P → ∞. Thus, Condition 1
becomes more relaxed as the transmit power level increases.
Also, note that for arbitrary channel gains Hn

i,j , i ∈ B,
j ∈ M, n ∈ N , there exists a threshold, say P0, such that if

9We say “potential” interference since this interference would be experi-
enced by MS j if subchannel n were allocated to it as well as to an MS of
a different cell.
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P ≥ P0, then Condition 1 is satisfied, and hence Problem 1
can be optimally solved in polynomial-time.

In practice, Condition 1 would hold in several of the time
slots in a scenario where there is a dense deployment of BSs
close to each other and high transmit powers are used and
hence, by Theorem 2, Problem 1 can be optimally solved in
polynomial-time using the algorithm in Fig. 1 in this case.

We prove Theorem 2 in the rest of this subsection– we now
outline the proof. First, in Section IV-B1, we consider the
idealized situation in which all the crosstalk coefficients are
∞, i.e., the following condition holds:

Condition 2: Hn
b,j =∞ and Hn

a,j are finite for all a, b ∈ B,
j ∈Ma, b 6= a.

In Section IV-B1, we show that when Condition 2 holds,
Problem 1 can be solved in O((M+N)3) time via a reduction
to the bipartite matching problem in graphs. Now, note that
Condition 1 holds whenever Condition 2 holds, but the former
is a much less stringent requirement. In Section IV-B2, we
show that the bipartite matching based algorithm provided in
Section IV-B1 in fact optimally solves Problem 1 even when
only Condition 1 holds.

1) Infinite Crosstalk Coefficients: Recall that a graph G =
(V,E) is said to be bipartite if its node set V can be partitioned
into two sets A and B such that every edge in E is between
a node in A and a node in B [15]. A matching T in a graph
G = (V,E) is defined to be a subset of the edges such that no
two edges in the subset share a common node [15]. The weight
of matching T is defined to be the sum of the weights of the
edges it contains, i.e., W (T ) =

∑
e∈T we, where we is the

weight of edge e [15]. The bipartite matching problem is the
problem of finding a matching with the maximum weight [15].

Consider Problem 1 under Condition 2. We now reduce this
problem to the bipartite matching problem. Let M (the set of
MSs) and N (the set of subchannels) be the two partitions in
a bipartite graph. Consider a MS j ∈ M and a subchannel
n ∈ N . Suppose j ∈ Ma, that is, j is associated with BS a.
Then we define the weight of the edge between nodes j and
n to be:

W (j, n) = wa,j log

(
1 +

PHn
a,j

N0

)
. (16)

Let Z1 ⊆ Z denote the set of all feasible allocations in
which each subchannel n ∈ N is assigned to at most one
MS, that is

∑
i∈B y

n
i ≤ 1, ∀n ∈ N . Given a matching T in

the above bipartite graph, consider a corresponding allocation
Z(T ) given by:

zna,j =

{
1, if (j, n) ∈ T,
0, else. (17)

Since T is a matching, it follows that Z(T ) ∈ Z1. Also,
given any Z1 ∈ Z1, there exists a unique matching T such
that Z(T ) = Z1. Thus, Z(T ) is a one-to-one correspondence
between the set Z1 and the set of all matchings in the
above bipartite graph. Also, by (16) and (3), the weight of
a matching equals the utility of the corresponding allocation,
i.e., W (T ) = U(Z(T )). Hence, if T ∗ is a maximum weight
matching, then the allocation Z(T ∗) is the allocation with the
highest utility in Z1.

It remains to show that Z(T ∗) is, in fact, the allocation with

the highest utility in Z . To this end, note that if in an allocation
Z ∈ Z , a subchannel n is allocated to two or more MSs, then
Un(Z) = 0 by (4) and Condition 2. Hence, if Z1 ∈ Z1 is the
allocation obtained from Z by deallocating each subchannel
n that was allocated to two or more MSs in Z from all the
MSs to which it was allocated, then U(Z1) = U(Z) by (5).
So it follows that under Condition 2, there exists a utility-
maximizing allocation in Z1.

Thus, when Condition 2 holds, the allocation Z(T ∗) corre-
sponding to the maximum weight matching T ∗ in the above
bipartite graph optimally solves Problem 1. A maximum
weight matching in a bipartite graph with k nodes can be found
in O(k3) time using the Hungarian algorithm [28]. Hence, the
matching T ∗ can be found in O((M +N)3) time.

Fig. 1 summarizes the algorithm for optimally solving
Problem 1 under Condition 2.

1: Consider the complete bipartite graph with partitionsM andN , and for j ∈ Ma ⊆
M, n ∈ N , weight of edge (j, n) given by (16).

2: Find a maximum weight matching T∗ in this graph using the Hungarian algorithm.

3: Return the allocation zna,j =

{
1, if (j, n) ∈ T∗,
0, else.

Fig. 1: The algorithm for optimally solving Problem 1 under
Condition 1.

2) Finite Crosstalk Coefficients: Recall from Section IV-B1
that the algorithm in Fig. 1 finds an allocation Z ∈ Z1 that
maximizes the utility in (3). To prove Theorem 2, consider
Problem 1 under Condition 1. Below, we start from an arbitrary
given feasible allocation Z ∈ Z , and from it, construct an
allocation Z1 ∈ Z1 by deallocating some MSs from one or
more subchannels if necessary, such that U(Z1) ≥ U(Z).
From this, it will follow that there exists an allocation in Z1

that maximizes the utility in (3), which will prove Theorem 2.
Note that by (5), to show that U(Z1) ≥ U(Z), it suffices to
show that:

Un(Z
1) ≥ Un(Z) ∀n ∈ N . (18)

Given Z = {zna,j : a ∈ B, j ∈ Ma, n ∈ N} ∈ Z , fix a
subchannel n that is allocated to at least one MS in Z and let:

(a∗, j∗) = argmax
a∈B,j∈Ma:zna,j=1

wa,j ×

log

(
1 +

PHn
a,j

P
∑
i∈B\{a}:yni =1H

n
i,j +N0

)
.(19)

Note that (a∗, j∗) is the (BS, MS) pair that has the largest
contribution to Un(Z) in the RHS of (4). Suppose kn MSs are
allocated subchannel n in the allocation Z, i.e.:

kn = |{i ∈ B : yni = 1}| . (20)
If kn ≥ 2, then in order to get the allocation Z1 from Z, we
deallocate all MSs other than j∗ from subchannel n 10. By (4),

10Similar deallocations of MSs from subchannels other than n are per-
formed.



8

(19) and (20), we get:

Un(Z) ≤ knwa∗,j∗ log

(
1 +

PHn
a∗,j∗

P
∑

i∈B\{a∗}:yni =1 H
n
i,j∗ +N0

)

≤ knwa∗,j∗ log

(
1 +

PHn
a∗,j∗

(kn − 1)PHn
b,j∗ +N0

)
(21)

where, Hn
b,j∗ = min

i∈B\{a∗}
Hn
i,j∗ . (22)

By (21), (22), (13) and (14), we get:

Un(Z) ≤

knwa∗,j∗ log

(
1 +

τ(a∗, j∗, n)

(kn − 1)β(a∗, j∗, n)τ(a∗, j∗, n) + 1

)
.

(23)

Now, we have the following technical result, whose proof is
relegated to our technical report [10] due to space constraints:

Lemma 1: Let τ and β be positive numbers such that β >
1

log(1+τ) and:

f(x) = x log

(
1 +

τ

(x− 1)βτ + 1

)
. (24)

Then f(x) ≤ f(1) for all real numbers x ≥ 1.
By (23), Condition 1 and Lemma 1, we get:

Un(Z) ≤ wa∗,j∗ log (1 + τ(a∗, j∗, n)) = Un(Z
1),

where the equality follows from (4), (13) and the fact that j∗
is the only MS to which subchannel n is allocated in Z1. This
proves (18) and completes the proof of Theorem 2.

V. POTENTIAL GAME CHARACTERIZATION

Our objective is to design distributed algorithms, in which
each BS separately allocates subchannels to its associated
MSs, for finding an approximate solution to Problem 1. To
this end, we formulate the problem as a non-cooperative
game [23] in which each BS is a player. The concept of a Nash
equilibrium (NE) [23] is widely used as a solution concept in
the analysis of non-cooperative games. Also, in prior work, for
several optimization problems that are similar to Problem 1,
it has been shown that a NE of the corresponding game
approximately maximizes or minimizes the objective function,
e.g., the negative sum of interference received by all the BSs is
approximately maximized in [8] and the cost function, which
is the total time delay experienced by a BS to transmit data, is
approximately minimized in [1]. Hence, instead of seeking an
allocation that maximizes the utility in (3), we seek a NE of
the game corresponding to Problem 1; specifically, we seek a
pure strategy Nash equilibrium (PSNE) [23], which is one in
which each player (BS) selects a single strategy (allocation of
subchannels to its associated MSs) with probability 1. Next,
we address the question of how to efficiently find a PSNE:
recall that if a game is a potential game [25], then the better
response (BR) algorithm [6] can be used to efficiently converge
to a PSNE. Also, several related games have been shown to
be potential games in [1], [6], [8], [12], [34]–[36]. Hence,
we investigate whether the game corresponding to Problem 1
is a potential game. Surprisingly, it turns out that the game

is not a potential game in general, in contrast to the results
in [1], [6], [8], [12], [34]–[36]; we provide a proof of this
fact. Also, we show that some special cases of the game are
potential games.

A. Problem Formulation

Recall that a game is any situation in which multiple indi-
viduals called players interact with each other, such that each
player’s welfare depends on the strategies of the others [23].
The utility of a player in a game is a numerical measure
of its satisfaction level [23]. In our context, each BS in the
set B is a player and let K = |B|. A strategy of BS i is
an allocation of subchannels to MSs associated with it. Let
zi = {zni,j : j ∈ Mi, n ∈ N} denote the strategy of BS i,
where zni,j is as defined in Section III. We refer to the vector
S = {z1, . . . , zK} of strategies of the players as a strategy
profile [23]. Also, recall that the objective of Problem 1 is to
find a feasible allocation that maximizes the weighted sum of
throughputs of all the MSs in the network. Hence, ua(S), the
utility of player (BS) a, is defined to be the weighted sum
of throughputs of the MSs associated with BS a under the
strategy profile S. That is:

ua(S) =
∑
j∈Ma

∑
n∈N

zna,jwa,j log

1 +
PHn

a,j

P
∑

i∈B,i6=a

Hn
i,jy

n
i +N0


(25)

We impose upper limits Q1, . . . , QK , where Qa is the
maximum number of MSs to which BS a is allowed to
allocate subchannels. These upper limits are necessary since
in their absence, each BS, being a selfish player in the above
game formulation, would allocate subchannels to as many of
its associated MSs as possible (specifically, to min(N,Ma)
MSs 11), resulting in high inter-cell interference and hence
low total throughput. In Section VII-A, we investigate as to
what values of these upper limits approximately maximize the
total throughput achieved under the BR algorithm.

B. Analysis of Game

In this section, we will investigate whether the game formu-
lated in Section V-A is a potential game.

Definition 1: (Ordinal Potential Game [25]) Consider a
game in which B is the set of players, K = |B|, zi denotes
the strategy of player i and ui(·) is the utility function of
player i. The game is an ordinal potential game if there exists
a function φ(.) such that for every player a ∈ B, for every
S = {z1, . . . , za, . . . , zK} and S′ = {z1, . . . , z′a, . . . , zK},

sgn(φ(S′)− φ(S)) = sgn(ua(S′)− ua(S))
where,

sgn(x) =
{

1, if x ≥ 0,
−1, if x < 0.

The function φ(.) is called a potential function of the game.

11Note that in the absence of the upper limits, from (25), the utility of BS
a can be maximized only if it allocates subchannels to min(N,Ma) MSs.
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Consider the special case of the game formulated in Sec-
tion V-A in which there is only one MS per BS, i.e, Ma = 1
∀a ∈ B; let G1 denote this special case game. For each a ∈ B,
let ja denote the MS associated with BS a. Suppose that under
the strategy profile S, for each a ∈ B, the MS ja is assigned
subchannel na ∈ N . For simplicity of notation, ∀a ∈ B, let
wa and Hna

a denote the weight of the MS ja and the channel
gain from BS a to the MS ja on subchannel na respectively.
Then, (25) simplifies to the following:

ua(S) = wa log

1 +
PHna

a

P
∑

i∈B,i6=a

Hna
i,ja

I(ni=na) +N0

 (26)

where,

I(ni=na) =
{
1, if ni = na,
0, else.

For convenience, consider the utility function:

u′a(S) =
PHna

a

P
∑

i∈B,i6=a

Hna
i,ja

I(ni=na) +N0

, (27)

and let G′1 denote the game G1, with the change that the utility
function of BS a is u′a(·) instead of ua(·).

Lemma 2: The game G1 is an ordinal potential game if and
only if the game G′1 is an ordinal potential game. Also, the
function φ(·) is a potential function of the game G1 if and
only if it is a potential function of the game G′1.

Proof: This follows from Definition 1 and the fact that
g(x) = αlog(1+x), where α is a positive scalar, is a monotone
increasing function, due to which:

sgn(ua(S′)− ua(S)) = sgn(u′a(S
′)− u′a(S)).

Now, using Lemma 2, it is proved in Theorems 3 and 4
below that the game G1 is an ordinal potential game in two
different special cases. Let

φ1(S) = −
∑
i∈B

∑
k∈B,k 6=i

Hni
i,jk

I(ni=nk) (28)

and

φ2(S) = −
∑
i∈B

∑
k∈B,k 6=i

Hni
i,jk

Hnk
k

I(ni=nk). (29)

Theorem 3: If Hn
a = Ha,∀a ∈ B, n ∈ N and Hn

i,ja
=

Hn
a,ji

,∀a, i ∈ B, i 6= a, and ∀n ∈ N , then the game G1 is an
ordinal potential game with potential function φ1(S), which is
as in (28).

Theorem 4: Let N0 = 0. If Hn
a = Hn, ∀a ∈ B, n ∈ N ,

and Hn
i,ja

= Hn
a,ji

,∀a, i ∈ B, i 6= a, and ∀n ∈ N , then the
game G1 is an ordinal potential game with potential function
φ2(S), which is as in (29).

The proofs of Theorems 3 and 4 are provided in the Ap-
pendix. Note that the condition Hn

a = Ha,∀a ∈ B, ∀n ∈ N , in
Theorem 3 would hold when fading is not frequency-selective.
Also, the condition N0 = 0 in Theorem 4 would be a good
approximation in an interference-limited system. However, the

condition Hn
i,ja

= Hn
a,ji

,∀a, i ∈ B, i 6= a, and ∀n ∈ N , in
Theorems 3 and 4, and the condition Hn

a = Hn,∀a ∈ B,
∀n ∈ N , in Theorem 4 would typically not be satisfied in
practice. We now show that in the general case where each
BS has more than one MS with frequency selective channel
gains, the above game is not an ordinal potential game.

Theorem 5: The game formulated in Section V-A is in
general not an ordinal potential game.

We provide a proof of Theorem 5 in the rest of this
sub-section. The proof is based on the better response (BR)
algorithm, which is a distributed iterative algorithm and is
often used in game theory [25]. This algorithm, when applied
to the game formulated in Section V-A, operates as follows.
The initial allocation of subchannels to MSs in each BS, i.e.,
the initial strategy profile, is selected randomly. Next, at each
iteration t ∈ {1, 2, 3, . . .}, any one of the K BSs, say BS at,
finds a new candidate strategy (i.e., allocation of subchannels
to its own MSs) at random, and changes its strategy to the
candidate strategy only if it results in an increase in its
utility; otherwise the strategy of BS at is not changed [25].
Also, the strategies of the BSs other than BS at do not
change at iteration t. Formally, let S0 be the initial strategy
profile, and for t ∈ {1, 2, 3 . . .}, let St = {z1,t, . . . , zK,t}
denote the strategy profile after t iterations. Let z′at,t be
the candidate strategy selected by BS at at iteration t and
let S′t = {z1,t−1, . . . , zat−1,t−1, z′at,t, zat+1,t−1, . . . , zK,t−1}.
Then:

St =

{
S′t, if uat(S

′
t) > uat(St−1),

St−1, else.

Note that the BR algorithm can be implemented in a
distributed manner as follows: whenever a BS, at, changes
its strategy at some iteration t, it sends its new strategy, zat,t,
to all the other BSs in the network, which thereby have the
required information to execute iteration t+ 1.

Definition 2: (Cycle [25]) If the present strategy profile is
equal to one of the previous strategy profiles at some iteration
during an execution of the BR algorithm, then a cycle is said
to exist in the game. That is, there exists a cycle if St1 = St2
for some t1 < t2.

Lemma 3: If there exists a cycle, then the game is not an
ordinal potential game.

Proof: Since there exists a cycle, St = Str for some non-
negative integers t and tr > t during an execution of the BR
algorithm. Suppose the strategy profile changes from St to St1
at iteration t1, from St1 to St2 at iteration t2,. . . , from Str−1

to Str at iteration tr, where t < t1 < t2 < . . . < tr−1 < tr.
Let pk ∈ B be the BS that changes its strategy at iteration
tk for each k = 1, . . . , r. Then up1(St1) > up1(St) and
upk(Stk) > upk(Stk−1

) for k = 2, . . . , r. Now, suppose the
game is an ordinal potential game with potential function
φ(.). Then by Definition 1:
up1(St1)− up1(St) > 0⇒ φ(St1)− φ(St) > 0.
Similarly for each k = 2, . . . , r:
upk(Stk)− upk(Stk−1

) > 0⇒ φ(Stk)− φ(Stk−1
) > 0.

By adding the above r equations, we get:
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φ(St1)−φ(St)+φ(St2)−φ(St1)+. . .+φ(Str )−φ(Str−1
) > 0

⇒ φ(Str )− φ(St) > 0. (30)

However, St = Str ⇒ φ(Str ) = φ(St), which is a contradic-
tion. The result follows.

Next, we provide an example in which a cycle exists. By
this example and Lemma 3, Theorem 5 follows.

In this example, there are 3 BSs, {a, b, c}, and a total
of 9 MSs. Two MSs with indices {3, 6}, four MSs with
indices {5, 7, 8, 9} and three MSs with indices {1, 2, 4} are
associated with BS a, b and c respectively. There are a total of
5 subchannels numbered 1, 2, 3, 4, 5. The channel gain values
are provided in Table I. Specifically, in each 5-tuple vector
Hi,j , where i ∈ {a, b, c} and j ∈ {1, 2 . . . , 9}, in Table I, the
nth element represents the channel gain 12 from BS i to the
jth MS over subchannel n ∈ {1, 2, 3, 4, 5}. The power P , N0

and each weight, wa,j , are assumed to be 8, 7.224 ×10−15
and 1 respectively. The BR algorithm was executed in the
above example network. Fig. 2 shows the existence of a cycle
formed by the strategy profiles St0+1, . . . ,St0+38 = St0+1

at 38 consecutive iterations, where t0 is a constant positive
integer. The first row in each box denotes a strategy profile
St0+i ∀i = 1, . . . , 37. In the box of the strategy profile St0+i,
the entries in the three parentheses in the second row and the
third row represent 13 the subchannel allocations to the MSs of
BSs a, b and c and the corresponding utilities of BSs a, b and
c respectively under the strategy profile St0+i. For example,
in the first box, the first row St0+1 denotes a strategy profile,
the second row (4, 5), (4, 2, 1, 3), (1, 5, 4) represents the sub-
channel allocations and third row (36.24), (114.86), (16.78)
represents the utilities of BSs a, b and c respectively under the
strategy profile St0+1. Also, on each arrow in the figure, the BS
that changes its subchannel allocation during the corresponding
strategy profile update is indicated. For example, in Fig. 2, the
strategy profile changes from St0+1 to St0+2 due to change in
the allocation of BS ‘c’ only from (1, 5, 4) to (2, 3, 5) and the
utility of BS ‘c’ increases from 16.78 to 17.24. From Fig. 2,
we can see that St0+1 = St0+38, i.e., the strategy profile at
iteration t0+38 is equal to that at iteration t0+1. Hence, by
Definition 2, there exists a cycle in the above game. Therefore,
the above game is not an ordinal potential game by Lemma 3.
This completes the proof of Theorem 5.

Although the above game is not an ordinal potential game
in general, this does not imply that the BR algorithm never

12The locations of the BSs and MSs and the channel gains were gener-
ated using the procedures described in the second and third paragraphs of
Section VII. In particular, each MS is associated with the BS closest to it.
However, note that due to shadowing and fast fading, the channel gain to a
MS from the BS it is associated with may be less than that from a BS with
which it is not associated.

13In the second row, the element (l,m, n) for BS c can be interpreted as: the
first MS of BS c is assigned subchannel l, second MS is assigned subchannel
m and third MS is assigned subchannel n. Entry 0 in the place of l, m or n
represents that the corresponding MS(s) is/ are not allocated any subchannel.
For example in Fig. 2, the allocation of BS c in strategy profile St0+4 is
(4, 2, 0), which implies that the first MS of BS c is allocated subchannel 4,
the second MS of BS c is allocated subchannel 2 and the third MS of BS c is
not allocated any subchannel. The interpretations of the elements for BSs a
and b are similar. The BS utilities in the third row have been calculated using
(25).

TABLE I: 5-tuple Channel gain vectors from each BS to each
MS corresponding to 5 subchannels

Ha,1 = [ 4.04, 3.22, 1.56, 3.65, 1.45]×10−6 Hb,1 = [ 23.5, 6.6, 44.0, 10.0, 9.2]×10−9 Hc,1 = [ 1.5, 3.32, 0.95, 0.3, 0.43]×10−9

Ha,2 = [ 0.02, 0.04, 0.04, 0.06, 0.09] Hb,2 = [ 71.5, 42.2, 36.1, 36.3, 16.2] Hc,2 = [ 2.2, 4.1, 1.1, 1.8, 6.2]×10−4

Ha,3 = [ 1.03, 1.84, 0.36, 3.97, 1.23]×10−6 Hb,3 = [ 10.3, 7.82, 10, 7.1, 4.23]×10−10 Hc,3 = [ 3.3, 5.8, 6.7, 2.06, 3.17]×10−10

Ha,4 = [ 2.08, 0.93, 1.20, 0.18, 0.46]×10−6 Hb,4 = [ 5.33, 1.9, 1.14, 2.3, 2.4]×10−8 Hc,4 = [ 0.03, 0.016, 0.007, 0.02, 0.05]

Ha,5 = [ 2.03, 1.16, 1.31, 2.24, 2.67]×10−11 Hb,5 = [ 2.5, 0.36, 3.8, 1.1, 2.5]×10−4 Hc,5 = [ 6.84, 3.22, 5.83, 5.6, 6.63]×10−18

Ha,6 = [ 20, 30, 1.5, 17, 54]×10−5 Hb,6 = [ 4.72, 2.53, 9.66, 16, 8.84]×10−5 Hc,6 = [ 5.4, 2.86, 1.65, 1.2, 2.9]×10−11

Ha,7 = [ 4.14, 1.93, 8.56, 10, 1.54]×10−6 Hb,7 = [ 0.01, 0.01, 0.01, 0.02, 0.02] Hc,7 = [ 2, 2, 1.76, 1.6, 3.2]×10−5

Ha,8 = [ 2.81, 2.87, 0.84, 0.3, 2.2]×10−11 Hb,8 = [ 10, 6, 4.76, 10.2, 2.14]×10−5 Hc,8 = [ 0.64, 3.83, 3.9, 2.6, 4.5]×10−11

Ha,9 = [ 8.1, 3.34, 0.72, 6.4, 3.5]×10−6 Hb,9 = [ 4.6, 4.25, 3.82, 3.8, .91]×10−8 Hc,9 = [ 2.1, 0.82, 1.27, 1.8, 2.6]×10−8

c b c
St0+1

(4, 5)(4, 2, 1, 3,)(1, 5, 4)
(36.24)(114.86)(16.78)

St0+2

(4, 5)(4, 2, 1, 3,)(2, 3, 5)
(36.61)(69.97)(17.24)

St0+3

(4, 5)(3, 0, 1, 4)(2, 3, 5)
(36.61)(75.30)(38.46)

St0+4

(4, 5)(3, 0, 1, 4)(4, 2, 0)
(51.20)(75.31)(38.71)

St0+8

(4, 5)(1, 2, 4, 0)(1, 4, 3)
(51.20)(103.10)(43.03)

St0+7

(4, 5)(1, 2, 4, 0)(3, 1, 2)
(51.57)(72.04)(39.75)

St0+6

(4, 5)(0, 1, 3, 4)(3, 1, 2)
(51.57)(29.57)(44.08)

St0+5

(4, 5)(0, 1, 3, 4)(4, 2, 0)
(51.20)(79.34)(38.71)

St0+9

(4, 5)(1, 2, 4, 0)(2, 3, 4)
(51.20)(68.77)(54.14)

()999999999(()

St0+10

(4, 5)(5, 4, 2, 1)(2, 3, 4)
(14.91)(78.96)(54.14)

St0+11

(0, 3)(5, 4, 2, 1)(2, 3, 4)
(19.81)(94.52)(20.44)

St0+12

(0, 3)(4, 5, 1, 2)(2, 3, 4)
(19.81)(120.36)(20.44)

St0+16

(1, 3)(4, 1, 2, 3)(3, 4, 5)
(10.18)(84.47)(45.59)

St0+15

(1, 3)(5, 4, 2, 1)(3, 4, 5)
(29.78)(84.28)(20.94)

St0+14

(0, 3)(5, 4, 2, 1)(3, 4, 5)
(19.81)(109.88)(20.94)

St0+13

(0, 3)(4, 5, 1, 2)(3, 4, 5)
(19.81)(108.18)(20.94)

St0+17

(3, 1)(4, 1, 2, 3)(3, 4, 5)
(10.31)(84.47)(45.59)

St0+18

(3, 1)(3, 2, 1, 5)(3, 4, 5)
(10.31)(90.36)(58.5)

St0+19

(5, 3)(3, 2, 1, 5)(3, 4, 5)
(10.90)(104.85)(54.14)

St0+20

(2, 4)(3, 2, 1, 5)(3, 4, 5)
(35.0)(88.11)(20.97)

b

c

b
c

b

a

c

b

b

a a

a

b

c

a

b

St0+24

(1, 2)(3, 1, 4, 5)(1, 3, 5)
(48.21)(84.82)(20.94)

St0+23

(2, 4)(3, 1, 4, 5)(1, 3, 5)
(31.98)(73.41)(21.03)

St0+22

(2, 4)(5, 1, 3, 2)(1, 3, 5)
(48.68)(67.6)(21.03)

St0+21

(2, 4)(5, 1, 3, 2)(3, 4, 5)
(35.0)(101.97)(20.97)

St0+25

(1, 2)(3, 1, 4, 5)(2, 1, 5)
(33.26)(84.83)(20.943)

b

St0+26

(1, 2)(1, 4, 5, 3)(2, 1, 5))
((33.26)(112.06)(20.94)(

(())()(

St0+27

(4, 2)(1, 4, 5, 3)(2, 1, 5)
)(36.14)(93.14)(20.94)

St0+28

(4, 2)(1, 4, 5, 3)(3, 1, 5)
(51.09)(69.81)(20.97)

a c

b

b

c

c

b

a

cc b

St0+32

(3, 5)(4, 1, 3, 2)(0, 5, 2)
(32.66)(105.62)(19.76)

St0+31

(3, 5)(1, 2, 3, 4)(0, 5, 2)
(32.66)(94.77)(19.76)

St0+30

(4, 2)(1, 2, 3, 4)(0, 5, 2)
(16.48)(82.51)(53.40)

St0+29

(4, 2)(1, 2, 3, 4)(3, 1, 5)
(16.48)(70.59)(45.62)

St0+33

(3, 5)(4, 1, 3, 2)(5, 1, 4)
(32.66)(94.10)(19.85)

St0+36

(3, 5)(4, 2, 3, 5)(1, 5, 4)
(11.33)(102.64)(40.52)

St0+37

(4, 5)(4, 2, 3, 5)(1, 5, 4)
(14.91)(101.23)(37.35)

ca

a

c

b

b

b

St0+34

(3, 5)(4, 1, 3, 2)(0, 5, 4)
(32.66)(128.47)(19.86)

St0+35

(3, 5)(4, 1, 3, 2)(1, 5, 4)
(32.66)(94.10)(19.95)

cc

Fig. 2: The figure shows the existence of a cycle formed by the
strategy profiles St0+1, . . . ,St0+37. Each box represents the
strategy profile along with the subchannels allocated to MSs
in the second row and corresponding utilities of the BSs in the
third row. In each strategy profile update, the BS indicated on
the arrow changes its allocation such that its utility increases.

converges to a PSNE. We study the convergence probability
of the BR algorithm, that is, the fraction of times it converges
to a PSNE, via simulations in Section VII-A.

Remark 2: Recall that the BR algorithm requires some
information to be exchanged among BSs. However, to be
able to apply the BR algorithm to solve the ICIC problem,
it needs to be formulated as a non-cooperative game since in
each iteration t of the BR algorithm, the BS at changes its
strategy from zat,t to z′at,t only if strategy z′at,t constitutes a
better response of BS at to the strategies of the other BSs,
i.e., provides a higher utility, than strategy zat,t. Note that the
players, strategies and utilities need to be identified to be able
to apply the BR algorithm.
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VI. ALGORITHMS

Since Problem 1 is NP-Complete, in this section, we design
two heuristic algorithms– a greedy and a simulated annealing
based algorithm– to solve it; these algorithms are presented in
Sections VI-A and VI-B respectively.

A. Greedy Algorithm

For each BS a ∈ B, let the neighbor set Ba ⊆ B denote
the set of BSs that are directly connected to BS a via high-
speed links over which messages can be exchanged in real-time
during the algorithm operation. For example, in LTE networks,
adjacent BSs are typically connected to each other by means
of X2 interfaces [9], which can be used for this purpose.

This algorithm has two phases, Initialization and Main
Operation, which are explained below.

1) Initialization: Recall from Section III that all channel
gains {Hn

i,j : i ∈ B, j ∈ M, n ∈ N} can be estimated
using reference signals. In the initialization phase, each BS
a exchanges messages with its associated MSs and with the
BSs in Ba through which each BS a obtains the channel gains
{Hn

a,j : j ∈ Ma, n ∈ N} between itself and its associated
MSs as well as the channel gains {Hn

b,j : j ∈ Ma, b ∈
Ba, n ∈ N} between its neighbouring BSs and its associated
MSs 14. Note that BS a does not obtain the channel gains
{Hn

b,j : j ∈Ma, b ∈ B\Ba, n ∈ N} from the BSs that are not
directly connected to itself to its associated MSs. Typically
in practice, only a small number of BSs would be directly
connected to a BS a and hence the amount of channel gain
information that would need to be shared would be small.

2) Main Operation: This phase proceeds in rounds and the
variables {z̃na,j : j ∈ Ma, n ∈ N}, ỹna and ỹnb , b ∈ Ba, are
maintained by each BS a during these rounds. Before the first
round, each BS a sets z̃na,j = 0, ỹna = 0 and ỹnb = 0 for all
j ∈ Ma, n ∈ N , b ∈ Ba and at each round: z̃na,j equals 1 if
subchannel n has so far been assigned to MS j ∈ Ma and
0 otherwise and ỹna =

∑
j∈Ma

z̃na,j . Note that these variables
contain the current values of the variables zna,j and yna defined
in Section III. The following actions are performed in each
round t = 1, 2, 3, . . .:
(1) For a BS a, let pa =

max
j∈Ma

max
n∈N :ỹna=0

wa,j log
1 +

PHn
a,j

P
∑
b∈Ba

Hn
b,j ỹ

n
b +N0


 .

(31)
At the beginning of a round t, each BS a calculates and
sends pa to all its neighboring BSs b ∈ Ba.

(2) Each BS a compares pa with pb for its neighbors b ∈ Ba.
If pa ≥ pb ∀b ∈ Ba, then BS a assigns subchannel n to
MS j, where j and n are the maximizers in (31), and sets
z̃na,j = 1 and ỹna = 1. Note that multiple BSs may make
assignments in parallel in a single round.

(3) Each BS that has assigned a subchannel, say n, to one of
its MSs in step 2 sends the value of n to all its neighboring

14Note that if each channel gain is quantized and represented using c bits,
then |N ||Ma|c bits need to be sent to BS a by each BS b ∈ Ba.

BSs. Using this information, each BS a updates the
variables ỹnb for each b ∈ Ba.

The above three steps are repeatedly performed by BS a
until at least one of the following three conditions is satisfied:

(i) Every MS j ∈Ma is assigned a subchannel.
(ii) Each subchannel in N is assigned to a MS in Ma.

(iii) pa becomes less than p0, where p0 ≥ 0 is a parameter
of the algorithm (see Remark 2 below).

Once the algorithm stops at BS a, the allocation found (stored
in the variables z̃na,j) is used by BS a in the current time slot.

Remarks:
1) From (31) and step (2), it can be seen that the algorithm
uses a greedy approach, wherein during each round, (MS,
subchannel) pairs with high weights and throughputs are
selected.
2) It follows from the rule for updation of the variables
{ỹni : i ∈ B, n ∈ N} and (31) that for each BS a, pa
decreases or remains constant at each round of the algorithm.
Setting the threshold p0 in condition (iii) above to too low a
value may result in allocations with high inter cell interference;
conversely, setting it to too high a value may result in too
many subchannels being unallocated. The impact of p0 on
the algorithm performance is investigated via simulations in
Section VII.
3) Note that the larger the sets Ba, a ∈ B, the more centralized
the algorithm becomes; in particular, it is a completely cen-
tralized algorithm if Ba = B for each a. Our simulation results
(see Section VII) show that the performance of the algorithm
improves as the sets Ba, a ∈ B become larger, i.e., as the
numbers of directly connected neighbors of BSs increase.

B. Simulated Annealing Based Algorithm

Simulated annealing is a widely used randomized heuristic
for approximating the global optimum in combinatorial op-
timization problems [15]. The general algorithm for approx-
imately solving the problem of finding a utility-maximizing
solution from a set, Z , of feasible solutions is described in
Fig. 3. The algorithm starts from a random solution and at each
iteration, selects a random neighbor, Z′, of the current solution
Z. If the utility of Z′ is higher than that of Z, then it accepts,
i.e., switches to Z′. If the utility of Z′ is lower than that of Z,
then it is still accepted with some probability (see line 8) to
avoid getting stuck at a local maximum [15]. The probability,
exp (−[U(Z)− U(Z′)]/T ), with which the algorithm switches
to a solution worse than the current solution depends on a
parameter T > 0 called the current temperature [15]. T is
initialized to a large value T0 and decreased at each iteration
of the while loop (see line 15) according to some rule called
the cooling schedule [15]– thus, the probability of accepting a
solution worse than the current solution is high towards the
beginning of the algorithm and decreases as the algorithm
proceeds.

Finally, the entire algorithm in Fig. 3 is run κ times and the
best solution found across the κ runs is returned.

We adapt this algorithm to solve Problem 1 as follows.
To find the random initial allocation Z0 ∈ Z (see line 1),
a random integer na ∈ {0, 1, . . . ,min(N,Ma)} is selected for
each BS a ∈ B, independently across BSs, and for each BS a,
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Definitions:

• Let Z be the set of feasible solutions.
• For Z ∈ Z , let U(Z) be the utility of solution Z.
• At any time during the execution of the algorithm, let Z be the current solution

and T be the current temperature.

Begin
1: Start with a random initial solution Z0 ∈ Z and an initial temperature T = T0.
2: Zbest ← Z0 and Z← Z0.
3: while T ≥ Tf do
4: Select a solution Z′ ∈ Z randomly from the neighbors of Z.
5: if U(Z′) ≥ U(Z) then
6: Z← Z′

7: else
8: With probability exp

(
−[U(Z)− U(Z′)]/T

)
, let Z ← Z′; otherwise

leave Z unchanged.
9: end if

10: if U(Z) ≥ U(Zbest) then
11: Zbest ← Z.
12: else
13: Leave Zbest unchanged.
14: end if
15: Decrease T according to the cooling schedule.
16: end while
17: Return Zbest and its utility U(Zbest).

End

Fig. 3: The general simulated annealing algorithm [15].

na subchannels from N are randomly assigned to na of the
MSs in Ma.

We find a neighboring allocation Z′ from Z (see line 4) as
follows. A BS a ∈ B is selected at random, and one of the
following actions is performed at random: (i) the assignments
of two of the subchannels in N to MSs in Ma are swapped,
(ii) one of the subchannels in N is deallocated from the MS
to which it was allocated in Z, (iii) a subchannel in N that
was not allocated to any MS inMa under Z is allocated to an
MS. The utility U(Z′) is required to perform the comparison
in step 5 and is deduced from U(Z). For example, suppose in
Z, subchannels n1 and n2 were allocated to MSs j1 and j2
respectively associated with BS a, and were swapped as in (i)
above to get Z′. Then by (3):

U(Z′) = U(Z)− wa,j1 log

(
1 +

PH
n1
a,j1

P
∑
i∈B\a H

n1
i,j1

y
n1
i

+N0

)

−wa,j2 log

(
1 +

PH
n2
a,j2

P
∑
i∈B\a H

n2
i,j2

y
n2
i

+N0

)
+ wa,j1 log

(
1+

PH
n2
a,j1

P
∑
i∈B\a H

n2
i,j1

y
n2
i

+N0

)
+ wa,j2 log

(
1 +

PH
n1
a,j2

P
∑
i∈B\a H

n1
i,j2

y
n1
i

+N0

)
Note that U(Z′) is not found using (3), but is found by
updating U(Z) as in the above example since the former is
computationally expensive.

The following cooling schedule (see line 15) is used. Let
α ∈ (0, 1) and η, a positive integer, be parameters. Every
η iterations of the while loop (lines 3 to 16), T is set to
αT , i.e., T is multiplicatively decreased by the factor α.
The temperature remains unchanged for the iterations between
consecutive multiplicative decreases.

Remark 3: It can be seen from the cooling schedule de-
scribed above that the performance of each run of the algorithm
improves as η and α are increased since the amount of time
the algorithm spends exploring the search space increases [15].
Also, clearly the performance of the overall algorithm im-

proves as the number of runs, κ, is increased. Thus, as η, α
and κ increase, the algorithm approaches the optimal solution
with a high probability (though at the expense of increased
execution time).

VII. SIMULATIONS

We present three sets of simulation results in this section. In
Sections VII-A and VII-B, we present performance evaluations
of the BR algorithm described in Section V-B and the greedy
algorithm described in Section VI-A respectively. In Sec-
tion VII-C, we provide a performance comparison of the BR,
greedy and simulated annealing based (SA) (see Section VI-B)
algorithms.

The simulation model is as follows for all the simulation
results. Consider a square of dimensions 1 unit × 1 unit.
We place K BSs and M MSs in the square as follows. The
locations of the K BSs are selected uniformly at random in
the square, while ensuring that the distance between any two
BSs is at least dmin. Here, dmin is a parameter that ensures
adequate separation between pairs of BSs. The locations of
the M MSs are generated uniformly at random in the square.
Each MS is associated with the BS closest to it. The available
spectrum is divided into N subchannels.

The channel gains Hn
i,j are generated as Hn

i,j =
kSijX

n
ij

dγij
,

where k is a constant, dij is the distance from BS i to MS
j, γ is the path loss exponent, which may be taken to be
some value between 2 and 4, and Sij is a log-normal random
variable that models shadow fading. The random variables
Sij are independent and identically distributed across different
pairs (i, j). Xn

ij is a Rayleigh distributed random variable.
The random variables Xn

ij for different triples (i, j, n) are
independent and identically distributed. Note that the channel
gains take into account path loss, shadowing (slow fading) and
fast fading.

A. Performance Evaluation of the BR Algorithm

1) Convergence Probability of the BR algorithm: Recall
from Section V that for the game described in Section V-A, the
BR algorithm is not guaranteed to converge to a PSNE. So, we
are interested in finding the probability that the BR algorithm
converges to a PSNE, when a large number of iterations of
the algorithm are executed. Assuming Q1 = . . . = QK = 3,
we selected the initial allocation (strategy profile) randomly
and then ran the BR algorithm for 106 iterations; 50 such runs
were executed. We calculated the convergence probability of
the BR algorithm as the fraction of runs in which a PSNE was
achieved. Fig. 4(a) represents the convergence probability in
percentage with varying number of BSs for different values
of N and Fig. 4(b) represents the convergence probability in
percentage with varying number of MSs for different values
of K and N . The plots show that the convergence probability
is low when the number of MSs, BSs or subchannels is large,
as would typically be the case in practice. That is, with a high
probability, the BR algorithm does not converge to a PSNE.

2) Throughput Performance of the BR Algorithm: Note
that although with a high probability the BR algorithm does
not converge to a PSNE, it finds a feasible allocation of



13

2 3 4 5 6
0

20

40

60

80

Number of Base Stations : K

C
o

n
v
e

rg
e

n
c
e

 P
ro

b
a

b
il
it
y

  
  

(%
)

 

 

N = 4
N = 5
N = 6

(a)

30 35 40 45 50
0

20

40

60

80

Number of Mobile Stations : M

C
o

n
v
e

rg
e

n
c
e

 P
ro

b
a

b
il
it
y

  
  

  
 (

%
)

 

 

N=5,K=4
N=5,K=5
N=6,K=5

(b)

Fig. 4: The plot on the left (respectively, right) shows the
variation of probability of convergence of the BR algorithm
to PSNE in percentage with number of BSs K (respectively,
number of MSs M ).

subchannels to MSs for the model in Section III. So next,
we evaluate the performance of the BR algorithm in terms
of the total throughput achieved under the allocation that it
finds after being executed for a large number of iterations.
Let Q1 = . . . = QK = Q. First, we investigate as to what
values of the parameter Q approximately maximize the total
throughput achieved under the BR algorithm. The variation of
the total throughput obtained using the BR algorithm, executed
for 105 iterations, with parameter Q is plotted 15 in Fig. 5(a)
(respectively, Fig. 5(b), Fig. 6(a)) for different values of K
(respectively, N , M ). In Fig. 5(a), we have considered N = 25
and M = 500. The value of parameter Q for which the total
throughput is large, decreases with K because if the values
of K as well as Q are large, then subchannels are allocated
to a large number of MSs, which results in high inter-cell
interference and hence low total throughput. In Fig. 5(b), we
have considered K = 15 and M = 400. It can be seen
that the value of Q at which the total throughput is large,
increases in N ; this is because more resources (subchannels)
are available. Also, for a fixed value of Q, the total throughput
increases in N ; this is because the higher number of available
subchannels allow an allocation of subchanels to the MSs in a
manner that results in less inter-cell interference. In Fig. 6(a),
we have considered N = 20, K = 15. It can be seen that the
values of parameter Q for which the total throughput is close
to maximum, are roughly invariant with total number of MSs
in the system. Also, the total throughput increases with number
of MSs; this is because of the increase in diversity, i.e., the Q
MSs to which subchannels are allocated can be selected from
a larger set of available MSs, which results in a higher total
throughput on average. After a large number of simulations for
different values of K,M and N , it was found that the total
throughput of the system is close to maximum for those values
of the parameter Q for which the total number of MSs to which
subchannels are allocated in the whole system is between N

15For all the plots in Figs. 5 to 11, each data point was obtained by averaging
across 25 runs with different random seeds.

and 2N 16. This observation can be used to select the value
of Q so as to achieve a close to maximum total throughput in
an implementation of the BR algorithm to solve the ICIC with
fixed transmit power problem.
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Fig. 5: The plot on the left (respectively, right) shows the vari-
ation of the total throughput obtained using the BR algorithm
with Q i.e. number of MSs allowed to be allocated per BS for
different values of number of BSs K (respectively, number of
subchannels N ).
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Fig. 6: The plot on the left (respectively, right) shows the vari-
ation of the total throughput obtained using the BR algorithm
with Q (respectively, number of iterations) for different values
of number of MSs M .

Next, we investigate as to how many iterations the BR
algorithm should be run for, in order to achieve a high total
throughput. Figs. 6(b), 7(a) and 7(b) depict the variation of
total throughput with number of iterations the BR algorithm
runs for, for different parameter values. Fig. 6(b) shows the
total throughput for three different values of M with K = 15,
N = 20 and Q = 3. The total throughput increases in M
similar to the trend in Fig. 6(a). The total throughput for
three different values of Q has been plotted in Fig. 7(a)
for K = 15, N = 20 and M = 400. The throughput is
maximized for the middle value of Q (Q = 4); intuitively
this is because, for the values of K,M and N considered,
the channel resources are under utilized for the lowest value
of Q (Q = 2) and for the highest Q value (Q = 5),

16For example, in the plot on the left in Fig. 5, N = 25 is used and the
plot shows that the sets of values of Q for which the total throughput of the
system is close to maximum are {3, 4, 5, 6}, {2, 3, 4, 5} and {1, 2, 3} for
K = 7, 10 and 15 respectively. Since there are K BSs, the total number of
MSs to which subchannels are allocated in the whole system is Q×K; hence,
the corresponding total numbers of MSs to which subchannels are allocated
in the whole system are {21, 28, 35, 42}, {20, 30, 40, 50} and {15, 30, 45}
for K = 7, 10 and 15 respectively.
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the interference is high, which reduces the total throughput.
Fig. 7(b) shows the total throughput for three different values
of N with K = 15, M = 400 and Q = 4. The total throughput
increases in N similar to the trend in Fig. 5(b). It can be
seen from Figs. 6(b), 7(a) and 7(b) that for a wide range
of parameter values, the average total throughput achieved
under the BR algorithm increases in the number of iterations
and saturates around 105 iterations. This suggests that in an
implementation of the BR algorithm, the algorithm should be
run for approximately 105 iterations.
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Fig. 7: The plot on the left (respectively, right) shows the
variation of the total throughput obtained using the BR al-
gorithm with number of iterations for different values of Q
(respectively, number of subchannels N ).

B. Performance Evaluation of the Greedy Algorithm

For the greedy algorithm, the set, Ba, of neighbors of BS a
(see Section VI-A) is assumed to consist of all BSs that are at
distance less than rad from BS a, where rad is a parameter.
The greedy algorithm was run for this topology for different
parameter values, and the total throughput of the allocation
returned by the algorithm and the time that the simulation took
to complete 17 were noted. The latter is used as a measure
of the total number of computations required by the greedy
algorithm.

We first study the impact of the parameter p0 used by the
greedy algorithm (see Section VI-A, in particular, Remark 2)
on its performance. Fig. 8 plots the total throughput and the
simulation completion time of the greedy algorithm versus
p0 for different values of K and M . The total throughput
plot shows that the algorithm performs poorly for values of
p0 that are very low or very high, consistent with the trend
explained in Remark 2 in Section VI-A. On the other hand,
the algorithm performs quite well for all values of p0 in [0.1, 4],
which is a wide range; thus, it is easy to choose a value of p0
that provides good performance in a practical implementation
of the algorithm. The simulation completion time in Fig 8
decreases in p0; this is consistent with the fact that by the
termination condition (iii) in Section VI-A, the smaller the
value of p0, the longer the algorithm is allowed to run. Fig. 9(a)
shows that the performance of the algorithm improves as more
direct connections between pairs of BSs become available.
Next, Fig. 9(b) illustrates that the total throughput of the greedy

17All simulations was done in MATLAB and run on a computer with a 2.20
GHz Intel i7-2670QM CPU, 6 GB RAM and Windows 7.

algorithm increases in M for fixed K, consistent with the
intuition that as M increases, the greedy algorithm can choose
to allocate subchannels to MSs from a larger set.
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Fig. 8: The figure plots the total throughput and simulation
completion time (in seconds) for the greedy algorithm versus
p0. N = 50 is used.
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Fig. 9: The plot on the left (respectively, right) shows the
total throughput under the greedy algorithm versus rad (re-
spectively, M ) for different values of K and M (respectively,
K).

Next, recall that under the greedy algorithm, for a given
BS a, the channel gains {Hn

b,j : j ∈ Ma, b ∈ Ba, n ∈ N}
between its neighboring BSs and its associated MSs need to
be sent to BS a. These channel gains can be quantized and
represented using a small number of bits (e.g., 4 or 6 bits).
We have evaluated the performance of the proposed greedy
algorithm in the cases where 4 bits and 6 bits are used to
represent each channel gain. The total throughput achieved
under the greedy algorithm with exact channel gain values
and with quantized ones for 15 randomly generated network
topologies, each with the parameter values K = 15,M = 300
and N = 50, are provided in Fig. 10. The figure shows that
the performance of the greedy algorithm with quantized gains
is close to that with exact gains. Thus, the amount of channel
gain information that needs to be exchanged under the greedy
algorithm can be significantly reduced using quantized channel
gains with only a small decrease in its performance.

C. Performance Comparison of the BR, Greedy and SA Algo-
rithms

We now compare the performance of the BR, greedy and
SA algorithms in terms of the total throughput obtained and
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Fig. 10: The plot shows the total throughput achieved under
the greedy algorithm with exact, 6-bit quantized and 4-bit
quantized channel gain values.

simulation completion time. For the greedy algorithm, the
parameter values rad = 0.4 and p0 = 0.1 are used, for
the SA algorithm, α = 0.998, η = 100 and κ = 5 are
used and for the BR algorithm, Q = 3 and 105 iterations
are used. The variation of the total throughput (respectively,
simulation completion time) versus K and N have been plotted
for the three algorithms in Fig. 11 (respectively, Fig. 12).
From Fig. 11, it can be observed that the total throughput
obtained using the BR algorithm is very small compared to
those obtained using the SA and greedy algorithms. The total
throughput obtained using the BR algorithm is 0.33 times or
less as compared to that obtained using the greedy algorithm
for all the parameter values considered.

25 30 35 40
0

1000

2000

3000

4000

5000

Number of Base Stations : K

T
o

ta
l 
T

h
ro

u
g

h
p

u
t

 

 

BR Algorithm
SA Algorithm
Greedy Algorithm

(a)

28 30 32 34 36 38 40 42 44
500

1000

1500

2000

2500

3000

Number of Subchannels : N

T
o

ta
l 
T

h
ro

u
g

h
p

u
t

 

 

BR Algorithm
SA Algorithm
Greedy Algorithm

(b)

Fig. 11: The plot on the left (respectively, right) shows the
comparison of the greedy, SA and BR algorithm in terms of
the total throughput obtained for different values of the number
of BSs K (respectively, number of subchannels N ).

However, the simulation completion time for the BR algo-
rithm is very small compared to those for the SA and greedy
algorithms. Also, the simulation completion time for the SA
algorithm is very high as compared to that of the greedy
algorithm. Finally, the performance of the greedy algorithm is
close to that of the SA algorithm in terms of total throughput
for all the parameter values considered; also, the former
algorithm outperforms the latter algorithm in dense networks,
i.e., those in which K is large or N is small.

VIII. CONCLUSIONS, DISCUSSION AND FUTURE WORK

We showed that the general ICIC with fixed transmit
power problem is NP-complete and that when the potential
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Fig. 12: The plot on the left (respectively, right) shows the
comparison of the greedy, SA and BR algorithms in terms of
simulation completion time for different values of the number
of BSs K (respectively, number of subchannels N ).

interference levels are above a threshold, the problem can
be optimally solved in polynomial-time via reduction to the
bipartite matching problem. We also formulated the ICIC
problem as a non-cooperative game and proved that although
it is an ordinal potential game in two special cases, it is not
an ordinal potential game in general. Also, we designed two
heuristics for the general ICIC problem– a fast and distributed
greedy algorithm, which only requires direct connections be-
tween pairs of neighboring BSs, and a centralized simulated
annealing (SA) based algorithm. Our simulations show that
the total throughput obtained using the better response (BR)
algorithm is very small compared to those obtained using the
SA and greedy algorithms; however, the execution time of the
BR algorithm is much smaller than those of the latter two
algorithms. Finally, the greedy algorithm outperforms the SA
algorithm in dense cellular networks and requires only a small
fraction of the number of computations required by the latter
algorithm for execution.

Our analytical results provide insight into the structure of the
ICIC with fixed transmit power problem, which would be use-
ful to future work on the design of approximation algorithms
with a provable approximation ratio for the problem. Also,
since the subchannel allocation game corresponding to the
ICIC with fixed transmit power problem is not a potential game
in general, the BR algorithm is not guaranteed to converge to
a Nash equilibrium (NE). The problem of designing iterative
algorithms that always converge to a NE of this game is a
direction for future research.

APPENDIX

A. Proof of Lemma 1: First, we will show that the
function f(x) is quasiconvex 18 on the domain x ≥ 1. Let

y = (x− 1)β +
1

τ
. (32)

Then
f(x) = g(y), (33)

18Recall that a function f : R→ R is quasiconvex if its domain is convex
and for every α ∈ R, the sublevel set S = {x|f(x) ≤ α} is convex [4].
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where:

g(y) =

(
y

β
+ 1− 1

τβ

)
log

(
1 +

1

y

)
. (34)

Now, a sufficient condition for a function h(·) to be quasi-
convex is provided by the following property [4]:

Property 1: If h′′(y) > 0 whenever h′(y) = 0, then h(·) is
quasi-convex.
We will now show using Property 1 that g(·) is quasi-convex,
and deduce quasi-convexity of f(·) from it.

Differentiating (34), we get:

g′(y) =
1

β

[
log

(
1 +

1

y

)
− 1

y(y + 1)

[
y + β − 1

τ

]]
(35)

and:

g′′(y) =
1

β

[
y
(
2
(
β − 1

τ

)
− 1
)
+
(
β − 1

τ

)
y2(y + 1)2

.

]
(36)

Suppose g′(y) = 0. Then by (35):

log

(
1 +

1

y

)
=

1

y

[
y +

(
β − 1

τ

)
y + 1

]
. (37)

Now, we have the following inequality [21]:

log(1 + u) >
u

1 + u
2

,∀u > 0. (38)

By (37), (38) with u = 1
y , and some algebraic simplification:

y

(
2

(
β − 1

τ

)
− 1

)
+

(
β − 1

τ

)
> 0 (39)

By (36) and (39), it follows that g′′(y) > 0. Hence, by
Property 1, it follows that g(·) is quasi-convex.

Now, by (32) and (33), we get f ′(x) = βg′(y) and
f ′′(x) = β2g′′(y). Since g(·) satisfies the sufficient condition
in Property 1, so does f(·), and hence f(·) is quasi-convex.

Next, it is easy to show using L’Hôpital’s rule that:

lim
x→∞

f(x) =
1

β
< log (1 + τ) = f(1). (40)

Now, consider the sublevel set:

S = {x ≥ 1|f(x) ≤ f(1)}.
By (40), there exists x′ > 1 such that x ∈ S for all x ≥ x′.
Also, clearly 1 ∈ S. Since f(·) is quasi-convex, the set S is
convex [4]; so x ∈ S for all x ≥ 1. That is, f(x) ≤ f(1) for
all x ≥ 1 and the result follows.

B. Proof of Theorem 3: Let S and S′ be as in Defini-
tion 1, u′a(.) be as in (27) and φ1(.) be as in (28). We will
show that:

sgn(φ1(S′)− φ1(S)) = sgn(u′a(S
′)− u′a(S)). (41)

The proof of Theorem 3 will then follow from Definition 1
and Lemma 2.

Consider: u′a(S
′)− u′a(S)

= PH
n′a
a

N0+P
∑
i6=a,i∈B H

n′a
i,ja

I(ni=n′a)

− PHnaa
N0+P

∑
i6=a,i∈B H

na
i,ja

I(ni=na)

= α

N0

(
H
n′a
a −Hna

a

)
+ P

∑
i6=a

H
n′a
a Hna

i,ja
I(ni=na)

−
∑
i 6=a

Hna
a H

n′a
i,ja

I(ni=n′a)

 , (42)

where,
α = P(

N0+P
∑
i6=a,i∈B H

n′a
i,ja

I(ni=n′a)

)
(N0+P

∑
i6=a,i∈B H

na
i,ja

I(ni=na))
.

Note that α > 0. Since Hn
a = Ha ∀ n, a, by (42):

u′a(S
′)− u′a(S) =

Pα

∑
i 6=a

HaH
na
i,ja

I(ni=na) −
∑
i 6=a

HaH
n′a
i,ja

I(ni=n′a)

 .
(43)

Let φ1(S) be as in (28). Then,

φ1(S
′) = −

∑
i 6=a

∑
k 6=i,k 6=a

Hni
i,jk

I(ni=nk) −
∑
i 6=a

H
n′a
i,ja

I(ni=n′a)

−
∑
k 6=a

H
n′a
a,jk

I(n′a=nk).

Using a change of variables and Hn
i,ja

= Hn
a,ji

,∀n, a, i, and
i 6= a, we get:

φ1(S
′)− φ1(S) = 2

∑
i 6=a

Hna
i,ja

I(ni=na) −
∑
i 6=a

H
n′a
i,ja

I(ni=n′a)


= 2

[
u′a(S

′)− u′a(S)
PαHa

]
(by (43)). (44)

Equation (41) follows from (44), which completes the proof.

C. Proof of Theorem 4: Let S and S′ be as in Defini-
tion 1, u′a(.) be as in (27) and φ2(.) be as in (29). We will
show that:

sgn(φ2(S′)− φ2(S)) = sgn(u′a(S
′)− u′a(S)). (45)

The proof of Theorem 4 will then follow from Definition 1
and Lemma 2.
Now, using the facts that Hn

a = Hn ∀a, n and N0 = 0 in
(42) we get:

u′a(S
′)− u′a(S)

= PHn′aHnaα

∑
i6=a

Hna
i,ja

I(ni=na)

Hna
−
∑
i 6=a

H
n′a
i,ja

I(ni=n′a)

Hn′a

 .
(46)

Let φ2(S) be as in (29). Then,

φ2(S
′) = −

∑
i 6=a

∑
k 6=i,k 6=a

Hni
i,jk

Hnk
k

I(ni=nk)

−
∑
i 6=a

H
n′a
i,ja

H
n′a
a

I(ni=n′a) −
∑
k 6=a

H
n′a
a,jk

Hnk
k

I(n′a=nk).
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Hence, φ2(S′)− φ2(S)

=
∑
i6=a

Hna
i,ja

Hna
a

I(ni=na) −
H
n′a
i,ja

H
n′a
a

I(ni=n′a)


+
∑
k 6=a

Hna
a,jk

Hna
k

I(nk=na) −
H
n′a
a,jk

H
n′a
k

I(nk=n′a)

 . (47)

Using a change of variables and Hn
a = Hn ∀a, n,

Hn
i,ja

= Hn
a,ji

,∀a, i and i 6= a, in (47):

φ2(S
′)− φ2(S) = 2

∑
i 6=a

Hna
i,ja

Hna
I(ni=na) −

H
n′a
i,ja

Hn′a
I(ni=n′a)


= 2

[
u′a(S

′)− u′a(S)
PαHn′aHna

]
(by (46)). (48)

Equation (45) follows from (48), which completes the proof.
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