SUBMODULAR FUNCTIONS AND ELECTRICAL NETWORKS

H. Narayanan

Department of Electrical Engineering
Indian Institute of Technology Bombay
Mumbai, India

Revised open edition February 2009

sl seoguile; SmUel HIeTSle
Glosiey Bevertddn Oessllue - Cleeltafidlest
ALt SHevweerlw SHuGs B
LTt GGAD GBS -

-Naladi
circa 800 A.D.

Learning is a shoreless sea; the learner's days are few,
Prolonged study is beset with a thousand ills;
With clear discrimination learn what's meet for you
Like swan that leaves the water, drinks the milk.

vi

Preface

This book has grown out of an attempt to understand the role that the
topology of an electrical network plays in its efficient analysis. The
approach taken is to transform the problem of solving a network with
a given topology, to that of solving another with a different topology
(and same devices), but with additional inputs and constraints. An
instance of this approach is network analysis by multiport decompo-
sition - breaking up a network into multiports, solving these in terms
of port variables and finally imposing the port connection conditions
and getting the complete solution. The motivation for our approach
is that of building more efficient circuit simulators, whether they are
to run singly or in parallel. Some of the ideas contained in the book
have already been implemented - BITSIM, the general purpose circuit
simulator built at the VLSI Design Centre, I.I.T. Bombay, is based on
the ‘topological hybrid analysis’ contained in this book and can further
be adapted to use topological decomposition ideas.

Many combinatorial optimization problems arise naturally when one
adopts the above approach, particularly the hybrid rank problem and
its generalizations. The theory required for the solution of these prob-
lems was developed by electrical engineers parallel to, and independent
of, developments taking place in the theory of matroids and submod-
ular functions. Consider, for instance, the work of Kishi and Kajitani,
Iri, Ohtsuki et al in the late 60’s on principal partition and its appli-
cations, independent of Edmonds’ work on matroid partitions (1965).
There is a strong case for electrical network topologists and submod-
ular function theorists being aware of each others’ fields. It is hoped
that the present book would fill this need.

The topological network analysis that we have considered is to be

vii

Viil

distinguished from the kind of work exemplified by ‘Kirchhoft’s Third
Law’ which has been discussed in many books published in the 60’s
(eg. the book by Seshu and Reed [Seshu+Reed61]). In the 70’s much
interesting work in this area was done by Iri, Tomizawa, Recski and
others using the ‘generality assumption’ for linear devices. Details
may be found, for instance, in Recski’s book [Recski89]. In the present

book devices play a very secondary role. Mostly we manipulate only
Kirchhoft’s Laws.

Submodular functions are presented in this book adopting the ‘ele-
mentary combinatorial” as opposed to the ‘polyhedral” approach. Three
things made us decide in favour of the former approach.

e [t is hoped that the book would be read by designers of VLSI
algorithms. In order to be convincing, the algorithms presented
would have to be fast. So very general algorithms based on the
polyhedral approach are ruled out.

e The polyhedral approach is not very natural to the material on
Dilworth truncation.

e There is an excellent and comprehensive monograph, due to
S.Fujishige, on the polyhedral approach to submodular functions;
a book on polyhedral combinatorics including submodular func-
tions from A.Schrijver is long awaited.

In order to make the book useful to a wider audience, the material
on electrical networks and that on submodular functions are presented
independently of each other. A final chapter on the hybrid rank prob-
lem displays the link. An area which can benefit by algorithms based
on submodular functions is that of CAD for VLSI - particularly for
building partitioners. Some space has therefore been devoted to parti-
tioning in the chapter on Dilworth truncation.

The book is intended primarily for self study - hence the large num-
ber of problems with solutions. However, most of the material has
been tested in the class room. The network theory part has been used
for many years for an elective course on ‘Advanced Network Analysis’
- a third course on networks taken by senior undergraduates at the EE
Dept, I.LILT. Bombay. The submodular function part has been used

X

for special topics courses on combinatorics taken by doctoral students
in Maths and Computer Science. This material can be covered in a
semester if the students have a prior background in elementary graphs
and matroids, leaving all the starred sections and relegating details
and problems to self study.

It is a pleasure to acknowledge the author’s indebtedness to his many
colleagues, teachers and friends and to express his heartfelt gratitude.

He was introduced to electrical network theory by Professors R.E.Bedford
and K.Shankar of the EE Dept., [.I.T. Bombay, and to graph theory by
Professor M.N.Vartak of the Dept. of Maths, [.I.T. Bombay. Professor
Masao Iri, formerly of the University of Tokyo, now of the University
of Chuo, has kept him abreast of the developments in applied matroid
theory during the last two decades and has also generously spared time
to comment on the viability of lines of research.

He has benefited through interaction with the following: Professors
S.D.Agashe,
P.R.Bryant,A.N.Chandorkar,M.Chandramouli,C.A.Desoer,A.Diwan,S.Fujishige,
P.L.Hammer,M.V.Hariharan,Y.Kajitani,M.V. Kamath,M.S.Kamath,E.L.Lawler,
K.V.V. Murthy,T.Ozawa,S.Patkar,S.K.Pillai,P.G.Poonacha,G.N.Revankar,S.Roy,
S.C.Sahasrabudhe,P.C.Sharma,M.Sohoni,V.Subbarao,N.J.Sudarshan,V.K.Tandon,
N.Tomizawa, P.P.Varaiya, J.M.Vasi.

The friends mentioned below have critically read parts of the manuscript:
S.Batterywala, A.Diwan, N.Jayanthi, S.Patkar, P.G.Poonacha and the
'96 batch students of the course ‘Advanced Network Analysis’. But for
Shabbir Batterywala’s assistance (technical, editorial, software consul-
tancy), publication of this book would have been delayed by many
months.

Mr Z.A.Shirgaonkar has done the typing in Latex and Mr R.S.Patwardhan
has drawn the figures.

The writing of this book was supported by a grant (HN/EE/TXT/95)
from the C.D.P., I.I.T. Bombay.

The author is grateful to his mother Lalitha Iyer, wife Jayanthi and
son Hari for their continued encouragement and support.

Note to the Reader

This book appears too long because of two reasons:

e it is meant for self study - so contains a large number of exercises
and problems with solutions.

e it is aimed at three different types of readers:

— Electrical engineers interested in topological methods of net-
work analysis.

— Engineers interested in submodular function theory

— Researchers interested in the link between electrical net-
works and submodular functions.

To shorten the book for oneself it is not necessary to take recourse
to drastic physical measures. During first reading all starred sections,
starred exercises and problems may be omitted. If the reader belongs
to the first two categories mentioned above, she would already find
that only about two hundred pages have to be read.

Sections, exercises and problems have been starred to indicate that
they are not necessary for a first reading. Length of the solution is
a fair indicator of the level of difficulty of a problem - star does not
indicate level of difficulty. There are only a handful of routine (drill
type) exercises. Most of the others require some effort. Usually the
problems are harder than the exercises.

Many of the results, exercises, problems etc. in this book are well
known but cannot easily be credited to any one author. Such results
are marked with a ‘(k)’.

x1

xii
Electrical Engineers interested in topological methods

Such readers should first brush up on linear algebra (say first two
chapters of the book by Hoffman and Kunze [Hoffman+Kunze72]),
read a bit of graph theory (say the chapter on Kirchhoff’s laws in the
book by Chua et al [Chua+Desoer+Kuh87] and the first four chapters
of the book by Narsingh Deo [Narsingh Deo74]) and then read chapters
2 to 8. The chapter on graphs contains material on contraction and
restriction which is not easily available in textbooks on circuit theory,
but which is essential for an understanding of subsequent chapters. So
this chapter should be read carefully, particularly since it is written
tersely. The chapter on matroids is optional. The chapter on electrical
networks should be easy reading but scanning it is essential since it fixes
some notation used subsequently and also because it contains material
motivating subsequent chapters, e.g. multiport decomposition. The
next three chapters contain whatever the book has to say on topological
network analysis.

Engineers interested in submodular functions

Such readers should read Chapters 2 to 4 and Chapters 9 to 13 and
the first four sections of Chapter 14. If the reader is not interested in
matroids he may skip material (chapters, sections, exercises, examples)
dealing with them without serious loss of continuity. This would mean
he would have to be satisfied with bipartite graph based instances of
the general theory. The key chapter for such a reader is Chapter 9.
This is tersely written-so should be gone through carefully.

Researchers interested in the link between submodular func-
tions and electrical networks

The key chapter for such a reader is Chapter 14. To read the first four
sections of this chapter the reader has to be familiar with Chapters
5, 6, 7 from the electrical networks part and the unstarred sections of
the chapters on submodular functions. If he has some prior familiarity
with submodular functions and electrical networks it is possible to
directly begin reading the chapter picking up the required results on

X111

submodular functions as and when they are referred to in the text.
To read the last section of the chapter, familiarity with Chapter 8 is
required.

Comments on Notation

Sometimes, instead of numbering equations, key statements etc., we
have marked them with symbols such as (x), (xx), (1/). These marks
are used over and over again and have validity only within a local area
such as a paragraph, a proof or the solution to a problem.

In some cases, where there is no room for confusion, the same symbol
denotes different objects. For instance, usually B denotes a bipartite
graph. But in Chapter 4, B denotes a base of a matroid- elsewhere a
base is always denoted by b. The symbol E is used for the edge set of
a graph, in particular a bipartite graph. But F(X), X C V(G) denotes
the set of edges with both endpoints within X, while F(X), X C Vp,
in the case of a bipartite graph, denotes the set of all vertices adjacent
only to vertices in X.

We have often used brackets to write two statements in one.
Example: We say that set X is contained in Y (properly contained
in Y), if every element of X is also a member of Y (every element of
X is a member of Y and X # Y') and denote it by X C Y (X CY).
This is to be read as the following two statements.

i. We say that set X is contained in Y, if every element of X is
also a member of Y and denote it by X C Y.

ii. We say that set X is properly contained in Y, if every element
of X is a member of Y and X # Y and denote it by X C Y.

X1v

List of Commonly Used Symbols

Sets, Partitions, Partial Orders

{e1,€9,...,e,}
{z; i el}
(r;:i€1)

reX
g X
Vo orVx
Jx
XCY
XcCcY
XUY
XNy
XWY

Jx.
=1

i,
=1

X-Y

X

X xY

XoYv

25

| X |

(P,x)

(P, <)

11

Iy

Px
nm<ir

set whose elements are ey, es, ..., e,

set whose members are x;, i € I

a family (used only in Chapters 2 and 11)

element x belongs to set X

element x does not belong to set X
for all elements x

there exists an element x

set X is contained in set Y

set X 1s properly contained in set Y
union of sets X and 'Y

intersection of sets X and'Y

disjoint union of sets X and 'Y

union of the sets X;

disjoint union of the sets X;

set of elements in X but not in'Y
complement of X

cartesian product of sets X and 'Y
direct sum of sets X and 'Y
collection of subsets of S

stze of the subset X

preorder on P

partial order on P

partition 11

partition that has N as a block and all
blocks except N as singletons
collection of all partitions of X

partition II is finer than I’

ImvIr
AT

finest partition coarser than both II and II'

coarsest partition finer than both 11 and II'

XV

Xvi

Functions,Set Functions and Operations on Functions

fC)

f1Z(:), f(-) on S
9f(X),g0 f(X)
(1@ f2)()
frusm(+), f() on 2,

FIX(C), f(-) on 2°
foX(-), f(-) on 2°
FAC), () on 2°

F(), f(:) on 2°

P, f(-) on 25

P}‘f,f(-) on 2°

Vectors and Matrices

F.RCR,

i

function f(-)

restriction of f(-)to Z C S

9(f(X))

direct sum of functions fi(-) and fo(-)
fusion of f(-) relative to 11

i.e., frusn(Xy)

/(U T X,

TeX;
restriction of f(-)to 2%, X C S
(usually called) restriction of f(-) to X
contraction of f() to X
FoX(Y) = f((S - X)UY) - (S - X)
contramodular dual of f(-)

FUX) = £(S) - F(S - X)

comodular dual of f(-)

(with respect to weight function «(-))
F(X) = a(X) — (/(5) - £(5 — X))
polyhedron associated with f(-)
xePriffz(X)< f(X) VXCS
dual polyhedron associated with f(-)
xePliff o(X)> f(X) VXCS

field F, real field, complex field,

set of nonnegative reals

summation of elements x;

vector f

vector space V

vector space complementary orthogonal to V

direct sum of x1 and x5 (vector obtained by

Vs ®@Vr, SNT =10

Xvil

adjoining components of vectors x; and Xs)
direct sum of Vg and Vr (obtained by
collecting all possible direct sums of vectors
in Vs and Vr)

XViil

dimenston of vector space V
r(V+V)—r(yny)

i, 7" entry of matriz A
transpose of matrixz A
mverse of matriz A

dot product of vectors f,g
row space of A

column space of A

determainant of A

Graphs and Vector Spaces

GopenT

GshortT

g-T

graph G

vertex set of G

edge set of G

a tree

a forest

cotree (E(G) —t) of G

coforest (E(G) — f) of G

f — circuit of e with respect to f

f — cutset of e with respect to f

rank of G (= number of edges in a
forest of G)

nullity of G (= number of edges in a
coforest of G)

graph obtained from G by opening and
removing edges T

graph obtained from G by shorting and
removing edges T

graph obtained from Gopen(E(G) —T) by

removing isolated vertices,

gxT

X1X

restriction of G toT
graph obtained from Gshort(E(G) —T) by
removing isolated vertices,

contraction of G toT

XX

<= R
053¢

B(Vy, Vg, E)

KCFE
KCL
KVE
KVL
Vi(G)
Vo(G)
V.-T

VYV xT
&(T) for v

Flow Graphs

Gy is 2 — isomorphic to Gy

r(G-T)

v(G xT)

hypergraph H

bipartite graph with left vertex set Vp,
right vertex set Vi and edge set E
(usually) incidence matrix

reduced incidence matrix

fundamental cutset matrixz of forest f
fundamental circuit matrix of forest f
Kirchhof f's current equations
Kirchhof f's current Law

Kirchhof f's voltage equations
Kirchhof f's voltage Law

solution space of KCFE of G

solution space of KVE of G
restriction of vector space V to T

contraction of vector space ¥V to T

r(V-T)—r(VxT)

flow graph on graph G with capacity
function c, source s, sink t

cut(A, B)

capacity of cut(A, B)

flow across cut(A, B), from Ato B

value of flow f

flowgraph associated with bipartite graph B

with source to left vertex capacity cr,, right

poel

vertex to sink capacity cg

and (left to right) bipartite graph edge capacity oo

xxil
Matroids
M= (S,7)

M-T
MxT
MV M,y

matroid M

collection of independent sets

dual of the matroid M

(only in Chapter 4) base of a matroid

f —circuit of e with respect

to base B

f—bond of e with respect to base B

rank of the subset T in the given matroid
rank of the underlying set of the matroid
rank of the subset T in the dual of the given matroid
rank of the underlying set in the dual matroid
polygon matroid of the graph G (bases

are forests)

bond matroid of the graph G (bases

are coforests)

matroid whose bases are maximal independent
columns of a representative matrix of V

dual of M(V)

span (closure) of the subset X in the matroid
restriction of M toT

contraction of M toT

union of matroids My and M,

Electrical Networks

voltage vector

current vector

electrical network

electrical multiport with port set P and
remaining edge set A

set of wvoltage sources in the network

xx1i1

J set of current sources in the network
R resistance, also collection of resistors or

‘current controlled voltage' elements in the network

XXiv

G conductance, also collection of
‘voltage controlled current’ elements
in the network

L nductance, also collection of inductors
in the network

L mutual inductance matrixz

Q

capacitance, also collection of capacitors

in the network

vevs voltage controlled voltage source

vees voltage controlled current source
ccus current controlled voltage source

cces current controlled current source

D device characteristic
Dap (v/A,i/B), where v,i € D
Da Daa
Dag x Dpg {(v,i), v=va P vp,i=ipPig
where (va,ip) € Dap, (vp,ig) € Dpg}

OAB {(va,ip), va is any vector on A, ip

is any vector on B}

Implicit Duality

Ksp < Kp {fs: fs=fsp/S, fsp € Ksp s.t. fsp/P € Kp}
Ks, < Ks, {f:£=1£/(51—95) @1f/(S2—51), f1 € Kg,,
f, € s, and £,/S1 N Sy =£,/5, N Sy}
Ks,=Ks, {f:£=1£/(5S1—95) @f/(S2—51), f| € Kg,,
f, € Ks, and £;/S1 N Sy = —£,/51 N Sy}
<> a q — hilinear operation, usually dot product
Kc* collection of vectors q — orthogonal to those in K
dv, V') r(W+V)—r(yny)

KP the collection of wvectors polar to those in K

XXV

K (only in Chapter T) the collection of vectors
integrally dual to those in K

XXV1

Multiport Decomposition

Verps s Venr: Vp) k — multiport decomposition ofVg

(i.e., (@ VEiPi) > Vp = VE)

((Ve;p,)i; Vp) (Vep, 5 Ve, Ve)
((VEij)jEIS VP,) (: ‘VEij Ty VPI)
where j € I C{1,---,k} and Py = Uje/P;
(Vep, P) vector space on E'W P with ports P
VE,015 5 VEQL Vor) matched or skewed decomposition of (Vgp, P)

Functions Associated with Graphs and Bipartite Graphs

V(X),X C E(G) set of endpoints of edges X in
graph G
INX),X CV(G) set of vertices adjacent to vertices
in vertex subset X in graph G
I'y(X), X CVp in B=(V,Vgr, E), set of vertices
adjacent to vertices in X
Fr(X), X C Vg in B=(Vy,Vgr, E), set of vertices
adjacent to vertices in X
E(X),X CV(9) set of edges with both endpoints
in vertex subset X in graph G
E(X),XCV, inB=(Vy, Vg, FE) set of vertices
adjacent omly to vertices in X
Er(X),X C Vg in B=(Vy, Vg, E) set of vertices
adjacent omly to vertices in X
I(X),X CV(G9) set of edges with atleast one
endpoint in vertex subset X in graph G
cut(X), X CV(G) set of edges with exactly one
endpoint in vertex subset X in graph G
w(-) usually a weight function

wr(+), wr(+) weight functions on the left vertex set

XxXVvil

and on the right vertex set respectively

of a bipartite graph

XXViil

Convolution and PP

fxg(X)

B)\ﬁg? f()vg(> on 2S

B)

XA X,
II(A)

I,

(I, >7)

(Z)> E17 T Et
)\17 Ty)\t
(>r)

Truncation and PLP
F(IT)
()

H)\17H)\27) H)\w HAt
,fus-l_[v Ir' > II

convolution of f(-) and g(-)
(minycx[f(Y) +g(X =Y)])
collection of sets which minimize

M (X) + g(S — X) over subsets of S
B)\f,g

maximal and minimal members of B

the partition of XA~ Xy induced by B

the partition of S obtained by taking the

union of all the TI(\)

partition partial order pair

associated with (f(-),g(+))

(usually) the principal sequence of (f(-),9(-))
(usually) decreasing sequence of critical values

refined partial order associated with (f(-),g(+))

f(V;)
fi() =0,
f(X) = minnep, (Y [(X0))

X, ell
collection of all partitions of S that
minimize f— A(+)

Lys

mazximal and minimal member partitions in Ly

(usually) decreasing sequence of critical
PLP values of f(+)
principal sequence of partitions of f(-)

partition of II with Ny,s as one of its blocks

of f the members of Ny,s are the set of blocks of 11

(Hfus)ea:p.l'[

XXIX

contained in a single block of TI'
(I4ys, a partition of 11) a partition with N
as a block, iff N is the union of all blocks of

IT which are members of a single block of 1y,

XXX

Contents

Mathematical Preliminaries

2.2 Vectors and Matrices

2.3 Linear Inequality Systems

The Kuhn-Fourier Theorem

Linear Programming

2.4 Solutions of Exercises

2.5 Solutions of Problems

1 Introduction
2
2.1 Sets
2.3.1
2.3.2
3 Graphs

3.1 Introduction

3.2 Graphs: Basic Notions

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

Graphs and Subgraphs
Connectedness
Circuits and Cutsets
Trees and Forests
Strongly Directedness
Fundamental Circuits and Cutsets

Orientation

19
19
21
31
31
35
38
38

XxXxil

3.3

3.4

3.5
3.6

CONTENTS

3.2.8 Isomorphism 53
3.2.9 Cyclically connectedness 54
Graphs and Vector Spaces 55
3.3.1 The Circuit and Crossing Edge Vectors o8
3.3.2 Voltage and Current Vectors 59
3.3.3 Voltage and Current Vector Spaces and Telle-
gen’s Theorem 61
3.3.4 Fundamental cutset matrix of a forest f 62
3.3.5 Fundamental circuit matrix of a forest f 64
Basic Operations on Graphs and Vector Spaces 67
3.4.1 Restriction and Contraction of Graphs 68
3.4.2 Restriction and Contraction of Vector Spaces. . 71
3.4.3 Vector Space Duality 73
3.4.4 Relation between Graph Minors and Vector Space
Minors 74
3.4.5 Representative Matrices of Minors 76
3.4.6 Minty’s Theorem 79
Problemso 81
Graph Algorithms L. 87
3.6.1 Breadth First Search 90
3.6.2 Depth First Search 91
3.6.3 Minimum Spanning Tree 93
3.6.4 Shortest Paths from a Single Vertex 94
3.6.5 Restrictions and Contractions of Graphs 96
3.6.6 Hypergraphs represented by Bipartite Graphs . 97
3.6.7 Preorders and Partial Orders 97
3.6.8 Partitionso 99
3.6.9 The Max-Flow Problem 101

3.6.10 Flow Graphs Associated with Bipartite Graphs 107

CONTENTS xxxiil

3.7 Duality 111
3.8 Notes. 116
3.9 Solutions of Exercises 0. 116
3.10 Solutions of Problems 132
4 Matroids 139
4.1 Introduction oo 139
4.2 Axiom Systems for Matroids 139
4.2.1 Independence and Base Axioms 140
4.2.2 Rank Axioms 142
4.2.3 Circuit Axioms 144
4.2.4 Closure Axioms 146

4.3 Dual of a Matroid 148
4.4 Minors of Matroids 153
4.5 Connectedness in Matroids 160
4.5.1 Duality for Matroids 162

4.6 Matroids and the Greedy Algorithm 164
47 Notes. o 167
4.8 Solutions of Exercises 168
5 Electrical Networks 177
5.1 Imtroduction 177
5.2 In Terms of Multiterminal Devices 178
5.3 In Terms of 2-Terminal Devices 180
5.4 Standard Devices L. 181
5.5 Common Methods of Analysis 190
5.5.1 Nodal Analysis 190
5.5.2 Loop Analysis L. 193

5.5.3 Modified Nodal Analysis 196

XXXV CONTENTS

5.5.4 Sparse Tableau Approach 201

5.6 Procedures used in Circuit Simulators 201
5.6.1 Example to Illustrate Working of Circuit Simu-

lators. 201

5.6.2 Working of General Purpose Circuit Simulators 203

5.7 State Equations for Dynamic Networks 209

5.8 Multiports in Electrical Networks 212
5.8.1 An informal Description of Multiport Decompo-

sition 213

5.8.2 Thevenin-Norton Theorem 215

5.9 Some Elementary Results of Network Theory 218

5.10 Notes. oo o 220

5.11 Solutions of Exercises 220

6 Topological Hybrid Analysis 227

6.1 Introduction 227

6.2 Electrical Network: A Formal Description 228

6.2.1 Static and Dynamic Electrical Networks 229

6.2.2 Device Decoupling 231

6.3 Some Basic Topological Results 233
6.3.1 Effect of Voltage Unconstrained and Current Un-

constrained Devices on the Topological Constraints233

6.3.2 Voltage and Current shift 236

6.4 A Theorem on Topological Hybrid Analysis 244

6.4.1 The Networks Nay and Ngx 244

6.5 Structure of Constraints and Optimization 250

6.5.1 Essential Structure of the Constraints 250

6.5.2 Selection of Minimal Land K 251

6.5.3 Solution of Linear Networks by Topological Hy-
brid Analysiso 257

CONTENTS XXXV

6.5.4 Decomposition procedure for Nap, Nprx 260
6.5.5 Hybrid Analysis Equations for Linear Networks 262
6.5.6 The Hybrid Rank 266
6.6 Notes. 269
6.7 Solutions of Exercises 269
7 The Implicit Duality Theorem and Its Applications 277
7.1 The Vector Space Version 277
7.1.1 The Implicit Duality Theorem: Orthogonality
Case 279
7.1.2 Matched and Skewed Sums. 282
7.2 *Quasi Orthogonality 285
7.3 Applications of the Implicit Duality Theorem 288
7.3.1 Ideal Transformer Connections 289
7.3.2 Multiport Decomposition 290
7.3.3 Topological Transformation Of Electrical Networks292
7.3.4 The Adjoint of a Linear System 297
7.3.5 Rank, Nullity and the Hybrid rank 302
7.4 *Linear Inequality Systems 303
7.4.1 Applications of the Polar Form 308
7.5 *Integrality Systems 309
7.6 Problems. o0 316
7.7 Notes. 321
7.8 Solutions of Exercises 321
7.9 Solutions of Problems 334
8 Multiport Decomposition 351
8.1 Imtroductiono 351
8.2 Multiport Decomposition of Vector Spaces 352

XXXVi CONTENTS
8.3 Analysis through Multiport Decomposition 360
8.3.1 Rewriting Network Constraints in the Multiport
Form 361

8.3.2 An Intuitive Procedure for Solution through Mul-
tiports 362
8.4 Port Minimization 367
8.4.1 An Algorithm for Port Minimization 367
8.4.2 Characterization of Minimal Decomposition . . 373

8.4.3 Complexity of Algorithm (Port minimization 1)

for Graphic Spaces and Sparsity of the Output
Matriceso oo 380

8.4.4 *Minimal Decomposition of Graphic Vector Spaces

to make Component Spaces Graphic 382
8.5 *Multiport Decomposition for Network Reduction . . . 386
8.6 Problems. 393
8.7 Solutions of Exercises 0. 397
8.8 Solutions of Problems 409
9 Submodular Functions 419
9.1 Imtroduction 419
9.2 Submodularity 420
9.3 Basic Operations on Semimodular Functions 425
9.4 *Other Operations on Semimodular Functions 432
9.5 Polymatroid and Matroid Rank Functions 438
9.6 Connectedness for Semimodular Functions 444
9.7 *Semimodular Polyhedra 447
9.8 Symmetric Submodular Functions 457
9.9 Problems. 463
9.10 Notes. 467

9.11 Solutions of Exercises 467

CONTENTS XXX Vil

9.12 Solutions of Problems 477
10 Convolution of Submodular Functions 489
10.1 Introduction 489
10.2 Convolution 490
10.2.1 Formal Properties 490
10.2.2 Exampleso 492
10.2.3 Polyhedral interpretation for convolution 495
10.3 Matroids, Polymatroids and Convolution 497
10.4 The Principal Partition 500
10.4.1 Introduction 500
10.4.2 Basic Propertiesof PP 501
10.4.3 Symmetry Properties of the Principal Partition
of a Submodular Function 508
10.4.4 Principal Partition from the Point of View of
Density of Sets 510
10.4.5 Principal Partition of f*(-) and f*g(-) 513
10.4.6 The Principal Partition associated with Special
Minorso 519
10.5 *The Refined Partial Order of the Principal Partition . 525
10.6 Algorithms for PP 533
10.6.1 Basic Algorithms 533
10.6.2 *Building the refined partial order given (IL,,, >).539
10.6.3 Algorithm Convolveg(wr(I'p),wr) 540
10.6.4 Example: PP of (|T'z|(+),wr()) 542
10.7 *Aligned Polymatroid Rank Functions 545
10.8 Notes. o o 558
10.9 Solutions of Exercises 559

10.10Solutions of Problems 576

XXXViil CONTENTS

11 Matroid Union 585
11.1 Introductiono 585
11.2 Submodular Functions induced through a Bipartite Graph585
11.3 Matroid Union: Algorithm and Structure 594

11.3.1 Imtroduction 594

11.3.2 The Algorithm 595
11.3.3 Justification and complexity of Algorithm Ma-

troid Union 597

11.3.4 Structure of the Matroid Union 600

11.4 PP of the Rank Function of a Matroid 607

11.4.1 Constructing B)m|~| 607

11.4.2 Complexity of constructing B)\T,H 609

11.4.3 Example L. 612

11.5 Notes. o o o oo 616

11.6 Solutions of Exercises 616

12 Dilworth Truncation of Submodular Functions 623
12.1 Introduction 623
12.2 Dilworth Truncation 624

12.2.1 Formal Properties 624
12.2.2 Examples oL 631
12.3 The Principal Lattice of Partitions 634
12.3.1 Basic Properties of the PLP 634

12.3.2 PLP from the Point of View of Cost of Partitioning644
12.4 *Approximation Algorithms through PLP for the Min

Cost Partition Problem 652
12.5 The PLP of Duals and Truncations 657
12.5.1 The PLP of Duals 658

12.5.2 The PLP of the Truncation 660

CONTENTS XXXIX

12.5.3 The Cotruncation Operation and the Principal

Lattice of Copartitions 663

12.6 *The Principal Lattice of Partitions associated with Spe-
cial Fusionso oo 665
12.7 Building Submodular Functions with desired PLP . . . 669
128 Notes o . . o 673
12.9 Solutions of Exercises 673
12.10Solutions of Problems 688

13 Algorithms for the PLP of a Submodular Function 691

13.1 Introduction 691
13.2 Minimizing the Partition Associate of a Submodular
function oo 692
13.2.1 Find (Strong) Fusion Set 694
1322 Min(f,S) 696
13.3 Construction of the P-sequence of Partitions 699
13.4 Construction of the DTL 704
13.5 Complexity of construction of the PLP 707
13.6 Construction of the PLP of the dual 708
13.7 PLP Algorithms for (wgl')(-) and —(wgrEL)(-) 708
13.7.1 PLP of (wgl')(-) 709
13.7.2 PLP of (—wrEL)(:) o 715
13.8 Structural Changes in Minimizing Partitions 721
13.9 Relation between PP and PLP 726
13.10Fast Algorithms for Principal Partition of the rank func-
tionofagraph oL 733
13.11Solutions of Exercises 735
14 The Hybrid Rank Problem 743

14.1 Introduction 743

xl

14.2
14.3

14.4

14.5

14.6

CONTENTS
The Hybrid Rank Problem - First Formulation 744
The Hybrid Rank Problem - Second Formulation 749
14.3.1 Introduction 749
14.3.2 Membership Problem with Matroid Expansion . 750
14.3.3 Membership Problem with Graphic Matroid Ex-
pansion 758
14.3.4 PLP of the rank function of a matroid 765
The Hybrid Rank Problem - Third Formulation 766
14.4.1 Introduction 766
14.4.2 Fusions and Fissions 769
14.4.3 Relation between the Hybrid Rank of a Graph
and its Hybrid Rank relative to a Partition . . . 776
The Hybrid Rank Problem - Fourth Formulation. . . . 779
14.5.1 Introduction 779
14.5.2 Generalized Fusions and Fissions 781

14.5.3 Port Decomposition and Generalized Hybrid Rank784

14.5.4 Relation between the Hybrid Rank of a Repre-
sentative Matrix of a Vector Space and its Gen-
eralized Hybrid Rank relative to a Partition

14.5.5 Nesting Property of Optimal Subspaces

Solutions of Exercises

789
795

Chapter 1

Introduction

Topological Methods

The methods described in this book could be used to study the prop-
erties of electrical networks that are independent of the device charac-
teristic. We use only topological constraints, namely, KCL and KVL.
Our methods could, therefore, be called ‘network topological’. How-
ever, in the literature, ‘topological’ is used more loosely for all those
results which use topological ideas, e.g. Kirchhoff’s Third Law, where
the admittance of a resistive multiport is obtained in terms of prod-
ucts of admittances present in all the trees and certain special kinds
of subtrees of the network. These latter results, though important, are
not touched upon in this book. Here our aim has been to

e give a detailed description of ‘topological methods in the strict
sense’ for electrical networks,

e present applications:

— to circuit simulation and circuit partitioning

— to establish relations between the optimization problems
that arise naturally, while using these methods, to the cen-
tral problems in the theory of submodular functions.

2 1. INTRODUCTION

Applications

There are two kinds of applications possible for the approach taken in
this book:

i. To build better (faster, numerically more rugged, parallelizable)
circuit simulators. Typically, our methods will permit us to speak as
follows.

‘Solution of a network N containing arbitrary devices
15 equivalent to solution of topologically derived networks
Ni, -+, N under additional topological conditions.’

An obvious application would be for the (coarse grained) parallelization
of circuit simulation. We could have a number of machines My, - - -, M},
which could run general/special purpose circuit simulation of the de-
rived networks N7, - -+, M. The central processor could combine their
solutions using the additional topological conditions. Optimization
problems would arise naturally, e.g. ‘how to minimize the additional
topological conditions?’

There are more immediate applications possible. The most popular
general purpose simulator now running, SPICE, uses the modified
nodal analysis approach. In this approach the devices are divided
into two classes, generalized admittance type whose currents can be
written in terms of voltages appearing somewhere in the circuit, and
the remaining devices whose current variables will figure in the list of
unknowns. The final variables in terms of which the solution is carried
out would be the set of all nodal voltages and the above mentioned
current variables. The resulting coefficient matrix is very sparse but
suffers from the following defects:

e the matrix often has diagonal zeros;

e even for pure RLC circuits the coefficient matrix is not positive
definite;

e if the subnetwork containing the admittance devices is discon-
nected, then the corresponding principal submatrix is singular.

These problems are not very severe if we resort to sparse LU meth-
ods [Hajj81]. However, it is generally accepted that for large enough
networks (= 5000 nodes) preconditioned conjugate gradient methods
would prove superior to sparse LU techniques. The main advantage of
the former is that if the matrix is close to a positive definite matrix,
then we can bound the number of iterations. The above defects make
MNA ill suited to conjugate gradient methods.

There is a simple way out - viz. to use hybrid analysis (partly loop
and partly nodal), where we partition elements into admittance type
and impedance type. The structure of the coefficient matrix that is
obtained in this latter case is well suited to solution obtained by the
conjugate gradient technique but could easily, for wrong choice of vari-
ables, be dense. A good way of making the matrices sparse is to use the
result that we call the ‘N, — Nk theorem’ (see Section 6.4). Here
the network is decomposed into two derived networks whose solution
under additional topological (boundary) conditions is always equiva-
lent to the solution of the original network. We select N4y, so that it
contains the admittance type elements and Mgy so that it contains
the impedance type elements. We then write nodal equations for N4y,
and generalized mesh type equations for Nzg. The result is a sparse
matrix with good structure for using conjugate gradient methods - for
instance for RLC networks, after discretization, we would get a posi-
tive definite matrix and for most practical networks, a large submatrix
would be positive definite. A general purpose simulator BITSIM has
been built using these ideas [Roy+Gaitonde+Narayanan90].

The application to circuit partitioning arises as a biproduct when we
try to solve a version of the hybrid rank problem using the operation
of Dilworth truncation on submodular functions. Many problems in
the area of CAD for VLSI need the underlying graph/hypergraph to
be partitioned such that the ‘interaction’ between blocks is minimized.
For instance we may have to partition the vertex set of a graph so that
the number of lines going between blocks is a minimum. This kind of
problem is invariably NP-Hard. But, using the idea of principal lattice
of partitions (PLP), we can solve a relaxation of such problems exactly.
This solution can then be converted to an approximate solution of
the original problem [Narayanan91], [Roy+Narayanan91], [Patkar92],
[Roy93],[Roy+Narayanan93a] [Narayanan+Roy+Patkar96].

4 1. INTRODUCTION

ii. A second kind of application is to establish strong relationships
between electrical networks and combinatorial optimization, in partic-
ular, submodular function theory. There are a number of optimization
problems which arise when we view electrical networks from a topo-
logical point of view. These motivate, and are solved by, important
concepts such as convolution and Dilworth truncation of submodular
functions. The hybrid rank problem and its generalizations are impor-
tant instances. Other algorithmic problems (though not entirely topo-
logical) include the solvability of electrical networks under ‘generality’
conditions (see for instance [Recski+Iri80]). It is no longer possible
for electrical engineers to directly apply well established mathematical
concepts. They themselves often have to work out the required ideas.
The principal partition is a good instance of such an idea conceived
by electrical engineers. A nice way of developing submodular function
theory, it appears to the author, is to look for solutions to problems
that electrical networks throw up.

We now present three examples which illustrate the concepts that
we will be concerned with in network analysis.

The following informal rule should be kept in mind while reading
the examples (see Theorem 6.3.1 and also the remark on page 235).

Let N be an electrical network (not necessarily linear)
with the set of independent current sources Ej and the set
of independent voltage sources E¢. We assume that the
independent source values do not affect the device charac-
teristic of the remaining devices. Then, the structure of the
constraints of the network, in any method of analysis, (as
far as variables other than voltage source currents and cur-
rent source voltages are concerned) is that corresponding to
setting the independent sources to zero, i.e., short circuiting
voltage sources and open circuiting current sources. In par-
ticular, for linear networks, the structure of the coefficient
matrix multiplying the unknown vector is that correspond-
ing to the network obtained by short circuiting the voltage
sources and open circuiting the current sources.

Example 1.0.1 The N4; — Ngx method:
Consider the electrical network whose graph is given in Figure 1.1. We

10

NBK

Figure 1.1: To illustrate the N4, — Ngx Method

6 1. INTRODUCTION

assume that the devices associated with branches {1,2,3,4,5} (= A) are
independent of those associated with branches {6,7,8,9,10,11} (= B).
Then we can show that computing the solution of the network in N
i Figure 1.1 is always equivalent to the simultaneous computation of
the solutions of the networks Nar, Ngk, in the same figure, under the
boundary conditions

7;11 n NAL - 2.11 n NBK-

Vs in NAL = Us in NBK-

Here, in N4y, the devices in A are identical to the corresponding de-
vices in N'. Similarly in Nk, devices in B are identical to the corre-
sponding devices in N'. The subset L C B is a set of branches which,
when deleted, breaks all circuits intersecting both A and B. The sub-
set K C A is a set of branches which, when contracted, destroys all
circuits intersecting both A and B. The graph of N4y, is obtained from
that of N by short circuiting the branches of B — L. We denote it by
G x (AUL). In this case L = {11}. The graph of Npk is obtained
from that of N by open circuiting branches of A— K. We denote it by
G . (BUK). In this case K = {5}.

If the network is linear and A and B are of conductance and impedance
type respectively, then we can, if we choose, solve Nar, by nodal anal-
ysis and Npg by loop analysis. So this method can be regarded as a
topological generalization of ‘Hybrid Analysis.’

If we so desire, we could try to choose Ny, or Npx such that they
appear (when ip, vy are set to zero) in several electrically disconnected
pieces. So the method can be regarded as a technique of ‘Network Anal-
ysts by Decomposition’.

Now we mention some related combinatorial optimization problems.

i. Given a partition of the edges into A and B how to choose L, K
mintmally - this is easy.

i1. Suppose the network permits arbitrary partitions into A and B
and we choose nodal variables for Nag and loop variables for
Npr. Which partition would give the coefficient matriz of least
size?

It can be shown that the size of the coefficient matriz is r(G . A)+
v(Gx B), wherer(G . A),v(G x B) respectively denote the rank of
G . A and nullity of graph G x B. Minimization of this expression,
over all partitions { A, B} of the edge set E(G) of G, is the hybrid

rank problem which gave rise to the theory of principal partition.

Figure 1.2: A Network to be decomposed into Multiports

Example 1.0.2 Multiport Decomposition:

Let N be an electrical network with the graph shown in Figure 1.2. We
are given that A = {1,2---,10} and B = {11,---,24} (with devices
in A and B decoupled). The problem is to split N into two multi-
ports Nap,, Ngp, and a ‘port connection diagram’ Np,p, and solve N
by solving Nap,, Ngp,, Np,p, simultaneously. (In general this would
be a problem involving n multiports). It is desirable to choose Py, Py
mintmally. It turns out that

| P |=|P|=7(G. A —r(GxA) =r(G.B)—r(Gx B).

(Here G . A is obtained by open circuiting edges in B, while G x A is
obtained by short circuiting edges in B). In this case this number is 1.
The multiports are shown in Figure 1.5.

3 1. INTRODUCTION

Figure 1.3: Decomposition into Multiports

The general solution procedure using multiport decomposition s as
follows: Find the voltage-current relationship imposed on Py by the
rest of the network in Nap,, and on Ps, by the rest of the network in
NBgp,. This involves solution of Nap,, Ngp, in terms of some of the
current/voltage port variables of Nap, and some of the current/voltage
port variables of Npp,. The voltage-current relationships imposed on
Py, Py (as described above) are treated as their device characteristics
in the network Np, p,. When this is solved, we get the currents and
voltages of Pi, Py. Networks Nap,,Npp, have already been solved in
terms of these variables. So this completes the solution of N'. Like
the Nar, — N method (to which it is related), this is also a general
method independent of the type of network. As before, the technique is
more useful when the network is linear.

This method again may be used as a network decomposition tech-
nique (for parallelizing) at a different level. Suppose Nap, (or Npp,)
splits into several subnetworks when some of the branches Poi (Pos)
of Pi(P,) are opened and others Psi(Pss) shorted. Then, by using
1Py, (1Ppy)s Upg, (Upg,), as variables in terms of which Nap, (Npp,) are
solved, we can make the analysis look like the simultaneous solution of
several subnetworks under boundary conditions. There is no restriction
on the type of network - we only need the subnetworks to be decoupled
i the device characteristic. The optimization problem that arises nat-
urally in this case is the following:

Gwen a partition of the edges of a network N into
Ey, -+, Ey, find a collection of multiports Ng,p,, -+, Ng,p,
and a port connection diagram Np, ... p,, whose combined
KCE and KVE are equivalent to those of N, with the size
of W P; a minimum under these conditions.

This problem is solved in Chapter 8.

Remark: At an informal level multiport decomposition is an impor-
tant technique in classical network theory e.g. Thevenin-Norton Theo-
rem, extracting reactances in synthesis, extracting nonlinear elements
in nonlinear circuit theory, etc. However, for the kind of topological
theory to be discussed in the succeeding pages we need a formal defi-
nition of ports that will carry over to vector spaces from graphs. Oth-
erwise the minimization problems cannot be stated clearly, let alone

10 1. INTRODUCTION

be solved. In the example described above, it is clear that if we match
Nap, and Npp, along Py, P, we do not get back A/. A purely graph
theoretic definition of multiport decomposition would therefore not
permit the decomposition given in this particular example. Such a
definition would lead to optimization problems with additional con-
straints which have no relevance for network analysis. Further, even
after optimization according to such a definition, we would end up with
more ports than required.

o

7

N\

I\

INA

y N\
N/

AN

Figure 1.4: Network A to Illustrate the Fusion-Fission Method

Example 1.0.3 Fusion-Fission method:

Consider the network in Figure 1.4. Six subnetworks have been con-
nected together to make up the network. Assume that the devices in
the subnetworks are decoupled. Clearly the networks in Figure 1.4 and
Figure 1.5 are equivalent, provided the current through the additional
unknown voltage source and the voltage across the additional unknown
current source are set equal to zero. But the network in Figure 1.5 is
equivalent to that in Figure 1.6 under the additional conditions

lyl T2 + 23 +1=0

Ui1+Ui2+Ui3—U:0

11

Figure 1.5: A Network equivalent to N with Virtual Sources

As can be seen, the subnetworks of Figure 1.6 are decoupled except
for the common variables v and i and the additional conditions.
A natural optimization problem here is the following:

Given a partition of the edges of a graph into Ey, - - - Ey,
what is the minimum size set of node pair fusions and node
fissions by which all circuits passing through more than one
E; are destroyed?

In the present example the optimal set of operations is to fuse nodes
a and b and cut node a into ay,as as in Figure 1.5. Artificial voltage
sources are introduced across the node pairs to be fused and artificial
current sources are introduced between two halves of a split node.

It can be shown that this problem generalizes the hybrid rank prob-
lem (see Section 14.4). Its solution involves the use of the Dilworth
truncation operation on an appropriate submodular function.

We now speak briefly of the mathematical methods needed to derive
the kind of results hinted at in the above examples.

The Nar — Npx method needs systematic use of the operations
of contraction and restriction both for graphs and vector spaces and

12 1. INTRODUCTION

Figure 1.6: Network N decomposed by the Fusion-Fission Method

the notion of duality of operations on vector spaces. These have been
discussed in detail in Chapter 3. The N,;, — Npg method itself is
discussed in Chapter 6.

The multiport decomposition method requires the use of the ‘Im-
plicit Duality Theorem’. This result, which should be regarded as a
part of network theory folklore, has received too little attention in the
literature. We have tried to make amends by devoting a full chapter
to it. The optimization problem relevant to multiport decomposition
(‘port minimization’) is discussed in Chapter 8.

The fusion-fission method is a special case of the method of topo-
logical transformations discussed in Chapter 7. The solution of the
optimization problem that it gives rise to (minimization of the num-
ber of fusion and fission operations needed to electrically decouple the
blocks of a partition of the edge set) is given in Section 14.4. The solu-
tion uses the Dilworth truncation operation on submodular functions.

We next give a chapterwise outline of the book.

Chapter 2 is concerned with mathematical preliminaries such as
sets, families, vectors and matrices. Also given is a very brief descrip-
tion of inequality systems.

13

Chapter 3 contains a very terse description of graphs and their
vector space representation. Only material that we need later on in
this book is included. Emphasis is placed on complementary orthogo-
nality (Tellegen’s Theorem) and the important minor operations linked
through duality. The duality described corresponds to complementary
orthogonality of vector spaces (and not to the vector space - functional
space relation).

Also included is a sketch of the basic algorithms relevant to this
book - such as bfs, dfs trees, construction of f-circuits, the shortest
path algorithm, algorithms for performing graph minor operations and
the basic join and meet operations on partitions. Some space is de-
voted to the flow maximization problem, particularly certain special
ones that are associated with a bipartite graph. (Many of the optimiza-
tion problems considered in this book reduce ultimately to (perhaps
repeated) flow maximization).

Chapter 4 gives a brief account of matroids. Important axiom sys-
tems such as the ones in terms of independence, circuit, rank, closure
etc. are presented and shown to be equivalent to each other. The mi-
nor operations and dual matroids are described. Finally the relation
between matroids and the greedy algorithm is presented. This chapter
is included for two reasons:

e Some of the notions presented in the previous chapter lead very
naturally to their extension to matroids

e matroids are perhaps the most important instance of submodular
functions which latter is our main preoccupation in the second

half of this book.

Chapter 5 contains a brief introduction to conventional electrical
network theory, with the aim of making the book self contained. The
intention here is also to indicate the author’s point of view to a reader
who is an electrical engineer. This chapter contains a rapid sketch of
the basic methods of network analysis including a very short descrip-
tion of the procedure followed in general purpose circuit simulators.
Also included is an informal account of multiport decomposition and
of some elementary results including Thevenin-Norton Theorem.

14 1. INTRODUCTION

Chapter 6 contains a description of topological hybrid analysis
indicated in Example 1.0.1. This chapter is a formalization of the
topological ideas behind Kron’s Diakopotics. The methods used in-
volve vector space minors. The main result is Theorem 6.4.1 which
has already been illustrated in the above mentioned example.

Chapter 7 contains a detailed description of the Implicit Duality
Theorem, its applications and its extensions to linear inequality and
linear integrality systems. The operation of generalized minor is intro-
duced and made use of in this chapter. The implicit duality theorem
was originally a theorem on ideal transformers and states that if we
connect 2-port transformers arbitrarily and expose k-ports, the result
would be a k-port ideal transformer. (An ideal transformer, by defi-
nition, has its possible port voltage vectors and possible port current
vectors as complementary orthogonal spaces.) We show that its power
extends beyond these original boundaries. One of the applications
described is for the construction of adjoints, another to topological
transformations of electrical networks. The latter are used to solve a
given network as though it has the topology of a different network,
paying a certain cost in terms of additional variables.

Multiport decomposition, from a topological point of view, is the
subject of Chapter 8. We make free use of the Implicit Duality Theo-
rem of the previous chapter. We indicate that multiport decomposition
is perhaps the most natural tool for network analysis by decomposition.
It can be shown that multiport decomposition generalizes topological
hybrid analysis (see Problem 8.5). We present a few algorithms for
minimizing the number of ports for a multiport decomposition corre-
sponding to a given partition of edges of a graph. Finally, we show that
this kind of decomposition can be used to construct reduced networks
which mimic some of the properties of the original network. In par-
ticular we show that any RLMC network can be reduced to a network
without zero eigen values (i.e., without trapped voltages or currents)
but with, otherwise, the same ‘dynamics’ as the original network.

The second half of the book is about submodular functions and the
link between them and electrical networks.

15

Chapter 9 contains a compact description of submodular function
theory omitting the important operations of convolution and Dilworth
truncation. (The latter are developed in subsequent chapters). We
begin with the basic definition and some characteristic properties fol-
lowed by a number of examples of submodular functions which arise in
graphs, hypergraphs (represented by bipartite graphs), matrices etc.
Basic operations such as contraction, restriction, fusion, dualization
etc. are described next. These are immediately illustrated by exam-
ples from graphs and bipartite graphs. Some other operations, slightly
peripheral, are described next. A section is devoted to the important
cases of polymatroid and matroid rank functions. It is shown that
any submodular function is a ‘translate’ through a modular function
of a polymatroid rank function. The idea of connectedness is described
next. This corresponds to 2-connectedness of graphs. After this there
is a very brief but general description of polyhedra associated with set
functions in general and with submodular and supermodular functions
in particular. The important result due to Frank, usually called the
‘Sandwich Theorem’ is described in this section. The recent solution,
due to Stoer, Wagner and Frank, of the symmetric submodular func-
tion minimization problem is described in the next section.

Chapter 10 is devoted to the operation of (lower) convolution of
two submodular functions. We begin with purely formal properties
and follow it with a number of examples of results from the literature
which the operation of convolution unifies. Next we give the polyhedral
interpretation for convolution viz. it corresponds to the intersection of
the polyhedra of the interacting submodular functions. This is followed
by a section in which the operation of convolution is used to show that
every polymatroid rank function can be obtained by the fusion of an
appropriate matroid rank function.

In the next section, the principal partition (PP) of a submodular
function with respect to a strictly increasing polymatroid rank func-
tion is dealt with. We begin with the basic properties of PP which
give structural insight into many practical problems. An alternative
development of PP from the point of view of density of sets is next
presented. Finally the PP of naturally derived submodular functions

16 1. INTRODUCTION

is related to the PP of the original function.

In the next section, the refined partial order associated with the PP
is described. After this we present general algorithms for the construc-
tion of the PP of a submodular function with respect to a nonnegative
weight function. These use submodular function minimization as a
basic subroutine. We consider two important special cases of this al-
gorithm. The first, the weighted left adjacency function of a bipartite
graph, is described in this chapter. In this case the submodular func-
tion minimization reduces to a flow problem. The second is the PP of a
matroid rank function which is taken up in the next chapter. The last
(starred) section in this chapter describes a peculiar situation where,
performing certain operations on the original submodular function, we
get functions whose PP is related in a very simple way to the original
PP. This section is developed through problems.

Chapter 11 is on the matroid union operation. In the first section,
we give a sketch of submodular functions induced through a bipartite
graph and end the section with a proof that ‘union’ of matroids is a
matroid. Next we give Edmond’s algorithm for constructing the ma-
troid union. We use this algorithm to study the structure of the union
matroid - in particular the natural partition of its underlying set into
coloops and the complement, and the manner in which the base of the
union is built in terms of the bases of the individual matroids. Finally
we use the matroid union algorithm to construct the PP of the rank
function of a matroid with respect to the ‘| - |” function.

In Chapter 12 we study the Dilworth truncation operation on a
submodular function. This chapter is written in a manner that em-
phasizes the structural analogies that exist between convolution and
Dilworth truncation. As in the case of convolution, we begin with for-
mal properties and follow it with examples of results from the literature
unified by the truncation operation.

In the next section, we describe the principal lattice of partitions
(PLP) of a submodular function. This notion is analogous to the PP
of a submodular function - whereas in the case of the PP there is a
nesting of special sets, in the case of the PLP the special partitions
get increasingly finer. We begin with basic properties of the PLP, each

17

of which can be regarded as a ‘translation’ of a corresponding prop-
erty of PP. We then present an alternative development of the PLP in
terms of cost of partitioning. In the next section we use this idea for
building approximation algorithms for optimum cost partitioning (this
problem is of great practical relevance, particularly in CAD for large
scale integrated circuits). After this we describe the relation between
the PLP of a submodular function and that of derived functions. Here
again there is a strong analogy between the behaviours of PP and PLP.

In Chapter 13, we present algorithms for building the PLP of a
general submodular function. These algorithms are also analogous to
those of the PP. The core subroutine is one that builds a ‘(strong)
fusion’ set which uses minimization of an appropriately derived sub-
modular function. We specialize these algorithms to the important
special cases of the weighted adjacency and exclusivity functions as-
sociated with a bipartite graph. (The matroid rank function case is
handled in Section 14.3). Next we present some useful techniques for
improving the complexity of PLP algorithms for functions arising in
practice. Lastly, using the fact that the PP of the rank function of a
graph can be regarded, equivalently, as the PLP of the | V (-) | function
on the edge set, we have presented fast algorithms for the former.

The last chapter is on the hybrid rank problem for electrical net-
works. In this chapter, four different (nonequivalent) formulations of
this problem are given. The second, third and fourth formulations
can be regarded as generalizations of the first. Except in the case of
the fourth formulation, we have given fast algorithms for the solution
of the problems. This chapter is intended as the link between elec-
trical networks and submodular functions. Fach of the formulations
has been shown to arise naturally in electrical network theory. The
first two formulations require convolution and the third requires Dil-
worth truncation for its solution. The fourth formulation gives rise to
an optimization problem over vector spaces which is left as an open
problem.

18

1. INTRODUCTION

Chapter 2

Mathematical Preliminaries

2.1 Sets

A set (or collection) is specified by the elements (or members) that
belong to it. If element x belongs to the set (does not belong to the
set) X, we write z € X (z € X). Two sets are equal iff they have the
same members. The set with no elements is called the empty set and
is denoted by 0. A set is finite if it has a finite number of elements.
Otherwise it is infinite. A set is often specified by actually listing
its members, e.g. {e1,eq,e3} is the set with members eq, e9, e3. More
usually it is specified by a property, e.g. the set of even numbers is
specified as {z : = is an integer and z is even } or as {x, z is an integer
and z is even }. The symbols V and 3 are used to denote ‘forall” and
‘there exists’. Thus, ‘Va’ or ‘V 2’ should be read as ‘forall " and ‘dx’
should be read as ‘there exists x’. A singleton set is one that has only
one element. The singleton set with the element z as its only member,
is denoted by {z}. In this book, very often, we abuse this notation and
write = in place of {z}, if we feel that the context makes the intended
object unambiguous.

We say that set X is contained in Y (properly contained in Y),
if every element of X is also a member of Y (every element of X is a
member of Y and X # Y') and denote it by X CY(X CY).
The union of two sets X and Y denoted by X UY, is the set whose
members are either in X or in Y (or in both). The intersection of

19

20 2. MATHEMATICAL PRELIMINARIES

X and Y denoted by X NY, is the set whose members belong both to
X and to Y. When X and Y do not have common elements, they are
said to be disjoint. Union of disjoint sets X and Y is often denoted
by X &Y. Union of sets X,---, X, is denoted by U} ; X; or simply
by UX;. When the X; are pairwise disjoint, their union is denoted by
W, X; or WX;.

The difference of X relative to Y, denoted by X — Y, is the set of all
elements in X but not in Y. Let X C S. Then the complement of X
relative to S is the set S — X and is denoted by X when the set S is
clear from the context.

A mapping f : X — Y, denoted by f(-), associates with each
element # € X, the element f(x) in Y. The element f(x) is called
the image of x under f(-). We say f(-) maps X into Y. The sets
X, Y are called, respectively, the domain and codomain of f(-). We
denote by f(Z),Z C X, the subset of Y which has as members, the
images of elements in Z. The set f(X) is called the range of f(-).
The restriction of f(-) to Z C X, denoted by f/Z(-) is the mapping
from Z to Y defined by f/Z(x) = f(z),z € Z. A mapping that has
distinct images for distinct elements in the domain is said to be one
to one or injective. If the range of f(-) equals its codomain, we
say that f(-) is onto or surjective. If the mapping is one to one
onto we say it is bijective. Let f : X — Y, g : Y — Z. Then the
composition of g and f is the map, denoted by g¢f(-) or g o f(+),
defined by gf(x) = g(f(x)) Vz € X. The Cartesian product X xY
of sets X, Y is the collection of all ordered pairs (z,y), where 2 € X and
y € Y. The direct sum X @Y denotes the union of disjoint sets X, Y.
We use ‘direct sum’ loosely to indicate that structures on two disjoint
sets are ‘put together’. We give some examples where we anticipate
definitions which would be given later. The direct sum of vector
spaces V1, Vs, on disjoint sets Sy, .S is the vector space Vi &V, on S1B.S,
whose typical vectors are obtained by taking a vector x; = (ay, - -, ay)
in V; and a vector x9 = (b, -, by,) in Vs and putting them together
as x; ®xy = (ay, -+, ax, by, -, by). When we have two graphs Gy, Go
on disjoint edge sets F1, Fs, G1 @ G would have edge set E; @ Fs and
is obtained by ‘putting together’ G; and G,. Usually the vertex sets
would also be disjoint. However, where the context permits, we may
relax the latter assumption and allow ‘hinging’ of vertices.

2.2. VECTORS AND MATRICES 21

We speak of a family of subsets as distinct from a collection of sub-
sets. The collection {{e1, e2},{e1,ea}, {e1}} isidentical to {{e1, e}, {e1}}.
But often (e.g. in the definition of a hypergraph in Subsection 3.6.6)
we have to use copies of the same subset many times and distinguish
between copies. This we do by ‘indexing’ them. A family of subsets of
S may be defined to be a mapping from an index set I to the collection
of all subsets of S. For the purpose of this book, the index set I can
be taken to be {1, --,n}. So the family ({e1,e2}, {€1,€2},{e1}) can be
thought of as the mapping ¢(-) with

o(1) = {er,ea}
¢(2) = {er,eat
o(3) = {er}.

(Note that a family is denoted using ordinary brackets while a set is
denoted using curly brackets).

2.2 Vectors and Matrices

In this section we define vectors, matrices and related notions. Most
present day books on linear algebra treat vectors as primitive elements
in a vector space and leave them undefined. We adopt a more old
fashioned approach which is convenient for the applications we have in
mind. The reader who wants a more leisurely treatment of the topics
in this section is referred to [Hoffman+Kunze72].

Let S be a finite set {ej,ea,...,e,} and let F be a field. We will
confine ourselves to the field R of real numbers, the field C of complex
numbers and the GF2 field on elements 0,1 (0+0 = 0,0+1=1,140 =
,141=0,1.1=1,1.0=0,0.1 = 0,0.0 = 0). For a general definition
of a field see for instance [Jacobson74]. By a vector on S over F we
mean a mapping f of S into F.The field F is called the scalar field
and its elements are called scalars. The support of f is the subset
of S over which it takes nonzero values. The sum of two vectors f, g
on S over F is defined by (f + g)(e;) = f(e;) + g(e;) Ve; € S. (For
convenience the sum of two vectors f on S,g on 7" over F is defined by
(f+g)(e;) =f(e;)+gle;) Ve, € SNT, as agreeing with f on S —T', and
as agreeing with g on 7'— §). The scalar product of f by a scalar A

22 2. MATHEMATICAL PRELIMINARIES

is a vector Af defined by (Af)(e;) = A(f(e;)) Ve; € S. A collection V
of vectors on S over F is a vector space iff it is closed under addition
and scalar product. We henceforth omit mention of underlying set and
field unless required.

A set of vectors {f}, f;, ..., f,} is linearly dependent iff there exist
scalars Aq,..., A, not all zero such that \if; + ...+ \.f, = 0. (Here
the 0 vector is one which takes value 0 on all elements of S). Vector
f, is a linear combination of f;,... £, iff £, = \ify + ...+ A\ _1f, 1
for some Ay, ..., A\ _1.

The set of all vectors linearly dependent on a collection C of vectors
can be shown to form a vector space which is said to be generated
by or spanned by C. Clearly if V is a vector space and C C V, the
subset of vectors generated by C is contained in V. A maximal linearly
independent set of vectors of V is called a basis of V.

In general maximal and minimal members of a collection of sets may

not be largest and smallest in terms of size.

Example: Consider the collection of sets {{1, 2,3}, {4}, {5,6},{1,2,3,5,6}}.
The minimal members of this collection are {1,2,3}, {4}, {5,6}, i.e.,

these do not contain proper subsets which are members of this collec-

tion. The maximal members of this collection are {4},{1,2,3,5,6},

i.e., these are not proper subsets of other sets which are members of

this collection.

The following theorem is therefore remarkable.

Theorem 2.2.1 All bases of a vector space on a finite set have the
same cardinality.

The number of elements in a basis of)V is called the dimension of
V, denoted by dim(V), or the rank of V, denoted by (V). Using
Theorem 2.2.1 one can show that the size of a maximal independent
subset contained in a given set C of vectors is unique. This number is
called the rank of C. Equivalently, the rank of C is the dimension of the
vector space spanned by C. If Vi,V are vector spaces and V; C Vs,
we say V; is a subspace of V5.

A mapping A : {1,2,...,m} x{1,2,...,n} — Fiscalledamxn
matrix. It may be thought of as an m x n array with entries from F.
We denote A(i,j) often by the lower case a;; with i as the row index
and j as the column index. We speak of the array (a1, ..., a;) as the

2.2. VECTORS AND MATRICES 23

ith row of A and of the array (ai;,...,a,;) as the jth column of A.
Thus we may think of A as made up of m row vectors or of n column
vectors. Linear dependence, independence and linear combination for
row and column vectors are defined the same way as for vectors. We say
two matrices are row equivalent if the rows of each can be obtained
by linearly combining the rows of the other. Column equivalence is
defined similarly. The vector space spanned by the rows (columns) of A
is called its row space (column space) and denoted by R(A)(C(A)).
The dimension of R(A)(C(A)) is called the row rank (column rank)
of A.

If A is an m X n matrix then the transpose of A denoted by
AT is an n x m matrix defined by AT(i,j) = A(j,i). Clearly the
i row of A becomes the " column of AT and vice versa. If B is
also an m X n matrix the sum A + B is an m X n matrix defined by
(A+B)(i,7) = A(i,7) + B(4,7). If D is an n x p matrix, the product
AD is an m x p matrix defined by AD(7, j) = >)_; aird;. Clearly if
AD is defined it does not follow that DA is defined. Even when it is
defined, in general AD # DA. The most basic property of this notion
of product is that it is associative i.e. A(DF)= (AD)F.

Matrix operations are often specified by partitioning. Here we
write a matrix in terms of submatrices (i.e., matrices obtained by
deleting some rows and columns of the original matrix). A matrix
may be partitioned along rows:

Ay
A= ...
Ay
or along columns:
A=[AylAp; |
or both:
Ay ... Ay
A= : : :
Ay oo Ay

When two partitioned matrices are multiplied we assume that the par-
titioning is compatible, i.e., for each triple (i,7j,k) the number of
columns of A;; equals the number of rows of By;. Clearly this is
achieved if the original matrices A, B are compatible for product and

24 2. MATHEMATICAL PRELIMINARIES

each block of the column partition of A has the same size as the cor-
responding row partition of B. The following partitioning rules can
then be verified.

All Allc
i o= ..
A21 A2IC
il. C[AnlAp | =[CALCAL |

Cll
iii. | AnlAn || .. | =[] AuCu+AnC |.
ClZ

In general if A is partitioned into submatrices A;x, B into submatrices
By, then the product C = AB would be naturally partitioned into
Ci; = > AuBy;.

Matrices arise most naturally in linear equations such as Ax = b,
where A and b are known and x is an unknown vector. When b = 0 it
is easily verified that the set of all solutions of Ax = b, i.e.,of Ax = 0,
forms a vector space. This space will be called the solution space of
Ax = 0, or the null space of A. The nullity of A is the dimension
of the null space of A. We have the following theorem.

Theorem 2.2.2 [f two matrices are row equivalent then their null
spaces are identical.

Corollary 2.2.1 If A,B are row equivalent matrices then a set of
columns of A is independent iff the corresponding set of columns of B
18 independent.

The following are elementary row operations that can be performed
on the rows of a matrix:

i. interchanging rows,
ii. adding a multiple of one row to another,

iii. multiplying a row by a nonzero number.

2.2. VECTORS AND MATRICES 25

Each of these operations corresponds to premultiplication by a matrix.
Such matrices are called elementary matrices. It can be seen that
these are the matrices we obtain by performing the corresponding ele-
mentary row operations on the unit matrix of the same number of rows
as the given matrix. We can define elementary column operations sim-
ilarly. These would correspond to post multiplication by elementary
column matrices.

A matrix is said to be in Row Reduced Echelon form (RRE) iff
it satisfies the following:
Let r be the largest row index for which a;; # 0 for some j. Then the
columns of the 7 X r unit matrix (the matrix with 1s along the diagonal
and zero elsewhere) eq,..., e, appear as columns, say C;,,...,C; of
A with oy < ... < ,. Further if p < 4 then ay, = 0. We have the
following theorem.

Theorem 2.2.3 FEvery matriz can be reduced to a matrix in the RRE
form by a sequence of elementary row transformations and is therefore
row equivalent to such a matrix.

It is easily verified that for an RRE matrix row rank equals column
rank. Hence using Theorem 2.2.3 and Corollary 2.2.1 we have

Theorem 2.2.4 For any matriz, row rank equals column rank.

The rank of a matrix A, denoted by r(A), is its row rank (= column
rank).

Let the elements of S be ordered as (ey, ..., e,). Then for any vector f
on S we define Ry, the representative vector of f, as the one rowed
matrix (f(ey),...,f(e,)). We will not usually distinguish between a
vector and its representative vector. When the rows of a matrix R are
representative vectors of some basis of a vector space }V we say that
R is a representative matrix of V. When R, R; both represent V
they can be obtained from each other by row operations. Hence by
Corollary 2.2.1 their column independence structure is identical. An
r X n representative matrix R, » < n, is a standard representative
matrix iff R has an r x r submatrix which can be obtained by per-
mutations of the columns of the r» X r unit matrix. For convenience
we will write a standard representative matrix in the form [I|Rys] or
[Rq1|I]. (Here I denotes the unit matrix of appropriate size).

The dot product of two vectors f, g on S denoted by < f, g > over

26 2. MATHEMATICAL PRELIMINARIES

F is defined by < f,g >= > .csf(e).g(e). We say f, g are orthogonal
if their dot product is zero. If C is a collection of vectors on S then
Ct = set of all vectors orthogonal to every vector in C. It can be
verified that Ct is a vector space. Let V be a vector space on S
with basis B. Since vectors orthogonal to each vector in B are also
orthogonal to linear combinations of these vectors we have B+ = V+.
If R is a representative matrix of V, it is clear that V* is its null
space. Equivalently V' is the solution space of Rx = 0. If R is a
standard representative matrix with R = [I,..|R12], then the solution
space of Rx = 0 can be shown to be the vector space generated by the
—Ryo
columns of , where n = |S|.(Here Iy denotes the unit
Infrxnfr

matrix with k& rows). Equivalently V* has the representative matrix
[—RL|L,_,xn_v]. The representative matrix of (V+)+ will then be R.
We then have the following

Theorem 2.2.5 i. if [Lxr|Ra2] is a representative matriz of vector
space V on S then [-RIy|1,_rxn_r] is a representative matriz of
Y+

i. r(V) =S| —r(V)

. (V5 =V. Hence two matrices are row equivalent iff their null
spaces are identical.

Consider the collection of all n x n matrices over F. We say that I
is an identity for this collection iff for every n x n matrix B we have
IB = BI = B. If I, I, are identity matrices we must have I} = I, = L.
The unit matrix (with 1s along the diagonal and Os elsewhere) is clearly
an identity matrix. It is therefore the only identity matrix. Two n xn
matrices A, B are inverses of each other iff AB = BA = 1. We say
A, B are invertible or nonsingular. If A has inverses B, C we must
have C = C(AB) = (CA)B = IB = B. Thus the inverse of a matrix
A, if it exists, is unique and is denoted by A~!. We then have the
following

Theorem 2.2.6 i (AT)"!=(A"HT

. If A, D are n xn invertible matrices, then (AD)™! = (D71A™1).

2.2. VECTORS AND MATRICES 27

With a square matrix we associate an important number called its
determinant. Its definition requires some preparation.

A bijection of a finite set to itself is also called a permutation. A
permutation that interchanges two elements (i.e. maps each of them to
the other) but leaves all others unchanged is a transposition. Every
permutation can be obtained by repeated application of transpositions.
We then have the following

Theorem 2.2.7 If a permutation o can be obtained by composition of
an even number of transpositions then every decomposition of o into
transpositions will contain an even number of them.

By Theorem 2.2.7 we can define a permutation to be even (odd) iff it
can be decomposed into an even (odd) number of transpositions. The
sign of a permutation o denoted by sgn(o) is +1 if o is even and —1
if o is odd. It is easily seen, since the identity (= oo~!) permutation is
even, that sgn(c) = sgn(c~!). The determinant of an n x n matrix
is defined by

d@t(A) = Z sgn(a)ala(l) <+ Upo(n),

a

where the summation is taken over all possible permutations of {1,2, ... ,n}.
It is easily seen that determinant of the unit matrix is +1. We collect
some of the important properties of the determinant in the following

Theorem 2.2.8 4. det(A) = det(AT)

_ ay I all » a1+a/1
LI PR P

Then det(A”) = det(A) + det(A’).

1. Let

1. If A has two identical rows, or has two identical columns then

det(A) = 0.

iv. If E is an elementary matriz det(EA) = det(E)det(A). Since
every invertible matriz can be factored into elementary matrices,
it follows that det(AB) = det(A)det(B), for every pair of n x n
matrices A, B.

v. det(A) # 0 iff A is invertible.

Problem 2.1 Size of a basis: Prove

28 2. MATHEMATICAL PRELIMINARIES

1. Theorem 2.2.1
1. If V1 is a subspace of vector space Vo, dim V; < dim V.
1. If Vi C Vs and dim Yy = dim V, then V; = Vs.

w. an m X n matriz with m > n cannot have linearly independent
TOWS.

v. any vector in a vector space V can be written uniquely as a linear
combination of the vectors in a basis of V.

Problem 2.2 Ways of interpreting the matrix product: Define
product of matrices in the usual way i.e. C = AB is equivalent to
Cij = >k aibrj. Now show that it can be thought of as follows

i. Columns of C are linear combinations of columns of A using
entries of columns of B as coefficients.

1. rows of C are linear combinations of rows of B using entries of
rows of A as coefficients.

Problem 2.3 Properties of matrix product: Prove, when A, B,
C are matrices and the products are defined

i. (AB)C =A(BC)
ii. (AB)T = BTAT
Problem 2.4 Partitioning rules: Prove

1. the partitioning rules.

1.

A11"' Alk g Aﬂ"' Agl
A Ay Af, - Al

Problem 2.5 Solution space and column dependence struc-
ture: Prove theorem 2.2.2 and Corollary 2.2.1.

2.2. VECTORS AND MATRICES 29

Problem 2.6 Algorithm for computing RRE: Give an algorithm
for converting any rectangular matriz into the RRE form. Give an
upper bound for the number of arithmetical steps in your algorithm.

Problem 2.7 Uniqueness of the RRE matrix: Show that no RRE
matriz is row equivalent to a distinct RRE matrix. Hence prove that
every matriz 1s row equivalent to a unique matriz in the RRE form.

Problem 2.8 RRE of special matrices:

1. If A is a matriz with linearly independent columns what is its
RRE form? If in addition A is square what is its RRE form?

1. If A, B are square such that AB =1 show that BA =1.
111. Prove Theorem 2.2.6

Problem 2.9 Existence and nature of solution for linear equa-
tions: Consider the equation Ax = b.

1. Show that it has a solution

(a) iff r(A) =r(Alb).
(b) iff whenever X" A = 0, \"b is also zero.

1. Show that a vector is a solution of the above equation iff it can
be written in the form x, + x, where X, is a particular solution
of the equation while x, is a vector in the null space of A (i.e. a
solution to the linear equation with b set equal to zero).

111. Motivation for the matrix product: Why is the matriz prod-
uct defined as in Problem 2.2¢ (In the above equation suppose we
make the substitution x = By. What would the linear equation in
terms of y be?)

w. Linear dependence and logical consequence: The above
equation may be regarded as a set of linear equations (one for
each row of A) each of which in turn could be thought of as a
statement. Show that a linear equation is a logical consequence
of others iff it is linearly dependent on the others.

Problem 2.10 Positive definite matrices:

30 2. MATHEMATICAL PRELIMINARIES

i. Construct an example where A, B are invertible but their sum is
not.

ii. A matriz K is positive semidefinite (positive definite) iff
xTKx >0 Vx#0 (xTKx >0 Vx #0). Show that

(a) a matriz is invertible if it is positive definite;

(b) sum of two positive semidefinite matrices (positive definite
matrices) is positive semidefinite (positive definite);

(c) if K is a positive definite matriz,then AKAT is positive
semidefinite and if, further, rows of A are linearly indepen-
dent, then AKAT is positive definite;

(d) inverse of a symmetric positive definite matrizc is also sym-
metric positive definite.

Problem 2.11 Projection of a vector on a vector space: Let x
be a vector on S and let V be a vector space on S. Show that x can be
uniquely decomposed as X = X1 + Xg, where X1 € V and x5 € V4. The
vector x; is called the projection of x on V along V.

Problem 2.12 Parity of a Permutation: Show that if a permuta-
tion can be obtained by composing an odd number of transpositions it
cannot also be obtained by composing an even number of transpositions.

Problem 2.13 Graph of a permutation: Define the graph G, of a
permutation o on {1,2,---n} as follows: V(G,) = {1,2,---,n}; draw
an edge with an arrow from i to j iff o(i) = j.

1. Show that every vertex in this graph has precisely one arrow com-
g i and one going out. Hence, conclude that each connected
component 1s a directed circuit.

ii. Show that if G, has an odd (even) number of even length circuits
then o is odd (even).

Problem 2.14 Properties of the determinant: Prove Theorem
2.2.8.

Problem 2.15 Equivalence of definitions of a determinant: Show
that the usual definition of a determinant by expanding along a row or
column is equivalent to the definition using permutations.

2.3. LINEAR INEQUALITY SYSTEMS 31

Problem 2.16 Laplace expansion of the determinant: Let A be
an n X n matriz. Show that

det(A) = 3" sgn(o) det(A(Tl’ ’T’“))det(A(m“’ ot))

217 e 7/Lk: Zk—}—l? e 7Zm
dy, - d, Y\ . . , .
(A ; ; is the p X p matriz whose (s,t) entry is the (ds, i)
TR
entry of A), where the summation is over all subsets {ry,---,r} of
1,---,n}
T T TR T L
and o = | . T . re,o(r:i))=i;,7=1,---,n.
(o) ety =i

Problem 2.17 Binet Cauchy Theorem: Let A be an m xn and B
an n X m matrix with m < n. If an m xm submatriz of A is composed
of columns iy, -, i,, the corresponding m xm submatriz of B is the
one with rows iy, - -+ -, iy,. Prove the Binet Cauchy Theorem: det(AB) =
> product of determinants of corresponding m x m submatrices of A
and B.

2.3 Linear Inequality Systems

2.3.1 The Kuhn-Fourier Theorem

In this section we summarize basic results on inequality systems which
we need later on in the book. Proofs are mostly omitted. They
may be found in standard references such as [Stoer+Witzgall70] and
[Schrijver86]. This section follows the former reference.

A linear inequality system is a set of constraints of the following
kind on the vector x € R"™.

Ax = a,
Bx > b, (1)
Cx > c,

Here, A, B, C are matrices, a,, b,, c, are column vectors with appropri-
ate number of rows. We say x; > X3(X; > Xy) iff each component of x;
is greater than (greater than or equal to) the corresponding component
of X9.

32 2. MATHEMATICAL PRELIMINARIES

A solution of an inequality system is a vector which satisfies all the
inequality constraints of the system. A constraint which is satisfied by
every solution of an inequality system is said to be a consequence
of the system. In particular, we are concerned with constraints of the
kind d”x = d, or > d, or > d,. A legal linear combination of
the system (I) is obtained by linearly combining the equations and
inequalities with real coefficients - «; for the linear equations, and
non-negative real coefficients [3;,v; for the ‘>’ linear inequalities and
‘>’ linear inequalities respectively. The resulting constraint would be
a linear equation iff 3;,7; are all zero. It would be a ‘>’ inequality
iff at least one of the f;’s is nonzero. It would be a ‘>’ inequality
iff all of 3; are zero but at least one of the <, is nonzero. A legal
linear combination is thus a consequence of the system. A legal linear
combination, with at least one of the a;, 3;, v, nonzero, that results in
the LHS becoming zero is called a legal linear dependence of the
system. Another important way of deriving consequence relations is
by weakening. This means to weaken ‘="to ‘>’ and ‘>’ to ‘>’ and
also in the case of ‘> and ‘>’ to lower the right side value.

Example 2.3.1 Consider the system of linear inequalities:

T+ 229 = 3
201 + 19 =4
T+ 19> 1
2x1 + 319 > 2
T+ 09 > 2
—x1 — 219 > 4.

The legal linear combination corresponding to a; = 1,a0 = 1,3, =
0,80 =0,71=0,7%=01is

31+ 310 = T;

that corresponding to a; = 1,00 =0,8, =1,06,=0,71 = 1,7 =0 is
3x1 + 81y > 6;

that corresponding to ay = 1,a0 =0,06, =0,06, =0,71 = 1,79 =0 s
21‘1 + 71‘2 Z 5.

The legal linear combination corresponding to a; = 1,a0 = 0,3, =
0,0, =0, = 0,7 = 1 is the zero relation

Ox1 4+ 0xy > 7.

2.3. LINEAR INEQUALITY SYSTEMS 33

Thus in this case, the system has a legal linear dependence that is
a contradiction.

We can now state the fundamental theorem of Kuhn and Fourier
[Fourier1826], [Kuhn56].

Theorem 2.3.1 (Kuhn-Fourier Theorem) A linear inequality sys-
tem has a solution iff no legal linear dependence is a contradiction.

Sketch of the Proof of Theorem 2.3.1: First reduce the linear
equations to the RRE form. If a row arises with zero coefficients but
with nonzero right side at this stage, we have a legal linear dependence
that is a contradiction. Otherwise express some of the variables in
terms of the others. This substitution is now carried out also in the
inequalities. So henceforth, without loss of generality, we may assume
that we have only inequalities. If we prove the theorem for such a
reduced system, it can be extended to one which has equalities also.

Suppose each variable has either zero coefficient or the same sign in
all the inequalities of the system and further, if there are inequalities
with zero coefficients they are not contradictory.

In this case it is easy to see that the system has a solution whether
the coefficients of a particular variable are all zero or otherwise. If all
the coefficients are zero we are done - the theorem is clearly true. If
not, it is not possible to get a legal linear dependence without using
zero coefficients. So the theorem is again true in this case.

We now present an elimination procedure which terminates at the
above mentioned situation.
Let the inequalities be numbered (1), ---, (), (r +1),---, (k). Let x,
be present with coefficient +1 in the inequalities (1),---, (r) and with
coefficient -1 in the inequalities (r + 1),---, (k). We create r(k —)
inequalities without the variable x,, by adding each of the first r in-
equalities to each of the last (k —) inequalities. Note that if both the
inequalities are of the (>) kind, the addition would result in another of
the (>) kind and if one of them is of the (>) kind, the addition would
result in another of the (>) kind.

If the original system has a solution, it is clear that the reduced
system also has one. On the other hand, if the reduced system has a
solution (a,---,x]_,) it is possible to find a value 2/, of x,, such that
(), -+, xl,_,) is a solution of the original system. We indicate how,

34 2. MATHEMATICAL PRELIMINARIES

below.
Let the inequalities added be

apny + -+ Ty 2> b

aj1x1+---—xn>bj

(The cases where both are (>), both are (>) or first inequality (>)
and second (>) are similar.) The pair of inequalities can be written
equivalently as

a1+ - '+@j(n—1)xn71_bj > Xy > bi—apri—-- T Ai(n—1)Tn—1 (*)

The extreme left of the above inequality (x) is always derived from the
inequalities (r + 1) to (k) while the extreme right is always derived
from the (1) to (r) inequalities. When z/,---,z/ _, is substituted in
the above inequality, it would be satisfied for every pair of inequalities,
from (j + 1) to (k) on the extreme left and (1) to (j) on the extreme
right. After substitution, let the least of the extreme left term be
reached for inequality (p) and let the highest of the extreme right term
be reached for inequality (g). Since

/ / / /
ap1Ty + - F Apn-1) Ty — by > by — a @y — - = Agn-1)T;_y

(this inequality results when (p) and (¢) are added), we can find a value
x, of x,, which lies between left and right sides of the above inequality.

Clearly (z,---,) is a solution of the original system.

If this procedure were repeated, we would reach a system where
there are inequalities with all the coefficients of zero value and where
the signs of the coefficients of a variable are all the same in all the
inequalities. If some of the inequalities which have all zero coefficients
are contradictory there is no solution possible and the theorem is true.
If none of such inequalities are contradictory the solution always exists
as mentioned before and there can be no legal linear combination that
is contradictory. Thus once again the theorem is true.

O

As an immediate consequence we can prove the celebrated ‘Farkas
Lemma’.

2.3. LINEAR INEQUALITY SYSTEMS 35

Theorem 2.3.2 (Farkas Lemma) The homogeneous system
Ax<0

has the consequence
d’x <0

iff the row vector AT is a mnonnegative linear combination of the rows

of A.
Proof : By Kuhn-Fourier Theorem (Theorem 2.3.1), the system

Aly =d
y=>0

has a solution iff
xT'AT + 37T =0, >0 implies ‘x’d <0’
ie., iff ‘Ax <0 implies ‘dTx < 0.
O

The analogue of ‘vector spaces’ for inequality systems is ‘cones’. A
cone is a collection of vectors closed under addition and non-negative
linear combination. It is easily verified that the solution set of Ax > 0
is a cone. Such cones are called polyhedral. We say vectors x, y
(on the same set S) are polar iff < x,y > (i.e., their dot product) is
nonpositive. If K is a collection of vectors, the polar of K, denoted by
KCP is the collection of vectors polar to every vector in . Thus, Farkas
Lemma states:

‘Let C be the polyhedral cone defined by Ax < 0. A vector d belongs
to CP iff d” is a nonnegative linear combination of the rows of A.’

2.3.2 Linear Programming

Let S be a linear inequality system with ‘<’ and ‘=’ constraints (‘>
and ‘=" constraints). The linear programming problem or linear
program is to finda solution x of S which maximizes a given linear
function ¢’'x (minimizes a given linear function c’x). The linear func-
tion to be optimized is called the objective function. A solution of
S is called a feasible solution, while a solution which optimizes ¢?x
is called an optimal solution, of the linear programming problem.

36 2. MATHEMATICAL PRELIMINARIES

The value of a feasible solution is the value of the objective function
on it.

The following linear programming problems are said to be duals of
each other

Primal program

Maximize clx; + cixy
X
(An Ap) ' =b
X9
X
(An Ap) ' <b
X9
X9 2 0
Dual program
Minimize bly1 + blys

(Aripl Ale) z; Y

We now present the duality theorem of linear programming [von Neumann47],
[Gale+Kuhn+Tucker51].

Theorem 2.3.3 For dual pairs of linear programs the following state-
ments hold:

i. The value of each feasible solution of the minimization program
1s greater than or equal to the value of each feasible solution of
the mazimization program;

1. if both programs have feasible solutions then both have optimal
solutions and the optimal values are equal;

2.3. LINEAR INEQUALITY SYSTEMS 37

1. if one program has an optimal solution then so does the other.

The usual proof uses Farkas Lemma, or more conveniently, Kuhn-
Fourier Theorem. We only sketch it.

Sketch of Proof: Part (i) follows by the solution of Exercise 2.1.
Now we write down the inequalities of the primal and dual programs
and another ‘<’ inequality which is the opposite of the inequality in
part (i). Part (ii) would be proved if this system of inequalities has a
solution. We assume it has no solution and derive a contradiction by
using Kuhn-Fourier Theorem.

O

Exercise 2.1 Prove part (i) of Theorem 2.3.3.

A very useful corollary of Theorem 2.3.3 is the following:

Corollary 2.3.1 (Complementary Slackness)
Let

max ¢ x LT
Ax=b band { FRPY)
x>0 y =

be dual linear programs. Let X,y be optimal solutions to the respective
programs. Then,

i. &; > 0 implies (AT);y = ¢,

i. (AT);y > ¢; implies x; = 0.

Proof : We have by part (ii) of Theorem 2.3.3 ¢I'x = y7b, equivalently

The result now follows since (¢’ —yTA) > 0 and x > 0.

38 2. MATHEMATICAL PRELIMINARIES
2.4 Solutions of Exercises

E 2.1: We use the linear programs given in the definition of dual linear
programs. We have

T
o) 3= ()[R A2]) 8

> (xT x%)l;]

Y

2.5 Solutions of Problems

Most of these problems can be found as standard results in undergrad-
uate texts on linear algebra (see for instance [Hoffman-+Kunze72]).
We only give the solution to the last two problems. Here we follow
[MacDuffee33], [Gantmacher59] respectively.

P 2.16: We state the following simple lemma without proof.

Lemma 2.5.1 If oy, -+, a; are permutations of {1,---,n} then
sgn(aiag -+ -ay) = (sgn(aq))(sgn(az))---(sgn(o)) (where oo de-
notes composition of permutations o, a;).

We have

ngn(a)det(A(ﬁ’ T))det(A(le’ ot)):
11, 0 Lk Yet1, 5 lm

Z sgn(a)(z sgn(a) (aha(il) T 'a?“ka(ik)))(z Sgn(ﬁ)(a""k+lﬁ(ik+l) e a?“nﬁ(in)))v

where «, § are permutations on the sets {1, -, ix}, {igr1, -, i} vE-
spectively. Let o’ agree with a over {iy, - - -, i} and over {ig 1, -, in},
with the identity permutation. Let 3’ agree with (5 over {ig 1, ,in}
and with the identity permutation over {i,---,ix}. So

LHS = Z sgn(a)sgn(o/)sgn(ﬁ/) (aﬁa(il) © Qrpalin) Qrgy Biger) ©° 'aTnﬂ(in))
= Z Sgn(/ala) (aTlaU(ﬁ) © Qrpao(ry) rg 1 Bo(reyr) T aTnﬂU(Tn))
= Z sgn(,u) (arlu(ﬁ) C Qg () Arg e p(regr) T 'aTnN(Tn))7

where p = 'a’o. Since the RHS is the usual definition of the determi-
nant of A, the proof is complete.

2.5. SOLUTIONS OF PROBLEMS 39

P 2.17: Let a;;, b;; denote respectively the (i, 7)™ entry of A, B. Then
the matrix

n n
Zilzl TR Zimzl a1, bi,m
AB= | : :
n n
i1=1 Amiy b1 v Zimzl iy Dy

Now each column of AB can be thought of as the sum of n appropriate
columns - for instance the transpose of the first column is made up of

rows - a typical one being (a1, 0i,1, -, Gmi, biy1). Using Theorem 2.2.8
Q14 bi11 ce alimbimm
det(AB) = > det :
Him Uiy bis1 Qi Ui
— S (biyr - bipm) det (A < Loeym)) :
11, =+ ,lm
1, - ,m \. .)
where A | ; is the m x m matrix which has the first m
1, " Hsbim

rows of A in the same order as in A but whose j”* column is the i/
column of A. So, again by Theorem 2.2.8,

1, - .m
det(AB) = Z det (A (kl .. k)) (Sgn(a)) ba(kl)l cee ba(km)ma
k17'.'7km)) m
where ky < -+ < kp, {k1, -+, km} = {i1, -+, im} and o is the permu-
tation
kla T, km) .
. . ,le.,
11, - Llm
o(kj) =1y
So,
det(AB) =

17 o, kla 7km
s we(a(l T sk)
kl?"'7km

k‘1<"'<k'm

40

2. MATHEMATICAL PRELIMINARIES

Chapter 3

Graphs

3.1 Introduction

We give definitions of graphs and related notions below. Graphs should
be visualized as points joined by lines with or without arrows rather
than be thought of as formal objects. We would not hesitate to use
informal language in proofs.

3.2 Graphs: Basic Notions

3.2.1 Graphs and Subgraphs

A graph G is a triple (V(G), E(G),ig) where V(G) is a finite set of
vertices, E(G) is a finite set of edges and ig is an incidence func-
tion which associates with each edge a pair of vertices, not necessarily
distinct, called its end points or end vertices (i.e., ig : E(G) —
collection of subsets of V(G) of cardinality 2 or 1).

Vertices are also referred to as nodes or junctions while edges are
referred to also as arcs or branches.

We note

i. an edge may have a single end point - such edges are called
selfloops.

41

42 3. GRAPHS

ii. a vertex may have no edges incident on it - such vertices are said
to be isolated.

iii. the graph may be in several pieces.

e

10 ey
Gu
k
f
L]
h
e, Cg
d
g
Ga

Figure 3.1: Undirected and Directed Graphs

Figure 3.1 shows a typical graph G,.

A directed graph G is a triple (V(G), E(G), ag) where V(G), E(G)
are the vertex set and the edge set respectively and ag associates with
each edge an ordered pair of vertices not necessarily distinct (i.e.,
ag : E(G) — V(G) x V(G)). The first element of the ordered pair
is the positive end point or tail of the arrow and the second element
is the negative end point or head of the arrow. For selfloops, posi-
tive and negative endpoints are the same. Directed graphs are usually
drawn as graphs with arrows in the edges. In Figure 3.1, G, is a di-
rected graph.

We say a vertex v and an edge e are incident on each other iff v is an
end point of e. If e has end points u, v we say that u,v are adjacent

3.2. GRAPHS: BASIC NOTIONS 43

to each other. Two edges e;, e are adjacent if they have a common
end point. The degree of a vertex is the number of edges incident on
it with selfloops counted twice.

A graph G, is a subgraph of G iff G, is a graph, V(G,) C V(G), E(Gs) C
E(G), and the endpoints of an edge in G, are the same as its end points
in G.

Subgraph G, is a proper subgraph of G iff it is a subgraph of G but
not identical to it. The subgraph of G on V) is that subgraph of G
which has V; as its vertex set and the set of edges of G with both end
points in V; as the edge set. The subgraph of G on E; has E; C E(G)
as the edge set and the endpoints of edges in E; as the vertex set. If G
is a directed graph the edges of a subgraph would retain the directions
they had in G (i.e., they would have positive and negative end points

as in G).

Exercise 3.1 (k) In any graph with atleast two nodes and no parallel
edges (edges with the same end points) or selfloops show that the degree
of some two vertices must be equal.

Exercise 3.2 (k) Show that

i. the sum of the degrees of vertices of any graph is equal to twice
the number of edges of the graph;

1. the number of odd degree vertices in any graph must be even.

3.2.2 Connectedness

A vertex edge alternating sequence (alternating sequence for
short) of a graph G is a sequence in which

i. vertices and edges of G alternate,
ii. the first and last elements are vertices and

iii. whenever a vertex and an edge occur as adjacent elements they
are incident on each other in the graph.

44 3. GRAPHS

Example: For the graph G, in Figure 3.1, (a, €1, b, €3, ¢, €6, ¢, €6, ¢, €4, d)
is an alternating sequence.

A path is a graph all of whose edges and vertices can be arranged in
an alternating sequence without repetitions.

It can be seen that the degree of precisely two of the vertices of the
path is one and the degree of all other vertices (if any) is two. The
two vertices of degree one must appear at either end of any alternating
sequence containing all nodes and edges of the path without repetition.
They are called terminal nodes. The path is said to be between
its terminal nodes. It is clear that there are only two such alternating
sequences that we can associate with a path. Each is the reverse of
the other. The two alternating sequences associated with the path in
Figure 3.2 are (vy, €1, va, €9, U3, €3, v4) and (vy, €3, Vs, €, Vs, €1, V7).

Figure 3.2: A Path Graph

We say ‘go along the path from v; to v;” instead of ‘construct the
alternating sequence without repetitions having v; as the first element
and v; as the last element’. Such sequences are constructed by con-
sidering the alternating sequence associated with the path in which v;
precedes v; and taking the subsequence starting with v; and ending
with v;.

A directed graph may be a path if it satisfies the above conditions.
However, the term strongly directed path is used if the edges can
be arranged in a sequence so that the negative end point of each edge,
except the last is the positive end point of the succeeding edge.

A graph is said to be connected iff for any given pair of distinct ver-
tices there exists a path subgraph between them. The path graph in
Figure 3.2 is connected while the graph G, in Figure 3.1 is discon-
nected.

A connected component of a graph G is a connected subgraph of G
that is not a proper subgraph of any connected subgraph of G (i.e., it
is a maximal connected subgraph). Connected components correspond
to ‘pieces’ of a disconnected graph.

3.2. GRAPHS: BASIC NOTIONS 45

Exercise 3.3 (k) Let G be a connected graph. Show that there is a
vertex such that if the vertex and all edges incident on it are removed
the remaining graph is still connected.

3.2.3 Circuits and Cutsets

A connected graph with each vertex having degree two is called a
circuit graph or a polygon graph. (G, in Figure 3.3 is a circuit
graph). If G’ is a circuit subgraph of G then E(G’) is a circuit of G.
A single edged circuit is called a selfloop.

gr Grp

Figure 3.3: A Circuit Graph and a Strongly Directed Circuit Graph

Each of the following is a characteristic property of circuit graphs
(i.e., each can be used to define the notion).
We omit the routine proofs.

i. A circuit graph has precisely two paths between any two of its
vertices.

ii. If we start from any vertex v of a circuit graph and follow any
path (i.e., follow an edge, reach an adjacent vertex, go along a
new edge incident on that vertex and so on) the first vertex to
be repeated would be v. Also during the traversal we would have
encountered all vertices and edges of the circuit graph.

46 3. GRAPHS

iii. Deletion of any edge (leaving the end points in place) of a circuit
graph reduces it to a path.

Exercise 3.4 Construct

i. a graph with all vertices of degree 2 that is not a circuit graph,

1. a non circuit graph which is made up of a path and an additional
edge,

1. a graph which has no circuits,
w. a graph which has every edge as a circuit.

Exercise 3.5 Prove

Lemma 3.2.1 (k) Deletion of an edge (leaving end points in place)
of a circuit subgraph does not increase the number of connected com-
ponents in the graph.

Exercise 3.6 Prove

Theorem 3.2.1 (k) A graph contains a circuit if it contains two dis-
tinct paths between some two of its vertices.

Exercise 3.7 Prove

Theorem 3.2.2 (k) A graph contains a circuit if every one of its
vertices has degree > 2.

A set T' C E(G) is a crossing edge set of G if V(G) can be partitioned
into sets Vj, Vs, such that 7' = {e : e has an end point in V; and in
Vo}. (In Figure 3.4, C' is a crossing edge set). We will call V;, V5 the
end vertex sets of 7. Observe that while end vertex sets uniquely
determine a crossing edge set there may be more than one pair of end
vertex sets consistent with a given crossing edge set. A crossing edge
set that is minimal (i.e., does not properly contain another crossing
edge set) is called a cutset or a bond. A single edged cutset is a
coloop.

Exercise 3.8 Construct a graph which has (a) no cutsets (b) every
edge as a cutset.

Exercise 3.9 Construct a crossing edge set that is not a cutset (see
Figure 3.4).

3.2. GRAPHS: BASIC NOTIONS 47

Exercise 3.10 (k) Show that a cutset is a minimal set of edges with
the property that when it is deleted leaving endpoints in place the num-
ber of components of the graph increases.

Exercise 3.11 Short (i.e., fuse end points of an edge and remove the
edge) all branches of a graph except a cutset. How does the resulting
graph look?

Exercise 3.12 Prove

Theorem 3.2.3 (k) A crossing edge set T is a cutset iff it satisfies
the following:

i. If the graph has more than one component then T must meet the
edges of only one component and

i1. if the end vertex sets of T are Vi, Vo in that component, then the
subgraphs on Vi and Vo must be connected.

C Cd

Figure 3.4: A Crossing Edge Set and a Strongly Directed Crossing
Edge Set

48 3. GRAPHS

3.2.4 Trees and Forests

A graph that contains no circuits is called a forest graph (see graphs
G, and Gy in Figure 3.5). A connected forest graph is also called a tree
graph (see graph G, in Figure 3.5).

G
gr

Figure 3.5: A Tree Graph G; and a Forest Graph G

A forest of a graph G is the set of edges of a forest subgraph of G
that has V(G) as its vertex set and has as many connected components
as G has. A forest of a connected graph G is also called a tree of G. The
complement relative to E(G) of a forest (tree) is a coforest (cotree)
of G. The number of edges in a forest (coforest) of G is its rank
(nullity). Theorem 3.2.4 assures us that this notion is well defined.

Exercise 3.13 (k) Show that a tree graph on two or more nodes has

i. precisely one path between any two of its vertices
i1. at least two vertices of degree one.

Exercise 3.14 Prove

Theorem 3.2.4 (k) A tree graph on n nodes has (n — 1) branches.
Any connected graph on n nodes with (n — 1) edges is a tree graph.

Corollary 3.2.1 The forest subgraph on n nodes and p components
has (n — p) edges.

3.2. GRAPHS: BASIC NOTIONS 49

Exercise 3.15 Prove

Theorem 3.2.5 (k) A subset of edges of a graph is a forest (coforest)
iff it is a mazimal subset not containing any circuit (cutset).

Exercise 3.16 (k) Show that every forest (coforest) of a graph G in-
tersects every cutset (circuit) of G.

Exercise 3.17 Prove

Lemma 3.2.2 (k) A tree graph splits into two tree graphs if an edge
is opened (deleted leaving its end points in place).

Exercise 3.18 (k) Show that a tree graph yields another tree graph if
an edge is shorted (removed after fusing its end points).

Exercise 3.19 Prove

Theorem 3.2.6 (k) Let f be a forest of a graph G and let e be an
edge of G outside f. Then e U [contains only one circuit of G.

Exercise 3.20 Prove

Theorem 3.2.7 Lk) Let f be a coforest of a graph G and let e be an
edge of G outside f (i.e.,e € f). Then eU f contains only one cutset
of G (i.e., only one cutset of G intersects f in e).

Exercise 3.21 (k) Show that every circuit is an f-circuit with respect
to some forest (i.e., intersects some coforest in a single edge).

Exercise 3.22 (k) Show that every cutset is an f-cutset with respect
to some forest (i.e., intersects some forest in a single edge).

Exercise 3.23 (k) Show that shorting an edge in a cutset of a graph
does not reduce the nullity of the graph.

3.2.5 Strongly Directedness

The definitions we have used thus far hold also in the case of directed
graphs. The subgraphs in each case retain the original orientation for
the edges. However, the prefix ‘strongly directed’ in each case implies
a stronger condition. We have already spoken of the strongly directed
path. A strongly directed circuit graph has its edges arranged in a
sequence so that the negative end point of each edge is the positive

50 3. GRAPHS

end point of the succeeding edge and the positive end point of the last
edge is the negative end point of the first (see G, in Figure 3.3). The
set of edges of such a graph would be a strongly directed circuit.

A strongly directed crossing edge set would have the positive
end points of all its edges set in the same end vertex set (see Cy in
Figure 3.4).

In this book we will invariably assume that the graph is directed but
our circuit subgraphs, paths etc. although they are directed graphs,
will, unless otherwise stated, not be strongly directed. When it is clear
from the context the prefix ‘directed’ will be omitted when we speak of
a graph. For simplicity we would write directed path, directed circuit,
directed crossing edge set instead of strongly directed path etc.

Exercise 3.24 Prove:
(Minty) Any edge of a directed graph is either in a directed circuit or
in a directed cutset but not both.

(For solution see Theorem 3.4.7).

3.2.6 Fundamental Circuits and Cutsets

Let f be a forest of G and let e ¢ f. It can be shown (Theorem 3.2.6)
that there is a unique circuit contained in e U f. This circuit is called
the fundamental circuit (f - circuit) of e with respect to f and
is denoted by L(e, f). Let e, € f. It can be shown (Theorem 3.2.7)
that there is a unique cutset contained in e, U f. This cutset is called
the fundamental cutset of ¢; with respect to f and is denoted by
Bles, f).

Remark: The f-circuit L(e, f) is obtained by adding e to the unique
path in the forest subgraph on f between the end points of e. For the
subgraph on f, the edge ¢; is a crossing edge set with end vertex sets
say Vi, Va. Then the f-cutset B(ey, f) is the crossing edge set of G with
end vertex sets Vi, V5.

3.2. GRAPHS: BASIC NOTIONS 51

3.2.7 Orientation

Let G be a directed graph. We associate orientations with circuit
subgraphs and crossing edge sets as follows:

An orientation of a circuit subgraph is an alternating sequence of
its vertices and edges, without repetitions except for the first vertex
being also the last (note that each edge is incident on the preceding
and succeeding vertices). Two orientations are equivalent if one can
be obtained by a cyclic shift of the other. Diagrammatically an ori-
entation may be represented by a circular arrow. It is easily seen that
there can be at most two orientations for a circuit graph. (A single
edge circuit subgraph has only one). These are obtained from each
other by reversing the sequence. When there are two non equivalent
orientations we call them opposite to each other. We say that an edge
of the circuit subgraph agrees with the orientation if its positive end
point immediately precedes itself in the orientation (or in an equivalent
orientation). Otherwise it is opposite to the orientation.

The orientation associated with a circuit subgraph would also be called
the orientation of the circuit.

Example: For the circuit subgraph of Figure 3.6 the orientations
(n1,e, ng, es, Ny, €5, N4, €4, N3, €3, No, €2, ny), and (ng, €g, N5, es,
N4, €4, N3, €3, Ng, €, N1, €,ng) are equivalent. This is the orientation
shown in the figure. It is opposite to the orientation (ni, ey, na, es,
n3, €4, N4, €5, N5, €6, Ng,e,n1). The edge e agrees with this latter
orientation and is opposite to the former orientation.

An orientation of a crossing edge set is an ordering of its end vertex
sets Vi, Vo as (Vi, V,) or as (Va, V7). An edge e in the crossing edge set
with positive end point in V; and negative end point in V5 agrees with
the orientation (V7, V5) and is opposite to the orientation (V3,V;). In
Figure 3.6 the orientation of the crossing edge set is (Vi, V).

Theorem 3.2.8 (k) Let f be a forest of a directed graph G. Let e, € f
and let e, € f. Let the orientation of L(e., f) and B(ey, f) agree with
e, e, respectively. Then L(e., f) N Bey, f) =0 or {ec, e}

Further when the intersection is nonvoid e; agrees with (opposes) the
orientation of L(e., f) iff e. opposes (agrees with) the orientation of

B(euf)-

52 3. GRAPHS

Figure 3.6: Circuit subgraph and Crossing Edge Set with Orientations

Proof : We confine ourselves to the case where G is connected since
even if it is disconnected we could concentrate on the component where
e; is present.

If Ble, f) is deleted from G, two connected subgraphs G;, G, result
whose vertex sets are the end vertex sets V7, Vs, respectively of B(ey, f).
Now e, could have both end points in V7, both end points in V5, or one
end point in V; and another in V5. In the former two cases L(e., f) N
B(et, f) = (). In the last case L(e,., f) must contain e,. For, the path in
the tree subgraph on f between the endpoints of e, must use e; since
that is the only edge in f with one endpoint in V/; and the other in V5.
Now L(e,, f) contains only one edge, namely e. from f and B(ey, f)
contains only one edge, namely e, from f. Hence in the third case

Llec, f) 0 Bley, f) = {ec, e}

Let us next assume that the intersection is nonvoid. Suppose that
e. has its positive end point a in V; and negative end point b in V5.
Let (b,---,es -, a,¢e.b) be an orientation of the circuit. It is clear
that e; would agree with this orientation if V5 contains its positive end
point and V; its negative end point (see Figure 3.7). But in that case
e. would oppose the orientation of B(ey, f) (which is (V3,V}), taken
to agree with the orientation of e;). The other cases can be handled
similarly.

3.2. GRAPHS: BASIC NOTIONS 53

Figure 3.7: Relation between f-circuit and f-cutset

3.2.8 Isomorphism

Let G1 = (Wi, E1,i1), G2 = (Va, Ea,is), be two graphs. We say G,
G, are identical iff V; = V5, £} = E5 and i, = i5. However, graphs
could be treated as essentially the same even if they satisfy weaker
conditions. We say G;, G, are isomorphic to each other and denote
it by (abusing notation) G; = G, iff there exist bijections n : V; — V4
and € : By — E, s.t. any edge e has end points a,b in Gy iff €(e)
has endpoints n(a),n(b). If Gi,G, are directed graphs then we would
further require that an end point a of e, in Gy, is positive (negative) iff
n(a) is the positive (negative) endpoint of €(e). When we write G; = G
usually the bijections would be clear from the context. However, when
two graphs are isomorphic there would be many isomorphisms ((7, €)
pairs) between them.

The graphs G, G’ in Figure 3.8 are isomorphic. The node and edge
bijections are specified by the (). Clearly there is at least one other
(n, €) pair between the graphs.

o4 3. GRAPHS

€3

Figure 3.8: Isomorphic Directed Graphs

3.2.9 Cyclically connectedness

A graph G is said to be cyclically connected iff given any pair of
vertices there is a circuit subgraph containing them.

Gi G

Figure 3.9: Cyclically Connected and Cyclically Disconnected Graphs

3.3. GRAPHS AND VECTOR SPACES 55

Example: The graph G; in Figure 3.9 is cyclically connected while G,
of the same figure is not cyclically connected since no circuit subgraph
contains both nodes a and b.

Whenever a connected graph is not cyclically connected there would
be two vertices a, b through which no circuit subgraph passes. If a,b
are not joined by an edge there would be a vertex ¢ such that every
path between a and b passes through ¢. We then say c is a cut vertex
or hinge. The graph G; of Figure 3.9 has ¢ as a cut vertex.

It can be shown that a graph is cyclically connected iff any pair of
edges can be included in the same circuit.

In any graph it can be shown that if edges e;,es and e, e3 be-
long to circuits C}q, Cy3, then there exists a circuit C13 C Co U Cag
s.t. er,e3 € C3. It follows that the edges of a graph can be parti-
tioned into blocks such that within each block every pair of distinct
edges can be included in some circuit and edges belonging to different
blocks cannot be included in the same circuit (each coloop would form
a block by itself). We will call such a block an elementary sepa-
rator of the graph. Unions of such blocks will be called separators.
The subgraphs on elementary separators will be called 2-connected
components.(Note that a coloop is a 2-connected component by it-
self). If two 2-connected components intersect they would do so at a
single vertex which would be a cut vertex. If two graphs have a single
common vertex, we would say that they are put together by hinging.

3.3 Graphs and Vector Spaces

There are several natural ‘electrical’ vectors that one may associate
with the vertex and edge sets of a directed graph G.

eg. 1 potential vectors on the vertex set,
ii. current vectors on the edge set,
iii. voltage (potential difference) vectors on the edge set.

Our concern will be with the latter two examples. We need a
few preliminary definitions. Henceforth, unless otherwise specified, by
graph we mean directed graph.

The Incidence Matrix

56 3. GRAPHS

The incidence matrix A of a graph G is defined as follows:
A has one row for each node and one column for each edge.

A(i,j) = 41(—1) if edge j has its arrow leaving (entering) node i.
0 if edge 7 is not incident on node ¢
or if edge 7 is a selfloop.

Example: The incidence matrix of the directed graph G, in Figure
3.11is

3.3. GRAPHS AND VECTOR SPACES 57

€1 €9 €3 €4 €5 €5 €7 €3

a [+1 +#1 0 0 0 0] 0 ©
b | -1 0 41 +1 0 0| 0 0
¢ 0 -1 -1 0 +1 0| 0 0
A= d 0 0 0 —1 —1 0| 0 0 (3.1)
f 0 0 0 0 0 0]+l +1
g 0O 0 0 0 00|-1 —1
h | 0O 0 0 0 00] 0 0]

Note that the selfloop eg is represented by a zero column. This is
essential for mathematical convenience. The resulting loss of informa-
tion (as to which node it is incident at) is electrically unimportant.
The isolated node h corresponds to a zero row. Since the graph is
disconnected the columns and rows can be ordered so that the block
diagonal nature of the incidence matrix is evident.

Exercise 3.25 (k) Prove:

A matriz K is the incidence matrixz of some graph G iff it is a 0, £1
matrix and has either zero columns or columns with one +1 and one
—1 and remaining entries 0.

Exercise 3.26 (k) Prove:
The sum of the rows of A s 0. Hence the rank of A 1is less than or
equal to the number of its rows minus 1.

Exercise 3.27 (k) Prove:

If the graph is disconnected the sum of the rows of A corresponding to
any component would add up to 0. Hence, the rank of A is less than
or equal to the number of its rows less the number of components (=

r(9)).

Exercise 3.28 (k) Prove:

If f = ATA, then f(e;) = Ma) — \(b) where a is the positive end point
of e; and b, its negative end point. Thus if X represents a potential
vector with A(n) denoting the potential at n then f represents the cor-
responding potential difference vector.

58 3. GRAPHS

Exercise 3.29 Construct incidence matrices of various types of graphs
e.g. connected, disconnected, tree, circuit, complete graph K, (every
pair of n vertices

joined by an edge), path.

Exercise 3.30 Show that the transpose of the incidence matrix of a
circuit graph, in which all edges are directed along the orientation of
the circuit, is a matriz of the same kind.

Exercise 3.31 (k) Show that an incidence matriz remains an inci-
dence matriz under the following operations:

1. deletion of a subset of the columns,

1. replacing some rows by their sum.

3.3.1 The Circuit and Crossing Edge Vectors

A circuit vector of a graph G is a vector f on E(G) corresponding to
a circuit of G with a specified orientation:

fle;) = +1(—1) if ¢ is in the circuit and agrees
with (opposes) the orientation of the circuit.
= 0 if e; is not in the circuit.

Example: The circuit vector associated with the circuit subgraph in
Figure 3.6
€ €2 €3 €4 €5 €g

f:[—1 +1 -1 +1 =1 +1 0 ... o] (3.2)

Exercise 3.32 (k) Compare a circuit vector with a row of the inci-
dence matriz. Prove:
A row of the incidence matrixz and a circuit vector will

1. have no nonzero entries common if the corresponding node is not
present in the circuit subgraph, or

1. have exactly two nonzero entries common if the node is present
in the circuit subgraph. These entries would be 1. One of these
entries would have opposite sign in the incidence matrix row and
the circuit vector and the other entry would be the same in both.

3.3. GRAPHS AND VECTOR SPACES 59

Exercise 3.33 Prove

Theorem 3.3.1 (k) Every circuit vector of a graph G is orthogonal
to every row of the incidence matrixz of G.

(This follows immediately from the statement of the previous exercise).
A crossing edge vector of a graph G is a vector f on E(G) corre-
sponding to a crossing edge set with a specified orientation (V3, V3):
f(e;) = +1(-1)if ¢; is in the crossing edge set and agrees
with (opposes) the orientation (V3,V3).
= 0 if e; is not in the crossing edge set.

If the crossing edge set is a cutset then the corresponding vector is a
cutset vector.

Example: The crossing edge vector associated with the crossing edge
set of Figure 3.6 is

€ €9 €3 €y

f=[+1 =1 41 41 0 -~ 0]. (3.3)
Exercise 3.34 Prove

Theorem 3.3.2 (k) The crossing edge vector corresponding to the
crossing edge set of orientation (Vi,Va) is obtained by summing the
rows of the incidence matriz corresponding to the nodes in V.

Hence, a crossing edge vector of G is a voltage vector and is orthogonal

to every circuit vector of G. (This can also be proved directly).

Exercise 3.35 (k) When is a row of the incidence matriz also a cutset
vector? Can a cutset be a circuit? Can a cutset vector be a circuit
vector?

Exercise 3.36 (k) RRE of an Incidence Matrix:
Give a simple rule for finding the RRE of an incidence matriz.

3.3.2 Voltage and Current Vectors

For a graph G a current vector i is a vector on E(G) that is orthogonal
to the rows of the incidence matrix of G, equivalently, that satisfies
Kirchhoff’s current equations (KCE): Ax = 0 [Kirchhoff1847].

60 3. GRAPHS

A voltage vector v of G is a vector on F(G) that is linearly dependent
on the rows of the incidence matrix of G i.e.

vT = ATA for some vector \.

The vector A assigns a value to each node of G and is called a potential
vector. We say v is derived from the node potential vector .
Voltage vectors and current vectors form vector spaces denoted by
Vo(G),Vi(G), and called voltage space of G and current space of G
respectively.

Exercise 3.37 Prove
(Tellegen’s Theorem (weak form)) Any voltage vector of G is or-
thogonal to every current vector of G.

Remark: When the graph is disconnected with components G, ...G,
it is clear that both the current and voltage space can be written in the
form @ _,V(G;). However, in order to write the space in this decom-
posed form it is not necessary that the G; be disconnected. All that
is required is that there be no circuit containing edges from different
G; (see the discussion on separators). We say that graphs Gy, G, are
2-isomorphic and denote it by G; = G, iff there exists a bijection
€: E(G) — E(Gy) through which an edge in G; can be identified with
an edge in Gy so that V,(G1) = V,(Ga).

Whitney [Whitney33c| has shown that two 2-isomorphic graphs can be
made isomorphic through the repeated use of the following operations:

i. Decompose the graphs into their 2-connected components.

ii. Divide one of the graphs into two subgraphs G’ and G” which
have precisely two vertices, say a and b, in common. Split the
nodes into aq,as and by, by so that the two subgraphs are now
disconnected with ay, by, belonging to G’ and as, by to G”. Let
G! be the graph obtained from G’ by adding an edge e between
ay,b;. Now reverse all arrows of edges of G’ which lie in the 2-
connected component containing e in G, and attach a; to by and
as to by.

3.3. GRAPHS AND VECTOR SPACES 61

If ¢ is a circuit vector corresponding to the circuit C' with an orienta-
tion then the Kirchhoff’s Voltage Equation (KVE) [Kirchhoff1847]
corresponding to C' is

c’'x=0

We have the following basic characterization of voltage vectors:

Theorem 3.3.3 (k) A vector v on E(G) is a voltage vector iff it sat-
1sfies KVE corresponding to each circuit with an orientation.

Proof : By Theorem 3.3.1 we know that a circuit vector is orthog-
onal to every row of the incidence matrix. Hence, a circuit vector is
orthogonal to any vector that is linearly dependent on the rows of the
incidence matrix i.e. orthogonal to a voltage vector. Hence, every volt-
age vector satisfies KVE corresponding to any circuit with orientation.
Now let v be a vector that satisfies KVE corresponding to every circuit
with an orientation. We will construct a potential vector A s.t. A”TA =
vT. Take any node d as the datum node, i.e., A(d) = 0. Suppose A(a) is
already defined and edge e has a as the positive (negative) end and b as
the opposite end. Then we take A(b) = A(a) —v(e)(A(b) = A(a)+v(e)).
In this manner every node in the same connected component is assigned
a A value. A node that is reachable from d by two different paths will
not be assigned two different values as otherwise we can find a circuit
with orientation for which KVE is violated. Repeating this procedure

for each component yields a A vector s.t. ATA =vT.

O

3.3.3 Voltage and Current Vector Spaces and Tel-
legen’s Theorem

In this subsection, we compute the rank of V,(G) and V;(G) and prove
that the spaces are complementary orthogonal (Tellegen’s Theorem
(strong form)).

Theorem 3.3.4 (k) Let G be a graph on n nodes with p connected
components. Then

i. Any set of (n—p) rows of A which omits one row per component
of G, is a basis of V,(G).

62 3. GRAPHS

i r(Vo(G)) =n—p

Proof :

If G is made up of p connected components, by (if necessary) rearrang-
ing the rows and columns of A it can be put in the block diagonal
form with p blocks. Hence, any union of linearly independent vectors
from different A; would be linearly independent. We need to show that
dropping any row of A; results in a set of linearly independent vectors.
So let us, without loss of generality, assume that G is connected and
select any (n — 1) rows of A. Suppose these are linearly dependent.
Then there is a non trivial linear combination of these rows which is a
zero vector. From this set of rows we omit all the rows which are being
multiplied by zeros. The remaining set of rows is nonvoid. Consider
the corresponding set of vertices say V. This set does not contain all
vertices of the graph. Since the graph is connected there must be an
edge e with one end point in V; and the other outside. The submatrix
of A with rows V; has only one nonzero entry in the column e. Hence,
by multiplying these rows by nonzero scalars and adding we cannot
get a zero row. This contradiction shows that any (n — 1) rows of A
must be linearly independent. Since the sum of rows of A is a zero
vector, dropping one row of A results in a basis of V,(G) when G is
connected and hence any set of (n —p) rows of A which omits one row
per component of G is a basis of V,(G). Hence, r(V,(G)) =n — p.

O

A reduced incidence matrix A, of a graph G is obtained by
omitting one row belonging to each component of G.
We know by Theorem 3.3.4 that the reduced incidence matrix is a
representative matrix for V,(G). A standard representative matrix for
V,(G) may be built as described below.

3.3.4 Fundamental cutset matrix of a forest f

We know by Theorem 3.2.7 that there is a unique cutset of a graph ¢
that intersects a forest f in an edge e. This we have called the funda-
mental cutset of e with respect to f and denoted it by B(e, f). We as-
sign this cutset an orientation agreeing with that of e. Let ey, eo,...,¢€,

3.3. GRAPHS AND VECTOR SPACES 63

be the edges in the forest f and let vq,...,v, be the corresponding
cutset vectors. A matrix which has vq,...,v, as rows is called the
fundamental cutset matrix Qy of f. This matrix is unique within
permutation of rows and columns. By reordering rows and columns, if
required, this matrix can be cast in the form

7

Qr=[Qu 1] (3.4)

It is clear that Qf has | f | (= (n — p)) rows which are linearly inde-
pendent. Since a cutset vector is linearly dependent on the rows of the
incidence matrix A (Theorem 3.3.2) and 7(A) = n — p, it follows that
Q; is a standard representative matrix for V,(G).

Example: Consider the graph of Figure 3.10.

Let f={es e4 €5 g e7} and let f = {e; es}.

64 3. GRAPHS

€1 €2 €3 €4 €5 €g €7

0 1 1 00 0 0

1 0 0100 0
Q=|-1-100 10 0 (3.5)

0 1 000 1 0

1 0 00 0 0 1

\ / .
€3 €4 \
|
Q es el *
I
|
€6

Figure 3.10: f-cutsets and f-circuits

/
/
/
/
I
|
| - —
Ve I Y Yez
\ | |
\
\
\
\
\
‘.

3.3.5 Fundamental circuit matrix of a forest f

We have already seen that addition of an edge e to a forest f creates a
unique circuit which we have called the fundamental circuit of e with
respect to f denoted by L(e, f). As before we assign this circuit an ori-
entation agreeing with that of e. Let e, ---, e, be edges in the coforest
f. Let cq,---,c, be the corresponding circuit vectors. A matrix with
these vectors as rows is called the fundamental circuit matrix By
of f. This matrix is unique within permutation of rows and columns.
By reordering rows and columns, if required, this matrix can be cast

in the form

3.3. GRAPHS AND VECTOR SPACES 65

It is clear that B has | f | rows which are linearly independent. Since

a circuit vector is orthogonal to all the rows of the incidence matrix,

it must be a current vector. Thus rows of B are current vectors.
Example: Consider the graph in Figure 3.10. Here f = {e3, ey, e5, €g, €7}
and f = {e1, es}.

66 3. GRAPHS

€1 €2 €3 €4 €5 € €7

1 0 0 -1 +41 0 -1

Br=1g9 1 4 0 41 -1 0

(3.6)
Theorem 3.3.5 (k) Let G be a graph on e edges, n nodes and p con-
nected components. Then

(a) r(Vi(G)) =e—n+p

(b) (Tellegen’s Theorem (strong form)) (V,(G))* = Vi(G).

Proof : The rows of a fundamental circuit matrix are current vectors
and € — n + p in number. Hence, r(V;(G)) > e—n+p.

On the other hand every voltage vector is orthogonal to every current
vector since a voltage vector is linearly dependent on the rows of A
while a current vector is orthogonal to these rows. Thus, (V,(G))* 2
Vi(G).

By Theorem 2.2.5, r(V,(G)) + r(Vu(G))* = ¢

We have already seen that r(V,(G)) = n — p. Hence r(V,(G))* =
e—n+pand r(V;i(G)) < e—n+p. We conclude that r(V;(G)) = e—n+p
and thus V;(G) = (V,(G))*.

O

Corollary 3.3.1 (k) The rows of an f-circuit matriz of a graph G form
a basis for the current space of G.

Exercise 3.38 (k) Examine which potential vectors correspond to a
zero voltage vector.

Exercise 3.39 Consider the column space C(A) of A. Show that
(C(A))* is one dimensional if the graph is connected. Hence show
that r(A) =n — 1.

Exercise 3.40 (k) The following is another proof for ‘r(A) =n—1 if
the graph is connected’. If the graph is connected r(A) < n — 1 since
the sum of the rows is zero. But Qs has n — 1 independent rows which
are linear combinations of rows of A. Hence r(A) =n — 1.

Exercise 3.41 An elementary vector of a vector space is a nonzero
vector with minimal support (subset on which it takes nonzero values).
Prove

3.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACES67

Theorem 3.3.6 (k) The circuit vector (cutset vector) is an elemen-
tary current vector (elementary voltage vector) and every elementary
current vector (elementary voltage vector) is a scalar multiple of a cir-
cuit vector (cutset vector).

Exercise 3.42 Prove

Theorem 3.3.7 (k) A set of columns of A is linearly independent iff
the corresponding edges of the graph do not contain a circuit. A set
of columns of By is linearly independent iff the corresponding edges of
the graph do not contain a cutset.

Exercise 3.43 (k) Every standard representative matrix of V,(G) (stan-
dard representative matriz of V;(G)) is a fundamental cutset (funda-
mental circuit) matriz of G.

Exercise 3.44 An alternative proof of the strong form of Tel-
legen’s Theorem:
(k) Let By, Qy be the f-circuit and f-cutset matriz with respect to the
same forest. Prove:

i. BTQ; =0

i. If By = [I Bya] then Qp = [-Bi, I|. (Note that this implies
Theorem 3.2.8).

iii. Rows of By, Qg are current vectors (voltage vectors). Their

ranks add upto e(=| E(G) |). Hence, (V;(G))* = V,(G).

Exercise 3.45 (k) Prove

Theorem 3.3.8 (k) The mazimum number of independent KVE for
a graph is r(V;(G)) (= e—n+p).

3.4 Basic Operations on Graphs and Vec-
tor Spaces
In this section, we discuss basic operations on graphs (directed and

undirected) which correspond to open circuiting some edges and short
circuiting some others. These operations are related to two vector

68 3. GRAPHS

space operations: restriction and contraction. Since real vector spaces
are associated primarily with directed graphs, henceforth we deal only
with such graphs, but, omit the adjective ‘directed’.

3.4.1 Restriction and Contraction of Graphs

Let G be a graph on the set of edges F and let T'C F.

Definition 3.4.1 The graph Gopen(E — T) is the subgraph of G with
T as the edge set and V(G) as the vertex set. Thus Gopen(E —T) is
obtained by removing (deleting) edges in E—T leaving their end points
i place.

The restriction of G to T, denoted by G -'T, is the subgraph of G
obtained by deleting isolated vertices from Gopen(E —T). Thus, G- T
18 the subgraph of G on T

If G is directed, Gopen(E — T),G - T, would be directed with edges
retaining the original directions they had in G.

Definition 3.4.2 The graph Gshort (E — T) is built by first building
GopenT'. Let Vi, ---,V} be the vertex sets of the connected components
of GopenT. The set {Vi,---,Vi} is the vertex set and T is the edge
set of Gshort (E —T). An edge e € T would have V;,V; as its end
points in Gshort (E —T) iff the end points of e in G lie in V;, V;. If G
is directed, V;,V; would be the positive and negative endpoints of e in
Gshort (E — T) provided the positive and negative end points of e in
G lie in V;, V; respectively.

(Thus, Gshort (E—T) is obtained from G by short circuiting the edges
in (E—T) (fusing their end points) and removing them).

The contraction of G to T, denoted by G x T, is obtained from
Gshort (E —T) by deleting the isolated vertices of the latter.

Example: Consider the graph G of Figure 3.11.

Let T' = {ey, es, €11 }. The graph GopenT is shown in the figure. Graph
G- (E —T) is obtained by omitting isolated vertex v; from GopenT.
Graph Gshort (E—T) is also shown in the same figure. Graph G x T is
obtained by omitting the isolated vertex { vs, vy } from Gshort (E—-T).

We denote (gXTl)'TQ, T2 - T1 - E(g) by QXTl-Tg and (ng) XTQ.
T, C Ty C E(G) by G- T, x T,. Graphs denoted by such expressions
are called minors of G. It can be seen that when a set A C E(G) is

3.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACES69

e e
2 e, 9

€4

65 e,

GopenT

{st Ve V7}
Gshort(F —T)

Figure 3.11: Minors of a Graph

70 3. GRAPHS

being shorted and a disjoint set B C E(G), is being opened then the
final graph does not depend on the order in which these operations are
carried out but only on the sets A and B. Now G x T'(G - T') differs
from Gshort (E—T) (Gopen(E —T')) only in that the isolated vertices
are omitted. We thus have the following theorem where equality refers
to isomorphism.

Theorem 3.4.1 (k) Let G be a graph with T, C Ty C E(G). Then

7. QXT1><T2:Q><T2,
w. G-T- Ty =G - Ty,

109. QXTl-ngg-(E—(Tl—Tg))><T2.

Proof : The theorem is immediate when we note that both graphs
are obtained by shorting and opening the same sets. In (i) £ — T; is
shorted while in (ii) £ — T3 is opened. In (iii) £ — T} is shorted and
Ty — T5 is opened.

O

Exercise 3.46 (k) Simplification of Expression for minors:
Show that any minor of the form GxT,-ToxTy...T,, Ty D15 D ... D
T,

(the graph being obtained by starting from G and performing the oper-
ations from left to right in succession), can be simplified to a minor of
the form

G- T xT, orGxT -T,.

Exercise 3.47 Train yourself to visualize Gy = Gshort (E —T') (Put
components of GopenT inside surfaces which then become nodes of Gy).
How many components does it have? When would a branch of G become
a selfloop of G1 ¢ When would a circuit free set of branches of G become
dependent in Gy ¢

Exercise 3.48 Circuits of minors: Prove

Lemma 3.4.1 (k)

i. A subset C' of T is a circuit of G- T iff C is a circuit of G.

3.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACEST1

1. A subset C' of T is circuit of G xXT iff C is a minimal intersection
of circuits of G with T (equivalently,iff C' is an intersection of a
circuit of G with T but no proper subset of C' is such an inter-
section,).

Exercise 3.49 (k) Cutsets of minors: Prove

Lemma 3.4.2 (k)

i. A subset B of T is a cutset of G-T iff it is a minimal intersection
of cutsets of G with T.

1. A subset B of T is a cutset of G X T iff it is a cutset of G.

3.4.2 Restriction and Contraction of Vector Spaces

We now describe operations on vector spaces which are analogous to
the operations of opening and shorting edges in a graph.
Let V be a vector space on S and let T"C S.

Definition 3.4.3 The restriction of V to T, denoted by V. T, is the
collection of vectors fr where fr is the restriction of some vector f of
VitoT.

The contraction of V to T, denoted by V x T, is the collection of
vectors f'r where f'1 is the restriction to T of some vector f of V such

that £/(S —T) =0 .
It is easily seen that V- T, V x T are vector spaces.

As in the case of graphs we denote (V x T1) - Ty by V x Ty - Ts.
Such expressions denote vector spaces which are called minors of V.
To bring out the analogy between graph minor and vector space minor
operations we say we ‘open’ 7' when we restrict V to (S — T') and say
we ‘short” 7" when we contract V to (S —1T).

It turns out that the order in which we open and short disjoint sets of
elements is unimportant. More formally we have

Theorem 3.4.2 (k) Let Ty CTy C S. Then

7. V‘Tl'TQZV‘TQ,

72 3. GRAPHS

2. VXT1XT2:VXT2,
119, VXTl'TQZV'(S—(Tl—TQ))XTQ.

Proof of (iii): We show that a vector in the LHS belongs to a vector
in the RHS.

Let fT2 S 7 T1 -TQ.

Then there exists a vector fr; € V x T such that fr, /T, = fr, and a
vector f € V with £/(S — T1) = 0 such that £/7) = fr,.

Now let " denote £/(S — (T} — T3)).

3.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACES73

Clearly fl'ey. (S - (T1 — TQ)) Now f//(S — Tl) = 0.
Hence, f'/T5 € V- (S — (T — Ty)) x Ts.
Thus, VXTl'TQ QV(S—(Tl —Tg)) XTQ.

The reverse containment is similarly proved.

O

Remark: To see the proof of the above theorem quickly, observe that
a typical vector of both LHS and RHS is obtained by restricting a
vector of V), that takes zero value on S — 17, to 1.

Exercise 3.50 (k) Prove:
Any minor of the form V x Ty - Ty xT5...T,, 71 DTy O ... D T,, can
be simplified to a minor of the form

V- T'xT,or VxT-T,.

3.4.3 Vector Space Duality

We now relate the minors of V to the minors of V*. We remind the
reader that]A/L, the complementary orthogonal space of V is defined
to be on the same set as V. In the following results we see that the
contraction (restriction) of a vector space corresponds to the restriction
(contraction) of the orthogonal complement. We say that contraction
and restriction are (orthogonal) duals of each other.

Theorem 3.4.3 (k) Let V be a vector space on S and let T C S.
Then,

i. (V-T):=vtxT.
W (VxT)-=V+. T
Proof :
i. Let gr € (V- T)*L. For any f on S let fr denote /7. Now if f € V,

then fr € V- T and < gp,fr > = 0.
Let g on S be defined by g/T =gr, g/S—T =0. If f € V we have

< f7g > = < fT7gT >+ < fS—T7gS—T >
0+ < fS—T, Og_7 >
0.

74 3. GRAPHS

Thus g € V! and therefore, gr € YV x T.Hence, (V . T)t CV+ x T.
Next let gr € V+ x T.

Then there exists g € V* s.t. g/S —T =0 and g/T = gr.

Let fr € V- T. There exists f € V s.t. £/T = fr.

Now 0 =< f,g >=< fT,gT >4+ < fS—Taos—T > =< fT,gT >.
Hence, gr € (V- T)*.

We conclude that

VE x T C (V-T)*. This proves that (V-T)+ =V+ x T.

ii. We have (V*-T)* = (VH)t x T.

By Theorem 2.2.5

(VE-T)H)t =V+-T and (V5)* = V. Hence, V& - T = (V x T')*.

The following corollary is immediate.
Corollary 3.4.1 (k) Vx P -T)t=Vt.PxT, TCPCS.

3.4.4 Relation between Graph Minors and Vector
Space Minors

We now show that the analogy between vector space minors and graph
minors is more substantial than hitherto indicated - in fact the minors
of voltage and current spaces of a graph correspond to appropriate
graph minors.

Theorem 3.4.4 (k) Let G be a graph with edge set E. Let T C E.
Then

. Vo(G-T)=(V(9))- T
. Vo(G X T)=(V(G)) xT

Proof : We remind the reader that by definition a voltage vector v is a
linear combination of the rows of the incidence matrix, the coefficients
of the linear combination being given by the entries in a potential
vector A. We say v is derived from A.

i. Let vip € V(G- T)

Now V,(G - T) = V,(Gopen(E —T)).

3.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACEST5

Thus, vy € V,(Gopen(E —T)). The graph Gopen(E —T') has the same
vertex set as G but the edges of (E — T') have been removed.

Let vz be derived from the potential vector A of Gopen(E — T'). Now
for any edge e € T', vr(e) = A(a) — A(b), where a, b are the positive and
negative end points of e. However, \ is also a potential vector of G.
Let the voltage vector v of G be derived from A. For the edge e € T,
we have, as before, v(e) = A(a) — A(b). Thus, vy = v/T and therefore,
vy € Vy(G))-T. Hence V,(G-T) C (Vu(G)) - T

The reverse containment is proved similarly.

ii. Let v € V(G x T'). Now V,(G x T') = V,(Gshort (E —1T)).
Thus, vy € V,(Gshort (E —T)).

The vertex set of Gshort (E —T') is the set {V1, Va,...V,,} where V; is
the vertex set of the gth component of GopenT'. Let vz be derived from
the potential vector A in Gshort (E —T). The vector A assigns to each
of the V; the value 5\(%) Now define a potential vector A on the nodes
of G as follows: A(n) = X(V}),n € V;. Since {Vi,...Vi} is a partition
of V(G), it is clear that A is well defined. Let v be the voltage vector
derived from A in G. Whenever e € E—T we must have v(e) = 0 since
both end points must belong to the same V;.

Next, whenever e € T we have v(e) = A(a) — A(b) where a is the
positive end point of e and b, the negative endpoint. Let a € V,
b € Vy,where V,,V, € V(Gshort (E —T)). Then the positive endpoint
of e in Gshort (E —T) is V, and the negative end point, V.

By definition A(a) — A(b) = A(V,) — A(V,).Thus v/T = vp. Hence,
vr € Vu(G)) x T. Thus, V(G x T) € (V,(G)) x T. The reverse

containment is proved similarly.

O

Using duality we can now prove

Theorem 3.4.5 (k) Let G be a directed graph on edge set E. Let
T CE. Then,

Proof :
i. Vi(G.T)=(V,(G.T))" by the strong form of Tellegen’s Theorem.

76 3. GRAPHS

By Theorem 3.4.4, V,(G . T) = (V,(G9)) - T.
Hence,

VG . T) =

ii. The proof is similar.

O

Exercise 3.51 (k) For a connected directed graph G on node set {vy, ..., v}

iof currents Jy, Jo ..., Ji enter nodes vy, vs, ..., v, show that
there exists a vector i on E(G), s.t. Ai=1J

Exercise 3.52 Prove Theorem 8.4.5 directly. (Hint: the result of the
preceding exercise would be useful in extending a current vector of GxT
to a current vector of g).

3.4.5 Representative Matrices of Minors

As defined earlier, the representative matrix R of a vector space
VY on S has the vectors of a basis of V as its rows. Often the choice
of a suitable representative matrix would give us special advantages.
We describe how to construct a representative matrix which contains
representative matrices of V . T and V x (S — T') as its submatrices.
We say in such a case that V . T and V x (S — T') become ‘visible’ in
R.

Theorem 3.4.6 (k) Let V be a vector space on S. Let T C S. Let R
be a representative matriz as shown below

T S-T
| Rrr Ry
R | R B o

where the rows of Rpr are linearly independent. Then Rpr is a rep-

resentative matriz for V . T and Ras, a representative matrixz for
Vx(S-T).

3.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACEST7

Proof : The rows of Rpp are restrictions of vectors on S to T'. Hence,
any linear combination of these rows will yield a vector of V . T If fp
is any vector in V . T there exists a vector f in V s.t. £/T = fr. Now f
is a linear combination of the rows of R. Hence, f/T(= f7) is a linear
combination of the rows of Rpp. Further it is given that the rows of
Rr are linearly independent. It follows that Ry is a representative
matrix of V . T.

It is clear from the structure of R (the zero in the second set of rows)
that any linear combination of the rows of Rgy belongs to V x (S —T).
Further if f is any vector in V s.t. f/7 = 0 then f must be a linear
combination only of the second set of rows of R. For, if the first set
of rows are involved in the linear combination, since rows of Ryr are
linearly independent, /7" cannot be zero. We conclude that if f/(S—1T)
is a vector in V x (S —1T), it is linearly dependent on the rows of Ras.
Now rows of R are linearly independent. We conclude that Rgs is a
representative matrix of ¥V x T.

O

Remark:To build a representative matrix of)V with the form as in
Theorem 3.4.6, we start from any representative matrix of V and per-
form row operations on it so that under the columns 7" we have a
matrix in the RRE form.

The following corollary is immediate
Corollary 3.4.2 (k)

rWV)=r(V.T)+r(Vx(S-T)),TCS
Corollary 3.4.3 (k) Let G be a graph on E. Then

r(G)=rG.T)+r(Gx(E-T) NTCE

Proof : We observe that 7(G) = number of edges in a forest of G =
r(Vy(G)). The result follows by Theorem 3.4.4.

O

In the representative matrix of Theorem 3.4.6 the submatrix Ry9 con-
tains information about how 7', S — T are linked by V. If Rps is a zero
matrix then it is clear that V = Vr & Vg_7 where Vr, Vs_r are vector
spaces on T, S — T.

78 3. GRAPHS

Definition 3.4.4 A subset T of S is a separator of V iff V x T =
V.T.

It is immediate that if 7" is a separator so is (S — 7). Thus, we might
say that T, (S — T') are decoupled in this case. Now by definition
V. T OV xT. Hence, equality of the spaces follows if their dimensions
are the same. Hence, T is a separator iff 7(V xT') =r(V . T).

The connectivity of V at T is denoted by £(7T) and defined as follows:

EM)y=r(V.T)—r(VxT)

It is easily seen that {(T") = (S — T'). Further, this number is zero if
T is a separator.

Exercise 3.53 (k)

1. Let
n Ty T3
Rii Ri2 Rys
R = R21 0 R23 (3 8)
0 0 Rs;

R . . .
Rows of Ris and RH are given to be linearly independent.
21

Show that Ras is a representative matriz of V x Ty, Ris of V . Ts,
Ry of V . (T1UT) x Ty as well as V x (Ty UT3). T1 (and hence
these spaces must be the same).

ii. How would R look if V . (Ty UTy) has Ty, Ty as separators?

Exercise 3.54 (k) Let
T

RH 0
R = R21 RQQ . (39)
0 R33

Suppose rows of

Ry , Ro» , are linearly independent. Show that the number
Ro; Ras

of rows of Rog =1(V . To) —r(V x Ty) (=7(V . Th) —r(V x T1)).

3.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACEST79

Exercise 3.55 (k) Prove:
Let £'(+) be the £(+) function for V&, Then &' (T) = &(T), VT C S.

Exercise 3.56 (k) Show that the union of a forest of G X T and a
forest of G . (E'—T) is a forest of G. Hence, (Corollary 3.4.3) r(G x
T)+r(G.(E-T)) =r(9).

Exercise 3.57 (k) Prove:
v(G . T)+v(Gx(S—T)=uv(G).

Exercise 3.58 (k) Prove:

Let G be a graph on E. ThenT C E is a separator of G (i.e., no circuit
intersects both T and E — T (Subsection 3.2.9) iff T is a separator of
Vo(G). Hence, T is a separator of G iff r(G . T) =r(G x T).

Exercise 3.59 Let T be a separator of G. Let G . T,G . (E —T) have
aq, o forests respectively, (1, B2 circuits respectively and vy, yo cutsets
respectively. How many forests, coforests, circuits and cutsets does G
have?

3.4.6 Minty’s Theorem

Tellegen’s Theorem is generally regarded as the most fundamental re-
sult in Electrical Network Theory. There is however, another funda-
mental result which can be proved to be formally equivalent to Telle-
gen’s Theorem [Narayanan85c| and whose utility is comparable to the
latter. This is Minty’s Theorem (strong form) [Minty60], which we
state and prove below.

Theorem 3.4.7 (Minty’s Theorem (strong form)) Let G be a di-
rected graph.

Let E(G) be partitioned into red,blue and green edges. Let e be a green
edge.

Then e either belongs to a circuit containing only blue and green edges
with all green edges of the same direction with respect to the orienta-
tion of the circuit or e belongs to a cutset containing only red and
green edges with all green edges of the same direction with respect to
the orientation of the cutset but not both.

Proof: We first prove the weak form:

80 3. GRAPHS

‘in a graph each edge is present in a directed circuit or
in a directed cutset but not both’

Proof of weak form: We claim that a directed circuit and a directed
cutset of the same graph cannot intersect. For, suppose otherwise.
Let the directed cutset have the orientation (Vi,V3). The directed
circuit subgraph must necessarily have vertices in V] as well as in V5 in
order that the intersection be nonvoid. But if we traverse the circuit
subgraph starting from the node in V; we would at some stage crossover
into V5 by an edge e and later return to Vi by an edge es;. Now €19, €91
have the same orientation with respect to the circuit which means that
if one of them has positive end point in V; and negative end point in
V5 the other must have the positive and negative end points in V5, Vi,
respectively. But this contradicts the fact that they both belong to the
same directed cutset with orientation (V3,V3).

Next we show that any edge e must belong either to a directed circuit
or to a directed cutset. To see this, start from the negative end point ns
of the edge and reach as many nodes of the graph as possible through
directed paths. If through one of these paths we reach the positive end
point n; of e we can complete the directed circuit using e. Suppose
ny is not reachable through directed paths from ns. Let the set of all
nodes reachable by directed paths from ny be enclosed in a surface.
This surface cannot contain n; and has at least one edge, namely e
with one end inside the surface and one outside. It is clear that all
such edges must be directed into the surface as otherwise the surface
can be enlarged by including more reachable nodes. This collection
of edges is a directed crossing edge set and contains a directed cutset
which has e as a member (see Exercise 3.60). This completes the proof
of the weak form.

Proof of strong form: We open the red edges r and short the blue
edges b to obtain from G, the graph G, on the green edge set g .i.e.,
G, = G x(E(G)—0b)-g. In this graph the weak form holds. Suppose the
edge e is part of a directed cutset in G,. Then this is still a directed
cutset containing only green edges in G- (E(G) —r). (By Lemma 3.4.2,
aset C CT C E(G) is a cutset of G x T iff it is a cutset of G). It
would be a part of a red and green cutset in G when red edges are
introduced between existing nodes. On the other hand, suppose the
edge e is part of a directed circuit in G,;. Then this is still a directed

3.5. PROBLEMS 81

circuit containing only green edges in G x (E(G) — b). (By Lemma
3.4.1,aset C CT C E(G) is a circuit of G- T iff it is a circuit of G). It
would be a part of a blue and green circuit in G when blue edges are
introduced by splitting existing nodes.

Thus, the strong form is proved.

O

Exercise 3.60 (k) Let e be a member of a directed crossing edge set
C'. Show that there exists a directed cutset Cy s.t. e € C; C C.

Exercise 3.61 (k) A Generalization: Prove:

Let'V be a vector space on S over the real field and let e € S. Then e is
in the support of a nonzero nonnegative vector f in'V or in the support
of a nonzero nonnegative vector g in V* but not in both.

Exercise 3.62 (k) Partition into strongly connected compo-
nents: Prove:

The edges of a directed graph can be partitioned into two sets - those
that can be included in directed circuits and those which can be included
in directed cutsets.

1. Hence show that
the vertex set of a directed graph can be partitioned into blocks
so that any pair of vertices in each block are reachable from each
other; partial order can be imposed on the blocks s.t. B; > B; iff
a vertex of B; can be reached from a vertex of B;.

1. Give a good algorithm for building the partition as well as the
partial order.

3.5 Problems

Problems on Graphs

Problem 3.1 (k) If a graph has no odd degree vertices,then it is possi-
ble to start from any vertex and travel along all edges without repeating
any edge and to return to the starting vertex. (Repetition of nodes is

allowed).

82 3. GRAPHS

Problem 3.2 (k) Any graph on 6 nodes has either 3 nodes which are
pairwise adjacent or 8 nodes which are pairwise non-adjacent.

Problem 3.3 (k) A graph is made up of parallel but oppositely directed
edges only. Let T, E — T be a partition of the edges of G such that

i. if e € T' then the parallel oppositely directed edge € € T.

ii. it is possible to remove from each parallel pair of edges in T(E —
T') one of the edges so that the graph is still strongly connected.

Show that it is possible to remove one edge from each parallel pair of
edges in G so that the graph remains strongly connected.

Problem 3.4 (k) We denote by IKC,, the graph on n nodes with a single
edge between every pair of nodes and by IC,,, ,, the bipartite graph (i.e.,no
edges between left vertices and no edges between right vertices) on m
left vertices and n right vertices, with edges between every pair of right
and left vertices.

i. How many edges do IC,,, K, ,, have?
it. Show that every circuit of K, has an even number of edges.

iii. Show that KC,, has n"? trees.

w. A vertex colouring is an assignment of colours to vertices of the
graph so that no two of them which have the same colour are
adjacent. What is the minimum number of colours required for

K, Kn?

Problems on Circuits

Problem 3.5 [Whitney35] Circuit Matroid: Show that the collec-
tion C of circuits of a graph satisfy the matroid circuit axioms:

i. If Ch,Cy € C then Cy cannot properly contain Cs.

1. If e. € CyNCyeq € Cy — Oy, then there exists C3 € C and
C3 CCLUCy s.t. e. ¢ Cs but eq does.

3.5. PROBLEMS 83
Problem 3.6 (k) Circuit Characterization:

i. A subset of edges C' is a circuit of a graph iff it is a minimal set
of edges not intersecting any cutset in a single branch.

ii. Same as (i) except ‘single branch’ is replaced by ‘odd number of
branches’.

1. Cis a circuit of a graph iff it is a minimal set of branches not
contained in any forest (intersecting every coforest).

Problem 3.7 (k) Cyclically Connected in terms of Edges: A
graph in which any two vertices can be included in a circuit subgraph
18 said to be cyclically connected. In such a graph any two edges can
also be so included.

Problem 3.8 (k) Cut Vertex: A graph with no coloops is cyclically
connected iff it has no cut vertex (a vertex whose removal along with
its incident edges disconnects the graph).

Problems on Cutsets

Problem 3.9 (k) Cutset Matroid: Show that the collection of cut-
sets of a graph satisfies the circuit axioms of a matroid.

Problem 3.10 (k) Cutset Characterization:

i. A subset of edges C' is a cutset of a graph iff it is a minimal set
of edges not intersecting any circuit in a single edge (in an odd
number of edges).

1. C' 1s a cutset of a graph iff it is a minimal set of branches not
contained in any coforest (intersecting every forest).

Problem 3.11 (k) Show that every crossing edge set is a disjoint
union of cutsets.

Problem 3.12 (k) Cyclically Connected in terms of Edges in
Cutsets: In a cyclically connected graph any two edges can be included
m a cutset.

84 3. GRAPHS

Problems on Graphs and Vector Spaces

Problem 3.13 (k) Show directly that KCE of a tree graph has only
the trivial solution. What is the structure for which KVE has only the
trivial solution?

Problem 3.14 Rank of Incidence Matrix of a Tree Graph:
Give three proofs for ‘rank of incidence matrix of a tree graph = number
of edges of the graph’ using

1. the determinant of a reduced incidence matriz
1. current injection

1. by assuming branches to be voltage sources and evaluating node
potentials.

Problem 3.15 (k) Nontrivial KCE Solution and Coforest:
Prove directly that the support of every nonzero solution to KCE meets
every coforest. Hence, the rows of an f-circuit matriz of G span V;(G).

Hence, r(V;(G)) =e— (v—p).

Problem 3.16 (k) Nontivial KVE Solution and Forest:
Prove directly that the support of every nonzero solution to KVE meets
every forest. Hence, the rows of an f-cutset matriz of G span V,(G).

Hence, 7(V,(G)) = (v —p).

Problem 3.17 (k) Determinants of Submatrices of Incidence
Matrix:

The determinant of every submatriz of the incidence matriz A s 0,
+1. Hence, this property also holds for every Qs and By.

Problem 3.18 Interpreting Current Equations:

Let A be an incidence matrix.

i. Find one solution to Ax = b, if it exists, by inspection (giving a
current injection interpretation).

i. Find one solution to ATy = v by inspection (using voltage sources
as branches).

3.5. PROBLEMS 85

Problem 3.19 i. Let A be the incidence matriz of G. If Ax =b
is equivalent to Q;x = b, relate b to b. Using current injection

give a simple rule for obtaining b from b.

. If Qpx = by, and Qpx = by are equivalent give a simple rule
for obtaining by from bs.

wi. If Bpy = di, and By = dy are equivalent give a simple rule
for obtaining d, from ds.

Problem 3.20 If two circuit (cutset) vectors figure in the same f-
circuit (f-cutset) matriz show that the signs of the overlapping portion
fully agree or fully oppose. So overlapping f-circuits (f-cutsets) fully
agree or fully oppose in their orientations.

Problem 3.21 (k) Give simple rules for computing AAT B,B7, QfQ?.
Show that the number of nonzero entries of AA” is 2e +n if the graph
has no parallel edges. Show that BfB?, QfQ? may not have any zero
entries. Hence observe that nodal analysis is preferable to fundamental
loop analysis and fundamental cutset analysis from the point of view
of using Gaussian elimination.

(Consider the case where a single edge lies in every circuit (cutset)
corresponding to rows of B(Qy)).

Problem 3.22 Under what conditions can two circuit (cutset) vectors
of a given graph be a part of the same f-circuit (f-cutset) matriz?

Problem 3.23 (k) Construct good algorithms for building f-circuit
and f-cutset vectors for a given forest (use dfs or bfs described in Sub-
sections 3.6.1, 3.6.2). Compute the complezity.

Problem 3.24 Special Technique for Building a Representa-
tive Matrix of V;(G):

Prove that the following algorithm works for building a representative
matriz of V;(G):

Let G1 be a subgraph of G,

G be a subgraph of G s.t. E(Gy) N E(Gs) is a forest of Gy,

Gk be a subgraph of G s.t. E(Gy) N {Uf;ll E(QZ)} is a forest of the sub-
graph
G- (U E(G)) and let UE(G:) = E(G).

86 3. GRAPHS

Build representative matrices R; for V;(G;),j = 1,2,---k. Extend the
rows of R; to size E(G) by padding with 0s. Call the resulting matric
R;. Then R is a representative matriz for V;(G), where

R,
R=|:
Ry,

Problem 3.25 Equivalence of Minty’s and Tellegen’s Theo-
rems:

Prove that Minty’s Theorem (strong form) and Tellegen’s Theorem
(strong form) are formally equivalent.

Problems on Basic Operations of Graphs

Problem 3.26 (k) Let G be graph. Let K C E(G). Then

i. K is a forest of G-T iff it is a maximal intersection of forests of
G with T.

1. K 1s a forest of G x T iff it is a minimal intersection of forests
of G with T.

iti. K is a forest of G x T iff KU (a forest of G- (S —1T)) is a forest
of G.

iv. K is a coforest of G- T iff KU (a coforest of G x (S —1T)) is a
coforest of G.

Problem 3.27 Relation between Forests Built According to
Priority and Graph Minors: Let Ay, --- A, be pairwise disjoint
subsets of G.

i. A forest f of G contains edges from these sets in the same priority
iff it is the union of forests from G - Ay, G- (A; U Ag) X As,
Q(A1UA2UA3) X Ag,"'g X An

i1. Suppose the graph has only such forests what can you conclude?

3.6. GRAPH ALGORITHMS 87

1i. What can you conclude if the priority sequence A;;i = 1,---n
and Agyi = 1,---n for every permutation o of 1,---n yield the
same forests?

Problem 3.28 (k) Show how to build an f-circuit (f-cutset) matriz of
G in which f-circuit (f-cutset) matrices of G-T and G X (E —T) become
‘visible’ (appear as submatrices). Let Ty C Ty C E(G). Repeat the
above so that the corresponding matriz of G x T1 - Ty is ‘visible’,

Problem 3.29 (k) Suppose in an electrical network on graph G the
subset T' is composed of current (voltage) sources. How will you check
that they do not violate KCL (KVL)?

3.6 Graph Algorithms

In this section we sketch some of the basic graph algorithms which we
take for granted in the remaining part of the book. The algorithms we
consider are

e construction of trees and forests of various kinds for the graph
(bfs, df s, minimum spanning)

e finding the connected components of the graph

e construction of the shortest path between two vertices of the
graph

e construction of restrictions and contractions of the graph

e bipartite graph based algorithms such as for dealing with parti-
tions

e flow maximization in networks

The account in this section is very brief and informal. For more details
the readers are referred to [Aho+Hopcroft+Ullman74] [Kozen92]
[Cormen+Leiserson+Rivest90].

For each of the above algorithms we compute or mention the ‘asymp-
totic worst case complexity’ of the algorithm. Our interest is primarily

88 3. GRAPHS

in computing an upper bound for the worst case running time of the
algorithm and sometimes also for the worst case storage space required
for the algorithm. A memory unit, for us, contains a single elementary
symbol (a number - integer or floating point, or an alphabet). Access-
ing or modifying such a location would be assumed to cost unit time.
Operations such as comparison, addition, multiplication and division
are all assumed to cost unit time. Here as well as in the rest of the
book we use the ‘big Oh’ notation:

Let f,g : NP — N where N denotes the set of nonnegative integers
and p is a positive integer. We say f is O(g) iff there exists a positive
integer k s.t. f(n) < kg(n) for all n outside a finite subset of N?.

The time and space complexity of an algorithm to solve the prob-
lem (the number of elementary steps it takes and the number of bits
of memory it requires) would be computed in terms of the size of the
problem instance. The size normally refers to the number of bits
(within independently specified multiplying constant) required to rep-
resent the instance of the problem in a computer. It could be specified
in terms of several parameters. For example, in the case of a directed
graph with capacitated edges the size would be in terms of number of
vertices, number of edges and the maximum number of bits required
to represent the capacity of an edge. In general, the size of a set
would be its cardinality while the size of a number would be the
number of bits required to represent it. Thus, if n is a positive inte-
ger, logn would be its size — the base being any convenient positive
integer. All the algorithms we study in this book are polynomial time
(and space) algorithms, i.e., their worst case complexity can be writ-
ten in the form O(f(nq,---,n,)) where f(-) is a polynomial in the n,.
Further, in almost all cases, the polynomials would have low degree
(<5).

Very rarely we have used words such as NP-complete and NP-Hard.
Informally, a problem is in P if the ‘answer to it’ (i.e., the answer to
every one of its instances) can be computed in polynomial time (i.e.,
in time polynomial in the size of the instance) and is in NP if the cor-
rectness of the candidate answer to every instance of it can be verified
in polynomial time. It is clear that P C NP. However, although it is
widely believed that P £ NP, a proof for this statement has not been
obtained so far. An NP-Hard problem is one which has the prop-

3.6. GRAPH ALGORITHMS 89

erty that if its answer can be computed in polynomial time, then we
can infer that the answer to every problem in NP can be computed in
polynomial time. An NP-Hard problem need not necessarily be in NP.
If it is in NP, then it is said to be NP-complete. The reader inter-
ested in formal definitions as well as in additional details is referred to
[Garey+Johnson79], [Van Leeuwen90].

Exercise 3.63 A decision problem is one for which the answer is (yes
or no). Convert the problem ‘find the shortest path between vy and vy
i a graph’ into a ‘short’ sequence of decision problems.

For most of our algorithms elementary data structures such as

arrays, stacks, queues are adequate. Where more sophisticated data
structures (such as Fibonacci Heaps) are used, we mention them by
name and their specific property (such as time for retrieval, time for
insertion etc.) that is needed in the context. Details are skipped and
may be found in [Kozen92].
Storing a graph: A graph can be stored in the form of a sequence
whose " (composite) element contains the information about the 4"
edge (names of end points; if edge is directed the names of positive
and negative end points). This sequence can be converted into another
whose i element contains the information about the i node (names
of incident edges, their other end points; if the graph is directed, the
names of out-directed and in-directed edges and their other end points.)
We will assume that we can retrieve incidence information about the
i" edge in O(1) time and about the (i*" node) in O(degree of node i)
time. The conversion from one kind of representation to the other can
clearly be done in O(m + n) time where m is the number of edges and
n is the number of vertices.

Sorting and Searching: For sorting a set of indexed elements in or-
der of increasing indices, there are available, algorithms of complexity
O(nlogn), where n is the number of elements [Aho+Hopcroft+Ullman74].
We use such algorithms without naming them. In such a sorted list of
elements to search for a given indexed element takes O(logn) steps by
using binary search.

90 3. GRAPHS
3.6.1 Breadth First Search

A breadth first search (bfs) tree or forest for the given graph G
is built as follows:

Start from any vertex v, and scan edges incident on it.

Select these edges and put the vertices vy, vy - - - v, Which are adjacent
to v, in a queue in the order in which the edges between them and v,
were scanned.

Mark v, as belonging to component 1 and level 0. Mark vy, - -+, vg,,
as belonging to component 1 and level 1 and as children of v,. Mark
the vertex v, additionally as a parent of its children (against each of
its children).

Suppose at any stage we have the queue v, -+, v and a set M; of
marked vertices.

Start from the left end (first) of the queue, scan the edges incident
on it and select those edges whose other ends are unmarked. If a
selected edge is between v;; and the unmarked vertex vy, then the
former (latter) is the parent (child) of the latter (former).

Put the children of v;; in the queue after v;, and delete v;; from the
queue.

Mark these vertices as belonging to the level next to that of v;; and to
the same component as v;; and as children of v;; (against v;). Mark
the vertex v;; as a parent of its children (against its children).
Continue.

When the graph is disconnected it can happen that the queue is empty
but all vertices have not yet been marked. In this case continue the
algorithm by picking an unmarked vertex.

Mark it as of level 0 but as of component number one more than that
of the previous vertex. Continue.

STOP when all vertices of the graph have been marked.

At the conclusion of the above algorithm we have a breadth first
search forest made up of the selected edges and a partition of the ver-
tex set of the graph whose blocks are the vertex sets of the components
of the graph. The starting vertices in each component are called roots.
The level number of each vertex gives its distance from the root (tak-
ing the length of each edge to be one). The path in the forest from a
given vertex in a component to the root in the component is obtained
by travelling from the vertex to its parent and so on back to the root.

3.6. GRAPH ALGORITHMS 91

In a directed graph a bfs starting from any vertex would yield all
vertices reachable from it through directed paths. In this case, while
processing a vertex, one selects only the outward directed edges.

The complexity of the bfs algorithm is O(m + n) where m
is the number of edges and n is the number of vertices. (Each edge
is ‘touched’ atmost twice. Each vertex other than the root is touched
when an edge incident on it is touched or when it is a new root. Except
where the root formation is involved the labour involved in touching
a vertex can always be absorbed in that of touching an edge. Each
touching involves a fixed number of operations).

The complexity of computing all the reachable vertices from
a given vertex or a set of vertices of a directed graph through bfs is
clearly also O(m +n).

3.6.2 Depth First Search

A depth first search (dfs) tree or forest for the given graph G is
built as follows:

Start from any vertex v, and scan the edges incident on it.

Select the first nonselfloop edge. Let v; be its other end point. Put
Uy, v1 in a stack. (A stack is a sequence of data elements in which
the last (i.e., latest) element would be processed first). Mark v, as be-
longing to component 1 and as having dfs number 0, v; as belonging
to component 1 and as having dfs number 1. Mark v, as the parent
of v (against v;) and vy as a child of v, (against v,).

Suppose at any stage, we have the stack v;1, -+, v and a set M; of
marked vertices.

Start from the top of the stack, i.e., from v;, and scan the edges in-
cident on it. Let e be the first edge whose other end point v;;; is
unmarked. Select e. Mark v;; 1 as of dfs number one more than that
of the highest df s number of a vertex in M; and of component number
same as that of v;,. Mark (against v;11) vy as its parent and (against
Vik) Vi1 as one of its children. Add wv;y; to the top of the stack and
repeat the process.

Suppose v;; has no edges incident whose other end points are un-
marked. Then delete vy, from the stack (so that Vi(k—1) goes to the

92 3. GRAPHS

top of the stack).

Continue.

STOP when all vertices in the graph have been marked.

When the graph is disconnected it can happen that the stack is empty
but all vertices have not yet been marked. In this case continue the
algorithm by picking an unmarked vertex. Give it a dfs number 0 but
component number one more than that of the previous vertex.

At the conclusion of the above algorithm we have a depth first search
forest made up of the selected edges and a partition of the vertex set
of the graph whose blocks are the vertex sets of the components of the
graph. The starting vertices in each component are called roots. The
path in the forest from a given vertex in a component to the root in the
component is obtained by travelling from the vertex to its parent and
so on back to the root. The time complexity of the dfs algorithm
can be seen to be O(m + n) where m is the number of edges and n,
the number of vertices in the graph.

Exercise 3.64 (k) Let e be an edge outside a dfs tree of the graph.
Let v1, vy be the end points of e with df s numbering a, b respectively. If
b > a show that vy is necessarily an ancestor of vo (ancestor = parent’s
parent’s ... parent).

The df s tree can be used to detect 2-connected components of the
graph in O(m + n) time [Aho+Hopcroft+Ullman74]. It can be used
to construct the planar embedding of a planar graph in O(n) time
[Hopcroft+Tarjan74], [Kozen92]. There is a directed version of the
df s tree using which a directed graph can be decomposed into strongly
connected components (maximal subsets of vertices which are mutually
reachable by directed paths). Using the directed df s tree this can be
done in O(m + n) time [Aho+Hopcroft+Ullman74].

Fundamental circuits: Let ¢ be a forest of graph G and let e €
(E(G) —t). To construct L(e,t) we may proceed as follows: Do a df's
of G . t starting from any of its vertices. This would give a df s number
to every vertex in G . t.

Let vy,v9 be the end points of e. From wvq, vy proceed towards the
root by moving from child to parent until you meet the first common
ancestor vz of v; and vy. This can be done as follows: Suppose v; has
a higher dfs number than v,. Move from v; to root until you reach
the first v whose df s number is less or equal to that of vy. Now repeat

3.6. GRAPH ALGORITHMS 93

the procedure with vy, v} and so on alternately until the first common
vertex is reached. This would be vs. Then L(e,t) = {e} U { edges in
paths from vy to v3 and vy to vs}.

To build the circuit vector corresponding to L(e,t) proceed as follows:
Let v; be the positive end point and vy, the negative end point of e.
The path from vy to vy in the tree is the path from v, to v followed by
the path from v3 to v1. The circuit vector has value +1 at e, 0 outside
L(e,t) and +1 (—1) at e, if it is along (against) the path from vy to
vy in the tree. Complexity of building the L(e,t) is O(| L(e,t) |) and
that of building all the L(e;, t) is O(X | L(e,t) |).

Exercise 3.65 How would you build the f-circuit for a bfs tree?

3.6.3 Minimum Spanning Tree

We are given a connected undirected graph G with real weights (w(-))
on its edges. The problem is to find a spanning tree of least total
weight (total weight = sum of weights of edges in the tree). We give
Prim’s algorithm for this purpose:

Choose an arbitrary vertex v,. Among the edges incident on v, select
one of least weight.

Suppose at some stage, X is the set of edges selected and V(X), the set
of their end points. If V(X) # V(G), select an edge e of least weight
among those which have only one end point in V(X).

Now replace X by X U e and repeat.

Stop when V(X)) = V(G).

The selected edges constitute a minimum spanning tree.

Exercise 3.66 Justify Prim’s algorithm for minimum spanning tree.

Complexity: Let n be the number of vertices and m, the number
of edges of the graph. The algorithm has n stages. At each stage
we have to find the minimum weight edge among the set of edges
with one end point in V(X). Such edges cannot be more than m in
number. So finding the minimum is O(m) and the overall complexity
is O(mn). However, this complexity can be drastically improved if we
store the vertices in (V(G) — V(X)) in a Fibonacci Heap. This data
structure permits the extraction of the minimum valued element in
O(logn) amortized time (where n is the number of elements in the

94 3. GRAPHS

heap), changing the value of an element in O(1) amortized time and
deleting the minimum element in O(logn) amortized time. (Loosely, an
operation being of amortized time O(f(n)) implies that, if the entire
running of the algorithm involves performing the operation k& times,
then the time for performing these operations is O(kf(n)).

For each vertex v in (V(G) — V(X)) the value is the minimum
of the weights of the edges connecting it to V' (X). To pick a vertex of
least value we have to use O(log n) amortized time. Suppose v has been
added to V(X)) and X replaced by X Ue, where e has v as one its ends.
Now the value of a vertex v" in (V(G) — (V(X)Ue)) has to be updated
only if there is an edge between v and v’. Throughout the algorithm this
updating has to be done only once per edge and each such operation
takes O(1) amortized time. So overall the updating takes O(m) time.
The extraction of the minimum valued element takes O(nlogn) time
over all the n stages. At each stage the minimum element has to
be deleted from the heap. This takes O(logn) amortized time and
O(nlogn) time overall. Hence, the running time of the algorithm is
O(m+nlogn). (Note that the above analysis shows that, without the
use of the Heap, the complexity of Prim’s algorithm is O(n?)).

3.6.4 Shortest Paths from a Single Vertex

We are given a graph G, without parallel edges, in which each edge e
has a nonnegative length [(vy,v5), where vy, vy are the end points of
e. If v; = vy, then [(vy,v7) = 0. The length of a path is defined to
be the sum of the lengths of the edges in the path.

The problem is to find shortest paths from a given vertex (called the
source) to every vertex in the same connected component of the graph.
We give Dijkstra’s Algorithm for this problem.

Start from the source vertex v, and assign to each adjacent vertex v;, a
current distance d.(v;) = l(v,, v;). Mark, against each v;, the vertex
v, as its foster parent. (We will call v;, the foster children of v,).

Let vy be the adjacent vertex to v, with the least value of d.(v;). De-
clare the final distance of vy, df(vi) = d.(v1). Mark, against vy, the
vertex v, as its parent. (We will call vy, a child of v,).

(At this stage we have processed v, and marked its adjacent ver-
tices).

3.6. GRAPH ALGORITHMS 95

Assign a current distance oo to each unmarked vertex.
Suppose X C V(G) denotes the processed set of vertices at some stage.
For each neighbour v; € (V(G) — X)) of last added vertex vy,
Check if d.(v;) > ds(vg) + l(vg, ;).

If Yes, then

Mark, against v;, the vertex vy as its foster parent

(deleting any earlier mark, if present). (We will call v;, a foster
child of vy).

Set d.(vj) = ds(vg) + L(vg, v;).
Find a vertex v, € (V(G) — X) with the least current distance d.(v,).
Declare v, to have been processed and its final distance ds(v,) from v,
to be d.(v,). Mark, against v,, its foster parent u, as its parent (we
will call v, a child of u,).
Add v, to X. Repeat the procedure with X Uwv, in place of X.
STOP when all vertices in the connected component of v, are pro-
cessed.

To find a shortest path from a processed vertex v; to v,, we travel
back from v; to its parent and so on, from child to parent, until we
reach v,.

Justification: To justify the above algorithm, we need to show that
the shortest distance from v, to v, (the vertex with the least current
distance in V(G) — X) is indeed df(v,). First, we observe that a finite
d.(v), and therefore ds(v), for any vertex v is the length of some path
from v, to v. By induction, we may assume that for every vertex v;,
in X, d¢(vy,) = length of the shortest path from v, to vj,. Note that
this is justified when X = {v,}. Suppose ds(v,) is greater than the
length of a shortest path P(v,,v,) from v, to v,. Let P(v,, v,) leave X
for the first time at v3 and let the next vertex be v, € (V(G) — X).
If Vour = v4, we must have

d(vy) < dg(vs) + l(vs, vy) = length of P(v,,vy,).

This is a contradiction. So vy # v,. Now

de(Vout) < (df(v3) + 1(vs, Vout)) < length of P(v,,vy).

Hence, d.(vowt) < d.(v,) = df(v,), which contradicts the definition
of v,. We conclude that d¢(v,) must be the length of the shortest path
from v, to v,.

Complexity: Let n be the number of vertices and m, the number of
edges of the graph. This algorithm has n stages. At each stage we have

96 3. GRAPHS

to compute d.(v;) for vertices v; adjacent to the last added vertex. This
computation cannot exceed O(m) over all the stages. Further at each
stage we have to find the minimum of d.(v;) for each v; in (V(G) — X).
This is O(n). So we have an overall complexity of O(n* + m). Now
m < n? So the time complexity reduces to O(n?).

We note that the complexity of this algorithm reduces to O(m+nlogn)
if the elements in V(G) — X are stored in a Fibonacci Heap (see
[Kozen92]).

3.6.5 Restrictions and Contractions of Graphs

Let G be a graph and let ' C E(G). To build G . T, we merely pick
out the edge - end point list corresponding to 7T'. This has complexity
O(] T'|). (Note that the edges of T still bear their original index as in
the sequence of edges of G).

To build G xT we first build GopenT'. The graph GopenT has G . (E(G)—
T') + remaining vertices of G as isolated vertices. Next we find the con-
nected components of GopenT. Let the vertex sets of the components
be Xi,---, Xj. For each X;, whenever v € X;, mark it as belonging to
X; (some one vertex of X; can represent X;). Changing the names of
endpoints amounts to directing a pointer from vertices to the X; that
they belong to. Now in the edge - end point list of T, for each edge
e, if vy, vy are its (positive and negative) endpoints, and if v; € X,
vy € X, then replace v; by X; and vy by X (GshortT has vertex set
(Xb T Xk‘))

The complexity of building GopenT is O(n+ | E — T |), where n is
the number of vertices of G, that of finding its components is O(n+ |
E—T']) (using df s say). Changing the names of endpoints amounts to
directing a pointer from vertices to the X; that they belong to. This
has already been done. So the overall complexity is O(n + m) where
m =| E(G) | .

Elsewhere, we describe methods of network analysis (by decompo-
sition) which require the construction of the graphs G . Ey,---,G . Ej
or Gx Ey,---,G x Ey, where {Ey, - -+, E}} is a partition of E(G). The
complexity of building &;G . F; is clearly O(n + m), while that of
building &,G x E; is O(k(n 4+ m)).

3.6. GRAPH ALGORITHMS 97

3.6.6 Hypergraphs represented by Bipartite Graphs

Hypergraphs are becoming increasingly important for modeling many
engineering situations. By definition, a hypergraph H is a pair
(V(H), E(H)), where V(H) is the set of vertices of H and E(H), a
family of subsets of V (H) called the hyperedges of H. (We remind the
reader that in a family, the same member subset could be repeated with
distinct indices yielding distinct members of the family). The reader
would observe that undirected graphs are a special case of hypergraphs
(with the hyperedges having cardinality 1 or 2). The most convenient
way of representing a hypergraph is through a bipartite graph B =
(Vi, Vg, E) - a graph which has a left vertex set Vi, a (disjoint)
right vertex set Vi and the set of edges F each having one end in
Vi, and the other in V. We could represent H by By = (Vg, Vg, E)
identifying V(H) with V, E(H) with Vi with an edge in the bipartite
graph between v € V;, and e € Vj iff v is a member of the hyperedge
e of H.

We can define connectedness for H in a manner similar to the way
the notion is defined for graphs. H is connected iff for any pair of ver-
tices vy, vy there exists an alternating sequence vy, €1, v9, €2, - -, €, vy,
where the v; are vertices and e;, edges s.t. each edge has both the pre-
ceding and succeeding vertices as members. It is easily seen that H
is connected iff By is connected. Hence, checking connectedness of ‘H
can be done in O(| Vi, | + | Vg | + | E'|) time. Since everything about
a hypergraph is captured by a bipartite graph we confine our attention
to bipartite graphs in this book. The reader interested in ‘standard’
hypergraph theory is referred to [Berge73].

3.6.7 Preorders and Partial Orders

A preorder is an ordered pair (P, <) where P is a set and ‘ <X’ is a
binary relation on P that satisfies the following:

r =z, VrePrP,

r=3yyz=x=xz Vr,y zeP.

We can take the elements of P to be vertices and join x and y by an
edge directed from y to x if v < y. Let G, be the resulting directed
graph on the vertex set P. Then the vertex sets of the strongly con-

98 3. GRAPHS

nected components of Gp are the equivalence classes of the preorder
(x,y belong to an equivalence class iff z < y and y < z).

Let P be the collection of equivalence classes. If X, Xy € P, we define
X; < X, iff in the graph G,, a vertex in X; can be reached from a
vertex in X,. It is easily seen that this defines a partial order (X; <
Xy Xi < Xjand X; < X; it X, = X5 X; < X, X; <X = X, < Xp).
This partial order (P, <) is said to be induced by (P, <). By using
a directed df s forest on the graph Gp representing the preorder (P, <)
we can get a graph representation of the induced partial order in time
O(m + n) where m is the number of edges and n is the number of
vertices in Gp [Aho+Hopcroft+Ullman74].

A partial order can be represented more economically by using a
Hasse Diagram. Here a directed edge goes from a vertex y to a vertex
x iff y covers z, ie., v < y,x # y and there is no z s.t. 2z # x and
z#yand z < z <y. Anideal I of (P, <) is a collection of elements of
P with the property that if x € I and y < x then y € I. The principal
ideal I, in (P, <) of an element x € P is the collection of all elements
y € Ps.t. y <z Clearly an ideal is the union of the principal ideals of
its elements. A dual ideal /¢ is a subset of P with the property that
if v € I and z < z then z € I¢. Ideals and dual ideals of preorders
are defined similarly. The dual of a partial order (P, <) is the partial
order (P, >), where z > y iff y < z. We define the dual of a preorder
in the same manner. We use < and > interchangeably (writing y < x
or x > y) while speaking of a partial order or a preorder.

Preorders and partial orders are used repeatedly in this book (see
for instance Chapter 10).

Lattices

Let (P, <) be a partial order. An upper bound of ej,e; € P is an
element e3 € P s.t. 1 < ez and eg < e3.

A lower bound of ¢; and e; would be an element ¢4 € P s.t. e4 < ¢
and e; < e,.

A least upper bound (l.u.b.) of e;,es would be an upper bound
e“ s.t. whenever ez is an upper bound of e, ey we have ez > e*. A
greatest lower bound (g.l.b.) of ej,es would be a lower bound ¢,
s.t. whenever ¢4 is a lower bound of e, e; we have e4 < ¢;. It is easy

3.6. GRAPH ALGORITHMS 99

to see that if Lu.b. (g.l.b.) of ey, ey exists, then it must be unique.

We denote the L.u.b. of e1,e5 by e; V ey and call it the join of e; and

es. The g.1.b. of eq, e5 is denoted by e; A e; and called the meet of e;

and es. If every pair of elements in P has a g.l.b. and an l.u.b. we say

that (P, <) is a lattice. A lattice can be defined independently of a

partial order taking two operations ‘v’ and ‘A’ as primitives satisfying

the properties given below:

(idempotency) Ve =2 VexeP,zAhez=x YzeP.

(commutativity) ztVy=yVze Vz,yeP;zAy=yAx YVax,yecP.

(associativity) (zVy)Vz=aV(yVz) Yy z€eP.
(xAyY)ANz=xzANyNz) YzyuzeP.

(absorption) A (x Vy)=aV(xAy)=x Yz,y€cP.

The reader may verify that these properties are indeed satisfied by

g.l.b. and L.u.b. operations if we start from a partial order.

A lattice that satisfies the following additional property is called a dis-

tributive lattice.

(distributivity) z A (yV z) = (x Ay)V (z A z2) Y x,y,2 € P;
xV(yAz)=(@Vy ANxVz) VazyzeP.

e.g. The collection of all subsets of a given set with union as the join op-

eration and intersection as the meet operation is a distributive lattice.

(For a comprehensive treatment of lattice theory see [Birkhoff67]).

Exercise 3.67 Show that the collection of ideals of a partial order
form a distributive lattice under union and intersection.

3.6.8 Partitions

Let S be a finite set. A collection {5, -, Sk} of nonvoid subsets of
S is a partition of S iff J; S; = S and S; N'S; = 0 whenever i, j are
distinct. If {Sy,- -+, Sk} is a partition of S then the S; are referred to
as its blocks.

Let Pg denote the collection of all partitions of S. We may define a
partial order (P, <) on Py as follows: Let Iy, Il € Pg. Then II; < Il
(equivalently TIy > TI) iff each block of II; is contained in a block of
IT5. We say II; is finer than Il or Il is coarser than II,. If 11, II,
are two partitions of 9, the join of II, and II,, denoted by II, V 11, is
the finest partition of S that is coarser than both II, and II, and the
meet of II, and II, denoted by II, A I, is the coarsest partition of S

100 3. GRAPHS

that is finer than both II, and II,. It can be seen that these notions are
well defined: To obtain the meet of II, and II; we take the intersection
of each block of II, with each block of II, and throw away the empty
intersections. Observe that any element of S lies in precisely one such
intersection. Clearly, the resulting partition Il,, is finer than both II,
and II,. Suppose II. is finer than both II, and II,. Let N, be a block
of II.. Then N, is contained in some block N, of II, and some block
N, of II,. So N. € N, N N, and hence N, is contained in some block
of 1l,. This proves that Il,, is the meet of II, and II, and therefore,
that the ‘meet’ is well defined. Next let II, IT" be two partitions coarser
than II, and II;. It is then easy to see that II AII’ is also coarser than
IT, and II,. Hence there is a unique finest partition of S coarser than
I1, and II,. Thus, the ‘join’ is well defined.

Storing partitions: We can store a partition by marking against an
element of S, the name of the block to which it belongs.

Building II, A IT,: When I1,, [T, are stored, each element of S would
have against it two names - a block of II, and a block of II;; a pair of
names of intersecting blocks of I, Il, can be taken to be the name of
a block of II, A II,. Thus forming I, A I, from II,, IT, is O(] S'|).
Building 11, VII,: We first build a bipartite graph B with blocks of II,
as Vp, blocks of I, as Vx with an edge between N, € V;, and N, € Vjy
iff N, NN, # (). It can be seen that this bipartite graph can be built
in O(] S|) time (For each element of S, check which blocks of I1,, I,
it belongs to). We find the connected components of this bipartite
graph. This can be done in O(m + n) time where m is the number of
edges and n, the number of vertices in the bipartite graph. But both
m and n do not exceed | S| . So O(m+n)=0(] S |). Now we collect
blocks of II, (or II;) belonging to the same connected component of
B. Their union would make up a block of 11, V II,. (For, this block is
a union of some blocks K of II, as well as a union of some blocks of
ITy. Union of any proper subset of blocks of K would cut some block
of TI). This involves changing the name marked against an element
u € S - instead of say N,, it would be N,, which is the name of the
connected component of B in which N, is a vertex. Thus, building
I, VIL, is O(] S |).

3.6. GRAPH ALGORITHMS 101

3.6.9 The Max-Flow Problem

In this subsection we outline the max-flow problem and a simple solu-
tion for it. We also indicate the directions in which more sophisticated
solutions lie. In subsequent chapters we use max-flow repeatedly to
model various minimization problems. Other than the flexibility in
modeling that it offers, the practical advantage of using the concept of
max-flow lies in the availability of efficient algorithms.

Let G be a directed graph. The flow graph (or flow network) F(G)
is the tuple (G,c, s,t) where ¢ : E(G) — R, is a real nonnegative
capacity function on the edges of G and s and ¢ are two vertices of G
named source and sink, respectively. A flow f associated with F'(G)
is a vector on E(G) satisfying the following conditions:

i. f satisfies KCE at all nodes except s and t, i.e., at each vertex v
other than s,t, the net outward flow

Zf(eouti) - Z flenj) =0

where e,y (€inj) are the edges incident at v and directed out of
(directed into) v.

ii. the net outward flow at s is nonnegative, and at ¢, is non-positive.

iii. 0< f(e) <cle) Vee EG).

(Often a flow is defined to be a vector satisfying (i) and (ii) above while
a feasible flow would be one that satisfies all three conditions). An
edge e with f(e) = c(e) is said to be saturated with respect to f. The
value of the flow f, denoted by | f |, is the net outward flow at s. A flow
of maximum value is called a max-flow. An s,t-cut (cut for short) is
an ordered pair (A, B), where A, B are disjoint complementary subsets
of V(G) s.t. s € Aand t € B. The capacity of the cut (A, B), denoted
by ¢(A, B) is the sum of the capacities of edges with positive end in A
and negative end in B. A cut of minimum capacity is called a min-
cut. The flow across (A, B) denoted by f(A, B), is the sum of the
flows in the ‘forward’ edges going from A to B minus the sum of the
flows in the ‘backward’ edges going from B to A.

102 3. GRAPHS
a (4,6) c (4,4
3 6,7)
©°
(0,5) ©,4)
S (1,4) y
A2, 9 t
0.4
(2.59)
.95
b 3,5) d 3.,3) f
A B

Figure 3.12: A Flow Graph with a max-flow and a min-cut

Example: Figure 3.12 shows a flow graph. Alongside each directed
edge is an ordered pair with the second component indicating the ca-
pacity of the edge. A feasible flow f is defined on this flow graph with
f(e) being the first component of the ordered pair alongside e. The
reader may verify that the net flow leaving any node other than the
source s and the sink ¢ is zero. At s there is a net positive outward
flow (= 7) and at ¢ there is a net negative outward flow (= —7). Let
A ={s,a,b,c,d} and let B ={g, f,t}. Then (A, B) is an s,t cut. It
can be verified that f(A, B) =4+3—0 = 7. Observe that the forward
edges (¢, g) and (d, f) of the cut (A, B) are saturated while the back-
ward edge (g, d) carries zero flow. It is clear that in the present case
f(A, B) = ¢(A, B). From the arguments given below it would follow
that the given flow has the maximum value, i.e, is a max-flow and that
the cut (A, B) is a min-cut, i.e., has minimum capacity.

Clearly the flow across an s;t-cut (A, B) cannot exceed the capacity
of (A, B), i.e., f(A,B) < c¢(A, B). Let (A, B) be an s,t-cut. If we add
the outward flows at all nodes inside A we would get the value f(A, B)
(flow of each edge with both ends within A is added once with a (+)
sign and another time with a (—) sign and hence cancels) as well as | f |
(at all nodes other than s the net outward flow is zero). We conclude
that | f |= f(A, B).

3.6. GRAPH ALGORITHMS 103

Let f be a flow in F(G). Let P be a path oriented from s to t.

Suppose it is possible to change the flow in the edges of P, without
violating capacity constraints, as follows: the flow in each edge e of P is
increased (decreased) by 0 > 0 if e supports (opposes) the orientation
of P.
Such a path is called an augmenting path for the flow f. Observe
that this process does not disturb the KCE at any node except s,t. At
s, the net outward flow goes up by o, while at ¢, the net inward flow
goes up by 4. Thus, if ' is the modified flow, | f' |=| f | +4. This is the
essential idea behind flow maximization algorithms.

It is convenient to describe max-flow algorithms and related re-

sults in terms of the residual graph G; associated with the flow f.
The graph G; has the vertex set V(G). Whenever e € E(G) and
f(e) < c(e), Gy has an edge e between the same end points and in
the same direction as e; and if 0 < f(e), Gy has an edge e_ in the
opposite direction as e. Note that both e, and e_ may be present in
Gs. The edge e, has the residual capacity r¢(es) = c(e) — f(e)
and the edge e_ has the residual capacity r(e_) = f(e).
We note that a directed path P from s to t in the residual graph Gy
corresponds to an augmenting path in F'(G) with respect to f. Hence-
forth we would call such a path P in G; also, an augmenting path
of f. The maximum amount by which the flow can be increased using
this augmenting path is clearly the minimum of the residual capacities
of the edges of P. This value we would call the bottle neck capacity
of P.

We now present a simple algorithm for flow maximization. This
algorithm is due to Edmonds and Karp [Edmonds+Karp72].

ALGORITHM 3.1 Algorithm Max-Flow
INPUT A flow graph F(G) = (G, c, s,t).

OUTPUT(i) A mazimum valued flow £, for F(G).
(11) A min-cut (A, B) s.t. | fi0e |= (A, B).

Initialize Let f be any flow of F(G) (f could be the zero flow for
instance).

104 3. GRAPHS

STEP 1 Draw the residual graph Gy. Do a directed bfs starting from
s.

STEP 2 1If t is reached, we also have a shortest augmenting path
P. Compute the bottle neck capacity 0 of P. Increase the
flow along P by 6. Let f' be the new flow. Set f = f' and
GOTO STEP 1.

If ¢t is not reached, let A be the set of all vertices reached
from s and let B =V (G) — A. Declare £, = £, min-cut to
be (A, B).

STOP.

Justification of Algorithm 3.1

We need the following

Theorem 3.6.1 (Max-Flow Min-Cut Theorem [Ford+ Fulkerson56],
[Ford+Fulkerson62])

1. The flow reaches its mazimum value iff there exists no augment-
ing path.

ii. The mazimum value of a flow in F(G) is the minimum value of
the capacity of a cut.

Proof : If a flow has maximum value it clearly cannot permit the
existence of an augmenting path. If there exists no augmenting path
the directed bfs from s in the residual graph will not reach t. Let A be
the set of all vertices reached from s and let B be the complement of A.
All edges with one end in A and the other in B must be directed into A
as otherwise the set of reachable vertices can be enlarged. Now consider
the corresponding edges of F'(G). Each one of these edges, if forward
(away from A), must have reached full capacity, i.e., be saturated and
if backward (into A), must have zero flow. But then, for this cut,
f(A, B) = ¢(A, B). Since for any flow f and any cut (A’, B'), we have
| f|= fA, B") < ¢(A', B'), we conclude that f is a maximum flow.
This completes the proof of (i).

Since | f |=¢(A,B) and | f |< ¢(A’, B') for any cut (A’, B'), it is clear

3.6. GRAPH ALGORITHMS 105

that c¢(A, B) is the minimum capacity of a cut of F/(G). This proves
(ii).
O

The integral capacity case: We can justify the above algorithm for
the case where capacities are integral quite simply. Let M be the
capacity of the cut ({s},V(G) — s). The bottle neck capacity of any
augmenting path is integral. Whenever we find an augmenting path
we would increase the flow by an integer and Theorem 3.6.1 assures
us that if we are unable to find an augmenting path we have reached
max-flow. Thus, in atmost M augmentations we reach maximum flow.
This justification also proves the following corollary.

Corollary 3.6.1 If the capacity function of a flow graph is integral,
then there exists a max-flow in the flow graph which s integral.

Complexity

We consider the integral capacity case. Each augmentation involves
a directed bfs. This is O(m) in the present case. Hence, the overall
complexity of Algorithm Max-Flow is O(Mm), where m =| E(G) | .

It is not obvious that Algorithm Max-Flow would terminate for
real capacities. However, it can be shown that it does. Since the
augmenting path is constructed through a bfs it is clear that it has
minimum length. Edmonds and Karp [Edmonds+Karp72] have shown
that if the shortest augmenting path is chosen every time, there are

atmost mn augmentations. So the overall complexity of Algorithm
Max-Flow is O(m?n).

Exercise 3.68 [Edmonds+Karp72] In Algorithm Maz-Flow, if the short-
est augmenting path is chosen every time, show that there are atmost
mn augmentations.

We mention a few other algorithms which are faster. These are
based on Dinic’s Algorithm [Dinic70]. This algorithm proceeds in
phases, in each of which, flow is pushed along a maximal set of short-
est paths. Fach phase takes O(mn) effort. The total number of phases
is bounded by the length L of the longest s — ¢t path in G (Clearly
L <n). So the overall complexity is O(Lmn) .

106 3. GRAPHS

The MPM Algorithm [MPM78| has the same number of phases as
Dinic’s Algorithm. But each phase is O(n?). So the overall complexity
is O(Ln?).

The Sleator Algorithm [Sleator80], [Sleator+Tarjan 83] computes each
phase in O(mlogn) time and has an overall complexity O(Lmlogn).
(Usually the above complexities are stated with n in place of L). For
a comprehensive treatment of flow algorithms the reader is referred to
[Ahuja+Magnanti+Orlin93].

The Nearest Source Side and Sink Side Min-Cuts

When combinatorial problems are modelled as max-flow problems, usu-

ally the cuts with minimum capacity have physical significance. Of
particular interest would be minimum capacity cuts (A, B) where A or

B is minimal. Below we show that these cuts are unique. Further, we

show that computing them, after a max-flow has been found, is easy.

We begin with a simple lemma.

Lemma 3.6.1 (k) Let (A1, By), (Ag, Bs) be two minimum capacity cuts.
Then (A1 U Ay, By N By) and (A1 N Ag, By U By) are also minimum ca-

pacity cuts.

Proof : Let f(A) = sum of the capacity of edges with one end in A

and directed away from A, A C V(G).

Later, in Chapter 9 (see Exercise 9.1, Examples 9.2.5,9.2.6) we show

that f(-) is submodular, i.e.,

JXO)+FY) 2 f(XUY)+ f(XNY)V X,V CV(G).

Now if XY minimize f(-), the only way the above inequality can be
satisfied is for f(-) to take the minimum value on X UY, X NY also.
This proves the lemma.

O
The following corollary is now immediate.

Corollary 3.6.2 Let F(G) = (G,c,s,t). Then F(G) has a unique
min-cut (A, B) in which A is minimal (B is minimal).

We will call the min-cut (A, B) nearest source side (sink side)
min-cut iff A is minimal (B is minimal). To find the nearest source

3.6. GRAPH ALGORITHMS 107

side (sink side) min cut we proceed as follows

Algorithm Source (Sink) Side Min-Cut: First maximize flow and
let f be the max-flow output by the algorithm. Draw the residual graph
Gy. Do a directed bfs in Gy starting from s and proceeding forward.
Let A be the set of all vertices reachable from s. Then (A, V(G) — Ay)
is the desired nearest source side min-cut.

Let G; denote the directed graph obtained from Gy by reversing all
arrows. The nearest sink side min-cut is obtained by doing a directed
bfs starting from t in G;. Let B, be the set of all vertices reachable
in G; from ¢t. Then (V(G) — B, B;) is the desired nearest sink side
min-cut.

In order to justify the above algorithms we first observe that when
we maximize flow for each min-cut (A, B) we would have f(A, B) =
c(A, B). Thus, if (A, B) is a min-cut, all the forward edges from A to
B would be saturated and all the backward edges from A to B would
have zero flow. Therefore, in the residual graph G; all edges across the
cut would be directed into A. Now s € A and doing a bf s starting from
s we cannot go outside A. Hence, if (A4, B) is a min-cut Ay C A, where
Ay is the set of all vertices reachable from s in G¢. But (A;, V(G) — A;)
is a min-cut. Hence, (A, V(G)— Ay) is the nearest source side min-cut.
The justification for the sink side min-cut algorithm is similar. (Note
that the above justification provides an alternative proof that min-cuts
(A, B), where A or B is minimal, are unique).

The complexity of the above algorithms is O(m). So if they are
added to the max-flow algorithms the overall complexity would not
increase.

3.6.10 Flow Graphs Associated with Bipartite Graphs

Many optimization problems considered in this book are based on bi-
partite graphs. Usually they reduce to max- flow problems on a flow
graph derived from the bipartite graph in a simple manner. We give
below a brief account of the situation and standardize notation.

Let B = (V1,, Vg, E) be a bipartite graph. The flow graph F/(B, ¢y, cg)
associated with B with capacity c;(-) ®cg(-) is defined as follows:

108 3. GRAPHS

cr(+), cr(+) are nonegative real functions on V7, Vg respectively. (They

may therefore be treated as weight vectors). Each edge e € E is di-
rected from Vi to Vi and given a capacity oo. Additional vertices
(source) s and (sink) ¢ are introdu