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Abstract

In this paper we present an approach to linear dynamical systems which combines the positive features of
two well known formulations, namely, standard state space theory (see for e.g., W. M. Wonham 1978) and
behavioural systems theory (see J. C. Willems 1997). Our development is also ‘geometric’ in the tradition
of W. M. Wonham and others. But, instead of using maps, we work with subspaces. One of our primary
motivations is computational efficiency — all our computations are performed on the system as it is without
elimination of variables and further (unlike the ‘behaviourists’) we work only with real matrices.

Using our formulation we derive the standard vector space results on controlled and conditioned invariant
subspaces of linear dynamical systems. Duality, which is a distinctive feature of state space theory but not
of the behavioural view point, comes out naturally in our approach too through the use of the adjoint. Dual
notions such as state-feedback, and output injection and the characterization theorems through their use
are also captured neatly in our formulation. We illustrate our ideas for an important class of dynamical
systems viz., electrical networks.

The theory proposed in this paper gives a unified description of both the standard linear dynamical
systems and the linear singular systems (or the linear descriptor systems) (see for e.g., F. L. Lewis 1986).
Therefore, the algorithms described for the invariant spaces in this paper are also applicable to linear singular
systems.

Keywords: Linear Dynamical Systems, State Space Theory, Behavioural Systems Theory, Controlled and
Conditioned Invariant Spaces, Duality in Adjoint System, Implicit Duality Theorem

1. Introduction

State variable methods justifiably hold the pride of place in the development of multi-variable control
theory. When the number of variables is in the tens or a few hundreds, computations using this formulation
are not prohibitively expensive in terms of storage space or time required to complete. Beyond that size
putting the system in the state variable form becomes too expensive in comparison with the complexity of
the task to be done. Further, some control theorists [3][4] have criticized these methods as not ‘natural’
to the system since they impose a structure which is not already present in the system. These latter,
‘behaviourists’, take the constraints as given and try to develop the necessary algorithms. In contrast with
state variable based methods which manipulate real entry matrices, the methods used by behaviourists
involve more expensive computations with matrices whose entries are polynomials, where the indeterminate
‘x’ in the polynomial corresponds to the operator ‘d/dt’. Additionally, the duality ideas, which are the
hallmark of the state variable approach, are not natural to that of the behaviourists.

Our approach, while it also imposes no artificial structure, does not permit the constraints to be as
general as in the case of the behaviourists, with the result that, like in the case of state variable methods,
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we too manipulate only real entry matrices. A criticism levelled against the state variable formulation is
that it is artificial in insisting on dividing manifest variables into ‘input’ and ‘output’ even when the system
does not have such a division inherent in it [3][4]. In our case we handle this by specifying a vector space
VM and speaking of the dynamical system ‘relative to’ it. So if we wish to partition the manifest variables
into ‘input’ mu and ‘output’ my, we might work with VM ≡ Fmu ⊕ 0my or with VM ≡ 0mu ⊕ Fmy, where
FZ denotes the space of all vectors on Z. A consequence of speaking of the dynamical system relative to a
space VM is that duality ideas are, if anything, even more striking in our theory than in the state variable
formulation.

For us the paradigmatic system is an electrical network with inductors, capacitors, static devices and
sources. In such a system, the derivative of the dynamical variable is directly accessible through a latent
variable. For instance, in a network of the above kind, the derivative of the dynamic variable vC is ‘available’
through the latent variable iC , since iC = C dvC

dt
. We call such latent variables as additional variables

to avoid confusion with the usual latent variables of the behaviourists. Such notions are applicable also
to many chemical and mechanical systems. We start with a generalized dynamical system (GDAS) with

‘additional variables’ which is simply a vector space V (
.

w,w, l,m) involving the variables
.

w,w, l,m where w

is the vector of (instantaneous values of) dynamic variables,
.

w the derivative of w, l the vector of additional
variables and m the manifest variables. (Observe that the solution space to state and output equations

[
I 0 −A −B
0 I −C −D

]



.

x
y
x
u


 = 0

is a vector space V (
.

x, x,m), where m ≡ (u, y), and that this space is essentially adequate to discuss most
of the control theory based on state variables.) The GDAS is accessed through a vector space VM on the
manifest variables. This latter space gives us freedom to view the ‘input-output’ space the way we please
and is kept independent of the GDAS.

In our approach we avoid the use of explicit maps and work rather with vector spaces. For instance,
instead of saying y = Kx, we could look at the solution space of Iy − Kx = 0. Instead of saying K is
symmetric, we could say the space of all (y, x) is complementary orthogonal to the space of all (−x, y)
(see for instance [5]). Our algorithms are all built in terms of vector space operations: sum, intersection
and an operation called ‘generalized minor’ VAB ↔ VB [6][7]. This latter is the vector space VA of vectors
fA obtained from (fA, fB) in VAB provided fB is in VB . The token algorithms developed in this paper
to illustrate our approach are those that correspond to ‘controlled invariant’ and ‘conditioned invariant’
spaces [8] or their special cases, (A,B)-invariant spaces and their duals [9]. The algorithms achieve the
same output as state equation based ones without explicitly building the latter. This is essential for large
systems. For systems with tens of thousands of variables, building the A, B, C and D matrices would be
expensive both in terms of time and space. For electrical networks we show how to simplify the algorithms
further using decomposition into ‘capacitive’, ‘inductive’ and ‘static’ multi-ports. We assert, though we do
not complete the exercise, that such algorithms can be developed for practically all state variable based
algorithms resulting in greater computational efficiency.

The duality structure for our approach is natural since sum and intersection operations are dual to each
other and (through the ‘implicit duality theorem’ [6][7] (VAB ↔ VB)

⊥ = V ⊥
AB ↔ V ⊥

B ) the generalized minor
operation is self dual. We show that algorithms related to ‘conditioned invariant’ are dual to corresponding
algorithms for ‘controlled invariant’. These mimic the usual controllability-observability duality for state
variable formulations.

The representation free formulation of this paper (additionally giving prominence to the first derivative
of the dynamic variable) has also been used in hybrid dynamical systems, see, for example, [10]. van der
Schaft in [11], defines and characterises (independent of the representation of the system) the bisimulation
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relation for the systems of the kind

Eẋ = Ax

w = Hx

Kx ≤ 0.

The bisimulation relation is shown to hold within a subset of the consistent space (maximal controlled
invariant subspace) of each such systems.

1.1. Brief History of Controlled and Conditioned Invariant Spaces

The terms controlled invariant and conditioned invariant probably first appeared in [12]. These ideas
appeared as (A,B) invariance and its dual in [13]. Many applications and their variations have been devel-
oped using these invariant subspaces. Applications on observability were developed in [14] [15] [16] [17] [18].
Constructive algorithm for disturbance decoupling is discussed in [19]. Generalization of controllability and
observability using invariant spaces is given in [20] [21] [22]. Some computational methods are available in
[23]. For linear systems, relation between zero structure and canonical decompositions with the invariant
subspaces has been studied in many places, see [24] [25] [22] [26] [27] [28] [29] [30] [31] [32] [33]. Relation be-
tween inversion of multivariable linear systems and invariants is discussed in [34]. Applications to regulation
problem is discussed in [35]. The invariants spaces are also studied in [36] [37]. The concepts of conditioned
and controlled invariants are also covered in the books [9] [8] and [38]. Controlled invariants have appeared
in the context of bisimulation of linear dynamical systems and hybrid dynamical systems, cf. [11], [39] [40]
[41].

1.2. Outline

In Section 2 we define the basic operations which will be used in our formulation. We first define
the notion of a vector and of copies of collections of vectors in a manner convenient for our development.
For convenience the usual operations of sum and intersection of collections of vectors are defined slightly
differently. We introduce the “generalized minor” operation and state and prove the “implicit duality
theorem” for this operation. The generalized minor operation and the implicit duality theorem have been
used extensively in electrical network theory and other applications and play an important role in the
development of our theory also. Since our examples are based on electrical circuits we give a brief list of
definitions from graph theory which will be used in this paper. In Appendix A we give techniques to
compute the basic operations described in Section 2.

We introduce our definition of a linear dynamical system in Section 3 and then give an example from
electrical circuit theory. We also define properties that our dynamical systems may have and relate them to
standard state space systems.

The conditioned invariant and controlled invariant spaces are introduced in Sections 4 and 5. We give
algorithms to compute the minimal conditioned invariant and maximal controlled invariant subspaces. We
also state the special cases under which these spaces turn out to be standard invariant spaces in state space
theory. For an important case, we give a computational technique to obtain the route or input trace of
a vector in the reachable space. Methods for computing the main steps in the algorithms for maximal
controlled and minimal conditioned invariant subspaces are given in Appendix B and Appendix C. In
Section 6 we demonstrate how various operations discussed in the previous sections can be computed for
electrical networks.

In Section 7 we introduce duality and define adjoint dynamical systems and show how duality arises
naturally in our formulation. We illustrate this with the algorithm for maximal controlled invariant subspace
which is the dual of minimal conditioned invariant subspace.

Section 8 generalizes the definition of state feedback and output injection to suit our formulation. We
generalize the results on existence of feedback for controlled invariant subspaces and injection maps for
conditioned invariant subspaces in the state space theory, to our setting.
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2. Preliminaries

A vector f on A over F is a function f : A → F where F is a field. In this paper we work primarily with
the real field. When A, B are disjoint, a vector fA ·∪B on A ·∪B would be written as fAB and would often be
written as (fA, fB) during operations dealing with such vectors. The sets on which vectors are defined will
invariably be finite. When f is on A over F, λ ∈ F then λf is on A and is defined by (λf)(e) ≡ λ[f(e)],
e ∈ A. When f is on A and g on B and both are over F, we define f + g on A ∪B by

(f + g)(e) ≡




f(e) + g(e), e ∈ A ∩B

f(e), e ∈ A \B
g(e), e ∈ B \A.

When A∩B = ∅ then f + g is usually written as f ⊕ g. When f, g are on A over F the dot product 〈f, g〉
of f and g is defined by

〈f, g〉 ≡
∑

e∈A

f(e)g(e).

We say f , g are orthogonal if 〈f, g〉 = 0.
An arbitrary collection of vectors on A would be denoted by KA. K on A is a vector space if

f, g ∈ K implies λf + σg ∈ K for λ, σ ∈ F. We will use the symbol VA for vector space on A as opposed
to KA for arbitrary collections of vectors on A. The symbol FA refers to the collection of all vectors on
A and 0A to the zero vector space on A as well as the zero vector on A. When A, B are disjoint we
usually write KAB in place of KA ·∪B .

2.1. Basic operations

The basic operations we use in this paper are as follows:

2.1.1. Building Copies

An operation that is very useful is that of building copies of sets and copies of collections of vectors
on copies of sets. We say set A, A′ are copies of each other iff there is a bijection, usually clear from the
context, mapping e ∈ A to e′ ∈ A′. We need this operation in order to talk, for instance, of the vector (v, i)
where v is a voltage vector on the edge set of a graph while i is a current vector on the same set. We handle
this by building a copy E′ of the edge set E and say v is on E and i is on E′.

The vectors fA and fA′ are said to be copies of each other iff fA′(e′) = fA(e) when A and A′ are copies
of each other. If the vectors on A and A′ are not copies of each other, they would be distinguished using

notation, such as, fA, f̂A′ etc. Vectors without subscripts like, x,
.

x and w,
.

w are not necessarily copies of
each other.

Similarly, the collections KA, KA′ are copies of each other iff

KA′ ≡ {fA′ : fA′(e′) = fA(e), fA ∈ KA}.

When A and A′ are copies of each other, the collections of vectors KA, KA′ (or say VA, VA′) always
represent copies of each other. If they are not copies they would be clearly distinguished from each other

by the notation, for instance, KA, K̂A′ , VA, V̂A′ , etc.
When A and A′ are copies of each other, the notation for interchanging the positions of variables A and

A′ in a collection KAA′B is given by (KAA′B)swap(AA′), that is

(KAA′B)swap(AA′) = {(gAfA′hB) | (fAgA′hB) ∈ KAA′B , gA being copy of gA′ , fA′ being copy of fA}.
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2.1.2. Sum

Let KA, KB be collections of vectors on sets A, B respectively. The sum KA + KB of KA, KB is
defined over A ∪B as follows:

KA + KB ≡ {(fA, 0B\A) + (0A\B , gB), where fA ∈ KA, fB ∈ KB},

When A, B are disjoint, KA + KB is usually written as KA ⊕ KB and is called the direct sum. Thus,

KA + KB ≡ (KA ⊕ 0B\A) + (0A\B ⊕ KB).

2.1.3. Intersection

The intersection KA ∩ KB of KA, KB is defined over A ∪B as follows:

KA ∩ KB ≡ {fA∪B : fA∪B = (fA, xB\A), fA∪B = (yA\B , fB),

where fA ∈ KA, fB ∈ KB , xB\A, yA\B

are arbitrary vectors on B \A, A \B respectively}.

Thus,

KA ∩ KB ≡ (KA ⊕ FB\A) ∩ (FA\B ⊕ KB).

2.1.4. Matched Sum

The matched sum KA ↔ KB is on (A \B) ·∪(B \A) and is defined as follows:

KA ↔ KB ≡ {f : gA\B ⊕ hB\A, where g ∈ KA, h ∈ KB & gA∩B = hB∩A}.

In the special case where B ⊆ A, matched sum is called generalized minor operation (generalized minor
of KA with respect to KB).

2.1.5. Skewed Sum

The skewed sum KA ⇋ KB is on (A \B) ·∪(B \A) and is defined as follows:

KA ⇋ KB ≡ {f : gA\B ⊕ hB\A, where g ∈ KA, h ∈ KB & gA∩B = −hB∩A}.

When A, B are disjoint, the matched and skewed sum both correspond to direct sum.

2.1.6. Vector Space Results

It is clear that +,∩,↔,⇋, all yield vector spaces when they operate on vector spaces. The generalized
minor of VAB relative to VB is VAB ↔ VB. Observe that VAB ↔ VB = VAB ⇋ VB since VAB , VB are
vector spaces. The operations VAB ↔ FB, VAB ↔ 0B are called the restriction and contraction of
VAB and are also denoted by VAB ◦ A, VAB × A, respectively.

If K is on A, then K ⊥ is defined by

K
⊥ = {g : 〈f, g〉 = 0, f ∈ K }.

Clearly K ⊥ is a vector space even if K is not. When V is a vector space on a finite set S, it can be shown
that (V ⊥)⊥ = V . This is fundamental for the results of the present work. The following results are easy to
see

(VA + V̂A)
⊥ = V

⊥
A ∩ V̂

⊥
A , A finite

(VA ∩ V̂A)
⊥ = V

⊥
A + V̂

⊥
A , A finite .
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When A, B are disjoint, it is easily verified that (VA ⊕ VB)
⊥ = V ⊥

A ⊕ V ⊥
B . When A, B are not disjoint,

VA + VB ≡ (VA ⊕ 0B\A) + (VB ⊕ 0A\B). So

(VA + VB)
⊥ = (V ⊥

A ⊕ FB\A) ∩ (V ⊥
B ⊕ FA\B)

= V
⊥
A ∩ V

⊥
B

by the definition of intersection of vector spaces on two distinct sets. Using (V ⊥)⊥ = V , we have (VA ∩
VB)

⊥ = V ⊥
A + V ⊥

B . The above pair of equalities will be referred to as the intersection-sum duality in
subsequent sections.

The following results can also be easily verified:

(VAB ◦A)⊥ = V
⊥
AB ×A

(VAB ×A)⊥ = V
⊥
AB ◦A using (V ⊥)⊥ = V .

The above pair of results will be referred to as the dot-cross duality.

2.1.7. Results on Generalized Minor

Let A, B and C be disjoint sets, then

(VABC ↔ VA) ↔ VB = (VABC ↔ VB) ↔ VA = VABC ↔ (VA ⊕ VB).

We will omit the brackets in such cases.

2.1.8. Implicit Duality Theorem

Let fY be a vector on Y and let X ⊆ Y . Then the restriction of fY to X is defined as follows:

fY /X ≡ gX , where gX(e) = fY (e), e ∈ X.

Let
V(−B)C ≡ {gBC , ∃fBC ∈ VBC s.t. gBC/B = −fBC/B, gBC/C = fBC/C}.

From the definition, when (A,B,C) are disjoint,

VAB ↔ VBC = (VAB + V(−B)C)× (A ∪ C)

and also equal to

(VAB ∩ VBC) ◦ (A ∪ C).

Similarly,

VAB ⇋ VBC = (VAB + VBC)× (A ∪ C)

and also equal to

(VAB ∩ V(−B)C) ◦ (A ∪ C).

Hence we have

(VAB ↔ VBC)
⊥ = [(VAB + V(−B)C)× (A ∪ C)]⊥

= (VAB + V(−B)C)
⊥ ◦ (A ∪ C)

= (V ⊥
AB ∩ V

⊥
(−B)C) ◦ (A ∪ C)

= V
⊥
AB ⇋ V

⊥
BC
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In particular,

(VAB ↔ VB)
⊥ = V

⊥
AB ↔ V

⊥
B

since VB = V(−B).
The above pair of results will be referred to as the implicit duality theorem.
Observe that the dot-cross duality is also a consequence of the implicit duality theorem since

(VAB ×A)⊥ = (VAB ↔ 0A)
⊥ = V

⊥
AB ↔ FA = V

⊥
AB ◦A.

Implicit duality theorem and its applications are dealt with in detail in [42], [43], [6], [7]. There has been
recent interest in the applications of this result in [44], in the context of ‘Pontryagin duality’. The above
proof is based on the one in [6].

Since we attempt, in this paper, to work with systems as they are, we will avoid the use of explicitly con-
structed maps, attempting to achieve equivalent effects through vector space constructions and constraints.
Consider the space VABC of variables (xA, xB , xC). If xB fully determines xC without knowledge of xA we
can state this as follows: First we suppress or eliminate xA. This is done by performing the generalized
minor operation VABC ↔ FA = VABC ◦ (B ∪ C). Let us say the result is VBC . Now xB fully determines
xC in VBC that is, if (xB , x

1
C), (xB , x

2
C) ∈ VBC then x1

C = x2
C . This is the same as saying if xB = 0B , then

xC = 0C . So we say VBC × C = 0C or equivalently VBC ↔ 0B = 0C . Thus ‘xB fully determines xC ’ is
equivalent to

VABC ↔ FA ↔ 0B = 0C

or

VABC ◦ (B ∪ C)× C = 0C .

Next suppose in VABC , the knowledge of the projection of xB onto VB is adequate to uniquely determine
its projection onto V ⊥

B that is, if (xA, (x
1
B + x2

B), xC), (xA, (x
1
B + y2B), xC) ∈ VABC , where x1

B ∈ VB , x
2
B ,

y2B ∈ V ⊥
B , then x2

B = y2B . This is captured by stating that if xB ∈ V ⊥
B , it is equal to 0B that is,

(VABC ∩ V
⊥
B ) ↔ (FA ⊕ FC) = 0B .

Computational techniques for the basic operations are discussed in Appendix A.

2.2. Graphs

The computational examples in this paper are from electrical circuit theory. So we require few definitions
from graph theory to analyze electrical networks.

An undirected graph is a triplet (V,E, fu), where V is the set of vertices, E is the set of edges, and
fu is the incidence function which associates a pair of vertices with each edge. The incidence function
defines the end vertices of the edges.

Similarly, a directed graph is also a triplet (V,E, fd), where fd is the incidence function which
associates with each edge an “ordered pair” of vertices and the sets V , E define the vertices, edges,
respectively of the graph. The incidence function defines the end vertices and also the direction of arrow
for the edges.

An undirected path (of a graph) from vertex v1 to vertex vk is a disjoint alternating vertex-edge
sequence v1, el1, v2, el2, . . . , el(k−1), vk, such that every edge elr is incident on vertices vr and vr+1. When it
is clear from the context, a path is simply denoted by its edge sequence. A graph is said to be connected
if there exists an undirected path between every pair of nodes. Otherwise it is said to be disconnected. A
disconnected graph has connected components which are individually connected with no edges between
the components.

A loop (or a circuit) (of any graph) is an undirected path in which the starting and ending vertices are
the same and no other vertices or edges are repeated.
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A tree of a graph is a sub-graph of the original graph with no loops. The edges of a tree are called
branches. A spanning tree is a maximal tree with respect to the edges of a graph. Hence, addition of
any other edge of the graph to a spanning tree contains a (single) loop. For this reason, a spanning tree is
also called maximal circuit free set. The loops obtained in this manner are called fundamental loops
associated with the tree.

It can be verified that every spanning tree of a connected graph with n nodes consists of n − 1 edges.
Since addition of each edge to a spanning tree creates only one loop, the number of fundamental loops
(associated with a spanning tree) is e− n+ 1, where e is the number of edges and n the number of vertices
of the graph.

A co-tree of a graph is defined with respect to a tree. It consists of all the edges of the graph which are
not in the tree. The edges of a co-tree are called links.

A forest of a disconnected graph is a disjoint union of the trees of its connected components. The
complement of a forest is called co-forest. In this paper, the terms tree and co-tree will be used to mean
forest and co-forest when it is clear from the context.

The number of edges in a forest of a graph is called the rank of the graph. For a graph G it is denoted
by r(G).

A crossing edge set of a graph is the set of all edges which lie between two complementary subsets of
the vertex set of the graph.

A cutset is a minimal crossing edge set that is, a minimal subset which when deleted from the graph
increases the count of connected components by one.

A spanning tree of the graph can be used to systematically generate cutsets. Since in a spanning tree
of a connected graph there exists only one path between any two vertices, deletion of a branch from the
tree disconnects the tree into two components. The set of all edges between these two components of the
tree form a cutset of the graph. Since a spanning tree of a connected graph with n vertices contains n− 1
edges, one could associate n− 1 cutsets to it. The cutsets obtained in this manner are called fundamental
cutsets of the graph with respect to the tree.

In a graph, an edge set E1 is said to span another edge set E2 if for each e2 ∈ E2 there exists a loop
(circuit) L1 ⊆ e2 ∪ E1 with e2 ∈ L1. For example, a spanning tree of any graph spans the co-tree of the
same graph. Dually, an edge set E1 is said to co-span another edge set E2 if for each e2 ∈ E2 there exists
a cutset C1 ⊆ e2 ∪ E1 with e2 ∈ C1. For instance, the co-tree with respect to a spanning tree of any graph
co-spans the same spanning tree of the graph.

Let G be a graph and E be the edge set of G and T ⊆ E. Then G × (E − T ) denotes the graph obtained
by removing the edges T from G and fusing the end vertices of the removed edges. G ◦ (E − T ) denotes
the graph obtained by removing the edges T from G and removing the isolated vertices.

3. Dynamical Systems

In the present paper we recognize the fact that in the usual physical instances of linear systems such as
an electrical network, the derivative of a dynamical variable is accessible in terms of some other physical
variable which could be thought ‘additional’ (e.g., in a network, for a capacitor C we have C

.

vC= iC , so that
.

vC is accessible through the additional variable iC). Secondly, whether or not we can write state equations
for the given system, our descriptions of the relevant spaces and our algorithms will not assume that the
state equations are explicitly available. This has obvious computational advantages since often building the
state equation for the system will be more expensive in terms of time and space than solving a problem
associated with the system such as to reach close to a desired state or to observe it. Our definitions of the
basic constructs such as that of a dynamical system are in line with this thinking.

A generalized dynamical system with additional variables (GDAS) is a vector space V.
WWLM

on the

set
.

W ·∪W ·∪L ·∪M where
.

W , W are copies of each other intended to take care of the dynamical variables
and their derivatives, and L, M , the additional variables and the manifest variables respectively. Thus

w(t) : W → R,
.

w (t) :
.

W→ R, l(t) : L → R, m(t) : M → R. We write w(t) etc., simply as w etc. The
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manifest variables are the ‘external variables’ of the system. Usually a GDAS would be available to us in
the form of the solution space of constraint equations

[
S.
W

SW SL SM

]



.

w
w
l
m


 = 0. (1)

We write V.
WWLM

alternatively as V (
.

w,w, l,m).

We define a generalized dynamical system (GDS) as a vector space V.
WWM

on the set
.

W ·∪W ·∪M where
.

W , W are copies of each other. This is obtained from a GDAS by suppressing the additional variables that
is,

V.
WWM

= V.
WWLM

◦ (
.

W ·∪W ·∪M).

We study a GDS (or a GDAS) ‘relative to’ a vector space VM . This vector space is expected to capture (and
is a generalization of) the usual partition of the manifest variables into ‘input’ variables mu and ‘output’
variables my. Working with such a partition, as far as the results of this paper are concerned, amounts to
working with the space VM ≡ Fmu ⊕ 0my or VM ≡ 0mu ⊕ Fmy.

A prototypical dynamical system with additional variables for us is a linear electrical network with
dynamic devices capacitors (C), inductors (L), static devices resistors and controlled sources (r), voltage
and current sources (E and J). Let us denote such a network by rLCEJ network. The variables associated
with the devices are vC , iC , vL, iL, vr, ir, vE , iE , vJ , iJ . In addition we can introduce output variables.
Voltage outputs are obtained by introducing open circuit branches across existing nodes and sensing the
voltage across them. Current outputs are obtained by splitting an existing node into two, introducing a
short circuit between the split nodes and sensing the current through the short circuit. Example of such a
network is given in Figure 1.

This, if treated as a dynamical system V (w,
.

w, lw, lr,m), has the variables w,
.

w, lw, lr, m as shown
below:

w ≡ (vC1, vC2, vC3, iL13, iL14, iL15),
.

w ≡ (
.

vC1,
.

vC2,
.

vC3,
diL13

dt
,
diL14

dt
,
diL15

dt
),

lr ≡ (i4, i5, i6, i7, i9, i10, i11, v4, v5, v6, v8, v9, v10, v12),

l.
w
≡ (iC1, iC2, iC3, vL13, vL14, vL15),

m ≡ (mu,my), mu ≡ (u7, u8), my ≡ (yv11, yi12).

Note that lr also includes the variables associated with sources and outputs other than the manifest variables,
such as, for instance, currents of voltage sources or voltages of current sensors.

Now

V (w,
.

w, l.
w
, lr,m) = V

T (w,
.

w, l.
w
, lr,m) ∩ V

D(
.

w, l.
w
, lr)

where

V
T (w,
.

w, l.
w
, lr,m) ≡ Vi(G)⊕ Vv(G)⊕ V

T
.

w
,

Vi(G) and Vv(G) denote the current and voltage spaces of G and V T
.

w
is the space of vectors

.

w which satisfy

the topological conditions on
.

w. In general the vector
.

vC satisfies KVL conditions of the graph obtained by
open circuiting all branches other than capacitor branches and the vector diL

dt
satisfies KCL conditions of the

graph obtained by short circuiting all branches other than the inductor branches. The device characteristics
constraints are

V
D(
.

w, l.
w
, lr) = V

D(
.

w, l.
w
)⊕ V

D(lr),
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+
−

C1

C2

C3

L13

L14

L15

R4

R6

R10

yv11

yi12

i5

u7

u8

v9 = ri5

Figure 1: Example rLCEJ Network

where V D(
.

w, l.
w
) is the solution space of the equations iC = (C)

.

vC , vL = (L)diL
dt

, C, L being positive

definite matrices. (Observe w variables are not involved in these equations). V D(lr) is the solution space
of the equations (in the case of the present network)

vR = (R)iR, v5 = 0, v9 − ri5 = 0, i11 = 0, v12 = 0.

It is clear that the device characteristics constraints on (
.

w, l.
w
) do not involve lr and vice versa.

Studying this network relative to a specified VM can be illustrated as follows: Let VM ≡ 0mu ⊕Fmy. In
this case this amounts to setting the sources to zero and the outputs free. If we work with V ⊥

M ≡ Fmu⊕0my

it amounts to keeping the sources free but the output zero. In this case, note that the output branches have
both current and voltage zero (‘nullator’).

Generalized dynamical systems for which state equations can be written say in the form

.

w = Aw +Bmu (2a)

my = Cw +Dmu (2b)

are for us ‘regular’. These have the property that given mu and w,
.

w can be determined uniquely and given
mu and w, my can be determined uniquely. Further mu and w can be chosen freely. This motivates the
following definitions for which the detailed explanations are given in the succeeding paragraph:
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The system V.
WWM

is
.

w-zero (w-zero) relative to VM iff (V.
WWM

↔ VM )×
.

W= 0.
W

((V.
WWM

↔

VM )×W = 0W ). When VM ≡ 0mu ⊕ Fmy,
.

w-zero means if w and mu are zero, so will
.

w be, that is,
.

w is
uniquely determined by w and mu. A similar implication holds for w-zero.

It is
.

w-free (w-free) relative to VM iff (V.
WWM

↔ VM )◦
.

W= F.
W

((V.
WWM

↔ VM ) ◦W = FW ). With

VM as above, w-free means whatever be the input, w can be chosen independently.
It is m-zero relative to VM iff (V.

WWM
◦ (W ·∪M)×M) ∩ VM = 0M . With VM as above, m-zero means

that when w and mu are zero, my must be zero.
It is m-free relative to VM iff (V.

WWM
◦ (W ·∪M) × M) + VM = FM . Equivalently, iff the projection

of V.
WWM

◦ (W ·∪M)×M onto V ⊥
M is equal to V ⊥

M . With VM ≡ 0mu ⊕ Fmy, m-free relative to VM means

every input can be chosen.
The GDS V.

WWM
is said to be regular relative to VM iff it is w-free,

.

w-zero and m-zero, m-free relative

to VM . The GDAS V.
WWLM

is regular iff the GDS V.
WWLM

◦ (
.

W ·∪W ·∪M) is regular.

A vector f.
WWM

= (
.

w,w,m) can be thought of as a possible instantaneous vector in the dynamical

system with w as the instantaneous value of the dynamical variable w(t),
.

w as the instantaneous value of

the dynamical variable
.

w (t) and m the instantaneous value of the manifest variable m(t).

The picture we have of a dynamical system V.
WWM

which is
.

w-zero, m-zero and m-free relative to VM

is as follows: Let us take VM = 0mu ⊕ Fmy. Since

(V.
WWM

◦ (W ·∪M)×M) + VM = FM ,

mu can be chosen to be arbitrary even when w is zero, that is, mu can be chosen to be arbitrary independent
of w. Since

(V.
WWM

◦ (W ·∪M)×M) ∩ VM = 0M ,

that is, m-zero relative to VM , once w is set to zero and m is forced to be in 0mu ⊕ Fmy, my must go to
zero, that is, my is a unique function of w and mu.

At time 0 some of the m variables say mu, the input variables, are specified (equivalently the projection

of m onto V ⊥
M is specified) and also the vector w. If V.

WWM
is
.

w-zero relative to VM , then w and m (as

long as m ∈ VM ) fix
.

w uniquely.

This fixes
.

w (that is, dw
dt

), and since the system is m-zero relative to VM , the remaining m variables
my, the ‘output’, (equivalently the projection of m onto VM ). If we can allow the w variable to be arbitrary
even when mu is set to zero (in general, forced to be in the space VM ) we have the w-free situation.

If the system is not
.

w-zero, then (V.
WWM

↔ VM )×
.

W) 0.
W

and the evolution of the system is only

defined ‘modulo’ the above space.
When the system is regular relative to VM = 0mu⊕Fmy we thus see thatmu can be chosen independently

of w, w can be chosen independently of mu, and mu, w fully determine
.

w and my, that is, the system is
governed by (2) above.

4. Conditioned Invariant spaces

Let V.
WWM

be a generalized dynamical system and let VM be a vector space. Let V̂W , V̂.
W

be copies of

each other on W ,
.

W respectively. We say V̂W is conditioned invariant in V.
WWM

relative to VM iff

(V.
WWM

↔ VM ) ↔ V̂W ⊆ V̂.
W
. (3)

11



Motivation for the Definition of Conditioned Invariant Space

Let us take V.
WWM

to be
.

w-zero relative to VM . This means that whenever (
.

w (t), w(t),m(t)) ∈ V.
WWM

if m(t) ∈ VM then m(t), w(t) uniquely determine
.

w (t).

Consider the vector (
.

w (t), w(t),m(t)) ∈ V.
WWM

. Think of it as existing at time t. Now (
.

w (t), w(t)) ∈

(V.
WWM

↔ VM ) provided m(t) ∈ VM and
.

w (t) belongs to LHS of (3) provided w(t) ∈ V̂W . The condition

(3) states that
.

w (t) must then belong to the copy V̂.
W

of V̂W . As the system evolves, if w(t) and
.

w (t) are

in a fixed vector space for t ≤ t0, with m(t) ∈ VM then w(t) will continue to remain in that space, that is,
for t > t0 limt→t0 w(t) will be in that space.

Consider the case where
.

w= Aw + Bmu and my = Cw + Dmu. Here we assume that m has been

partitioned into (mu,my). V̂W would be conditioned invariant (according to conventional definition in [8])

if (3) is satisfied with VM = Fmu⊕0my. V̂W would be A-invariant if (3) is satisfied with VM = 0mu⊕Fmy.
Thus (3) captures our usual picture of an invariant space of states where the system remains if it starts
there and if the manifest variables remain in a predetermined space.

Often there would be a specific V small
W and one would be asked to find a ‘minimal subspace’ V̂W which

is conditioned invariant in V.
WWM

relative to VM and which contains V small
W . For instance, when m is

partitioned into (mu,my) and we have
.

w= Aw +Bmu, my = Cw +Dmu, the strongly reachable space

is the minimal conditioned invariant subspace with V small
W as a copy of (V.

WWM
↔ VM )×

.

W on W and

VM = Fmu ⊕ 0my, that is, V small
W = B ker(D) and the reachability space is the minimal conditioned

invariant subspace with V small
W as a copy of (V.

WWM
↔ VM )×

.

W on W and VM = Fmu ⊕ Fmy, that is

V small
W = im(B).
We first observe that one solution to (3) containing V small

W is guaranteed, namely the space FW . There

is a unique minimal solution ṼW of (3) which satisfies the condition ṼW ⊇ V small
W . For, if Ṽ 1

W and Ṽ 2
W are

two such solutions, we have

(V.
WWM

↔ VM ) ↔ Ṽ
i
W ⊆ Ṽ

i
.

W
i = 1, 2.

Clearly, by the definition of the ‘generalized minor’ operation

(V.
WWM

↔ VM ) ↔ (Ṽ 1
W ∩ Ṽ

2
W ) ⊆ (V.

WWM
↔ VM ) ↔ Ṽ

i
W

⊆ Ṽ
i
.

W
i = 1, 2.

Thus

(V.
WWM

↔ VM ) ↔ (Ṽ 1
W ∩ Ṽ

2
W ) ⊆ (Ṽ 1

.

W
∩ Ṽ

2
.

W
)

Hence there must be a unique minimal space containing V small
W which is a solution to (3).

Algorithm I
Algorithm for computation of unique minimal space containing V small

W and satisfying the condition

(V.
W WM

↔ VM ) ↔ V̂W ⊆ V̂.
W

Let us denote (V.
W WM

↔ VM ) by V.
W W

. Let V 1
W = V small

W .

1. Check if V.
W W

↔ V 1
W ⊆ V 1

.

W
. If so, this is the desired subspace.

2. If not, let V 2
.

W
= (V.

W W
↔ V 1

W ) + V 1
.

W
and V 2

W be the copy of V 2
.

W
on W. (In this

case observe that dim(V 2
W ) > dim(V 1

W )).
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3. Repeat taking V
j+1
W to be the W-copy of (V.

W W
↔ V

j
W )+V

j
.

W

and stop when V
n+1
W = V n

W .

V n
W is the desired minimal space.

Justification for Algorithm I

We have V 1
W = V small

W , V j+1
W ⊇ V

j
W and (V.

WW
↔ V n

W )+V n
.

W
= V

n+1
.

W
= V n
.

W
. Thus (V.

WW
↔ V n

W )+V n
.

W
⊆

V n
.

W
and therefore, (V.

WW
↔ V n

W ) ⊆ V n
.

W
. Hence V n

.

W
is a solution to (3) that contains V small

W .

Next observe that if V̂W ⊇ V
j
W , we have V̂.

W
⊇ V

j
.

W
and further, if V̂W satisfies (3) then

V̂.
W

⊇ (V.
WW

↔ V̂W ) ⊇ (V.
WW

↔ V
j
W ).

Hence

V̂.
W

⊇ (V.
WW

↔ V
j
W ) + V

j
.

W

⊇ V
j+1
.

W
.

If follows that if V̂W ⊇ V small
W and V̂W satisfies (3) we must have V̂W containing all V

j
.

W
and therefore also

V
n+1
W = V n

W . It thus follows that V n
W is a minimal subspace containing V small

W and satisfying (3).
Computation of the main step in the algorithm is described in the Appendix B.

4.1. Tracing the route to a given vector wn

We next consider the problem of tracing the route to a given vector wn in the minimal conditioned
invariant space V final

W containing V small
W from the latter subspace. For this purpose we first recast the

conditioned invariant Algorithm I in a more convenient form in the following theorem.

Theorem 1. Let V.
WW

◦
.

W⊇ V 1
.

W
, where V 1

.

W
is a copy of V 1

W . Let the copy of V.
WW

◦
.

W on W be contained

in V.
WW

◦W . Also let

V
j+1
.

W
≡ (V.

WW
↔ V

j
W ) + V

j
.

W
, Ṽ

1
W = V

1
W

Ṽ
j+1
.

W
≡ (V.

WW
↔ Ṽ

j
W ).

Then,

k∑

j=1

Ṽ
j
W ≡ V

k
W .

Remark 1. The extra assumption, that a copy of V.
WW

◦
.

W on W is contained in V.
WW

◦W , made at the

beginning of Theorem 1, is usually satisfied by many dynamical systems, for instance, a regular dynamical
system (or a system in state space form). No such assumption is made in Algorithm I because, there, we
are concerned about computing the minimal subspace and here we are looking to find the sequence of vectors
to reach a given state in the minimal subspace. The assumptions made in this theorem are meant to handle
the computation of controllable subspace.

We state the modified algorithm, whose output has the ‘Krylov space’ form, explicitly below.
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Algorithm I′

Algorithm for computation of unique minimal space containing V small
W and satisfying the condition

(V.
W WM

↔ VM ) ↔ V̂W ⊆ V̂.
W

.

Assumption: Let V.
W W

◦
.

W ⊇ V small
.

W
, where V small

.

W
is a copy of V small

W . Let the copy of V.
W W

◦
.

W

on W be contained in V.
W W

◦W.

1. Set Ṽ 1
W = V small

W

2. Ṽ
j+1
.

W

≡ (V.
W W

↔ Ṽ
j
W )

3. Stop when

k∑

j=1

Ṽ
j
.

W

=

k+1∑

j=1

Ṽ
j
.

W

.

4. The desired space is
∑k

j=1 Ṽ
j
W.

We need a couple of lemmas for the proof of this theorem.

Lemma 2. Let fB ∈ VAB ↔ KA. Then fB + vB ∈ VAB ↔ KA, whenever vB ∈ VAB ×B.

Proof. If fB ∈ VAB ↔ KA, we have (fA, fB) ∈ VAB for some fA ∈ KA. Now since vB ∈ VAB ×B, we have
(0, vB) ∈ VAB . Hence (fA, fB + vB) ∈ VAB and fB + vB ∈ VAB ↔ KA.

Lemma 3. Let KA,K
1
A ,K 2

A ⊆ VAB ◦A and let KA = K 1
A + K 2

A . Then

(VAB ↔ K
1
A ) + (VAB ↔ K

2
A ) = (VAB ↔ KA).

Proof. First, it is clear that the following containment is true:

(VAB ↔ K
1
A ) + (VAB ↔ K

2
A ) ⊆ (VAB ↔ KA). (4)

We will now show the reverse containment

(VAB ↔ KA) ⊆ (VAB ↔ K
1
A ) + (VAB ↔ K

2
A ). (5)

Let fB ∈ VAB ↔ KA. Then, there exists fA ∈ KA such that (fA, fB) ∈ VAB . Since KA = K 1
A + K 2

A , we
have

fA = f1
A + f2

A,

for some f1
A ∈ K 1

A , f2
A ∈ K 2

A . So there exists f1
B , f

2
B such that

(f1
A, f

1
B) ∈ VAB , (f2

A, f
2
B) ∈ VAB

since K 1
A ⊆ VAB ◦A, K 2

A ⊆ VAB ◦A. As VAB is a vector space, we also have

(f1
A + f2

A, f
1
B + f2

B) = (fA, f
1
B + f2

B) ∈ VAB .

Since (fA, fB) ∈ VAB , we have f1
B + f2

B − fB ∈ VAB ×B. So there exists some vB ∈ VAB ×B such that

f1
B + f2

B = vB + fB .

Now by Lemma 2, f2
B − vB ∈ VAB ↔ K 2

A . Hence

fB = f1
B + (f2

B − vB) ∈ (VAB ↔ K
1
A ) + (VAB ↔ K

2
A ).
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Proof of Theorem 1

Let

V
k−1
W ≡

k−1∑

j=1

Ṽ
j
W .

We will show the equality for k. Now,

V
k
.

W
=
(
V.
WW

↔ V
k−1
W

)
+ V

k−1
.

W

=
[
V.
WW

↔
(
Ṽ

k−1
W + V

k−2
W

)]
+ V

k−1
.

W
( follows from definition of V

k−1
W )

=
(
V.
WW

↔ Ṽ
k−1
W

)
+
(
V.
WW

↔ V
k−2
W

)
+ V

k−1
.

W
(using Lemma 3)

=
(
V.
WW

↔ Ṽ
k−1
W

)
+ V

k−1
.

W

(
noting that (V.

WW
↔ V

k−2
W ) + V

k−2
.

W
= V

k−1
.

W

)

= Ṽ
k
.

W
+ V

k−1
.

W

The theorem follows since it is given to be true for k = 1.
We will now illustrate the above idea for the usual ‘input-state-output’ dynamical systems. For the

discussions that follows V.
WWM

allows a description in terms of state and output equations. Our discussion

will not however need the computations of state and output equations explicitly. Unless otherwise stated
we take VM = FM .

Let us now pick a basis for V n
W = V

n+1
W =

∑n
j=1 Ṽ

j
W as follows:

Let the rows of B1 = B̃1 be a basis for Ṽ
1
W = V

1
W

B2 =

(
B̃1

B̃2

)
, be a basis for Ṽ

1
W + Ṽ

2
W = V

2
W

...

Bj =



B̃1

...

B̃j


 , be a basis for V

j
W , B̃i ⊆ Ṽ

i
W

...

Bn =



B̃1

...

B̃n


 be a basis for V

n
W =

n∑

j=1

Ṽ
j
W

Let w be a specified vector. To check if w ∈ V n
W we merely check if the equation BT

n λ = w can be solved (by
checking if w = projection of w on V n

W , for instance). Suppose the equation has a solution. Then w ∈ V n
W

and we can write w = w1 + . . .+ wn where wj = B̃T
j λj . Now wj ∈ Ṽ

j
W , j = 1, . . . , n. For each wj compute

the sequence

wj1,
.

w
j2
, wj2,

.

w
j3
, . . . ,
.

w
jj
, wjj = wj ,

where

(
.

w
ji
, wj(i−1)) ∈ V.

WW
= (V.

WWM
↔ VM )

wj(i−1) ∈ Ṽ
(i−1)
W

wji is a copy of
.

w
ji





for i = 2, . . . , j.
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We associate with the vector w the set of initial vectors

{w11, w21, . . . , wn1}.

Appropriately interpreted this set contains the information required to reach w starting from V 1
W .

Let us consider the case of discrete systems of the kind governed by wk+1 = Awk + Bmk
u. In this case

(
.

w,w) plays the role of (wk+1, wk). Note that if
.

w occurs at t = k − 1, it becomes its copy w at t = k.
In such a system let us suppose that at any discrete instant k we can somehow add a state ŵ ∈ V 1

W to
the current state. To reach w at t = n we start with wn1 at t = 1. Let the system evolve to some state w2

at t = 2. Now add w(n−1)1 at t = 2 to this state. As a result let the system evolve to w3 at t = 3. Now add
w(n−2)1 at t = 3 to this state and so on finally adding w11 at t = n to wn.

Suppose V 1
.

W
⊆ V.

WWM
× (
.

W ·∪M)◦
.

W . (The space on the RHS corresponds to the space of all
.

w vectors

which can be ‘reached’ immediately starting from w = 0 and using some m. This is the same as the space
of all w vectors which can be reached in one time instant starting from w = 0 and using some m.) Adding
a state wj1 at time instant t = k can be achieved by imposing a suitable manifest variable mj1 at t = k− 1

since there is a vector (
.

w
j1
, 0,mj1) ∈ V.

WWM
. Thus adding state vectors at various time instants, in this

case, is the same as adding suitable manifest variable vectors at the previous time instant.
For continuous systems of the kind governed by

.

w= Aw + Bmu and my = Cw + Dmu, the effect is
achieved ‘instantaneously’ by the use of impulses and their derivatives. Let us suppose that the manifest

variable m is partitioned into (mu,my) as usual. As before, let us assume V 1
.

W
⊆ V.

WWM
× (
.

W ·∪M)◦
.

W .

Consider w11. Let
.

w
11

be a copy of w11. There is a vector (
.

w
11
, 0,m11) ∈ V.

WWM
. Let m11 = (m11

u ,m11
y ).

We impose the input (m11
u )δ on the system. This will cause the state to jump by w11 (copy of

.

w
11
). Similarly

for adding wn1 one computes mn1 and imposes the input mn1
u δn. Thus we can reach w ‘instantaneously’ by

imposing (m11
u δ + . . .+mn1

u δn) as the input. The corresponding output my can be computed as follows:
To compute my, we observe that it is the sum of the two terms: that due to input with state zero (zero

state response) and that due to state with input zero (zero input response).
The zero state response is obtained by finding, for each j 6= 1, my such that

(mj1
u ,mj1

y ) ∈ V.
WWM

× (
.

W ·∪M) ◦M

and setting

yzero state = m11
y δ + . . .+mn1

y δn.

The zero input response is obtained as follows: Let VM be the space of vectors (0u,my) where my is

free. We compute the vector (0u, yzero input) corresponding to w in the space V.
WWM

◦ (
.

W ·∪M) ↔ VM .

The complete output is y = yzero input + yzero state.

5. Controlled Invariant spaces

We say V̂W is controlled invariant in V.
WWM

relative to VM iff

(V.
WWM

↔ VM ) ↔ V̂.
W

⊇ V̂W . (6)

Motivation for the Definition of Controlled Invariant Space

Consider the vector (
.

w (t), w(t),m(t)) ∈ V.
WWM

. Think of it as existing at time t. Now (
.

w (t), w(t)) ∈

(V.
WWM

↔ VM ) provided m(t) ∈ VM and if
.

w (t) ∈ V̂.
W
, w(t) belongs to LHS of (6). The LHS of (6)

contains RHS which is the space V̂W . So at time t if we choose w(t) ∈ V̂W we can always find a vector
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.

w (t) ∈ V̂.
W

and a vector m(t) ∈ VM such that (
.

w (t), w(t),m(t)) ∈ V.
WWM

. Now if the dynamical system

V.
WWM

is
.

w-zero relative to VM it follows w(t) and m(t) fix
.

w (t) uniquely. Thus if we start from a state

w(t) ∈ V̂W we can always find an m(t) ∈ VM which keeps
.

w (t) in V̂.
W

and therefore w(t) continues in V̂W .

As the system evolves, if w(t) and
.

w (t) are in a fixed vector space for t ≤ t0, with suitable m(t) ∈ VM , w(t)
will continue to remain in that space, that is, for t > t0, limt→t0 w(t) will be in that space.

Consider the case where
.

w= Aw + Bmu and my = Cw + Dmu. Here we assume that m has been

partitioned into (mu,my). V̂W would be controlled invariant (according to the definition in [8]) if (6) is

satisfied with VM = Fmu ⊕ 0my. V̂W would be (A,B) invariant if (6) is satisfied with VM = FM . Thus
(6) captures our usual picture of a subspace of states where the system can be forced to remain by suitable
choice (at each instant) of the manifest variable m(t).

Often there would be a specific V
big
W and one would be asked to find a ‘maximal subspace’ V̂W which is

controlled invariant and a subspace of V
big
W . For instance, when m is partitioned into (mu,my) and we have

.

w= Aw + Bmu and my = Cw +Dmu. Then the weakly unobservable space is the maximal controlled

invariant space with V
big
W ≡ (V.

WWM
↔ VM ) ◦W and VM = Fmu ⊕ 0my and the unobservable space has

the same V
big
W but VM = 0mu ⊕ 0my.

We first observe that there is a unique maximal solution ṼW of (6) which satisfies the condition ṼW ⊆

V
big
W . For, if Ṽ 1

W and Ṽ 2
W are two such solutions, we have

(V.
WWM

↔ VM ) ↔ Ṽ
i
.

W
⊇ Ṽ

i
W , i = 1, 2.

Clearly by the definition of the ‘generalized minor’ operation

(V.
WWM

↔ VM ) ↔ (Ṽ 1
.

W
+ Ṽ

2
.

W
) ⊇ (V.

WWM
↔ VM ) ↔ Ṽ

i
.

W
, i = 1, 2

⊇ Ṽ
i
W , i = 1, 2.

Thus

(V.
WWM

↔ VM ) ↔ (Ṽ 1
.

W
+ Ṽ

2
.

W
) ⊇ (Ṽ 1

W + Ṽ
2
W ).

One solution to (6) is guaranteed, namely the space 0W . Hence there must be a unique maximal space

contained in V
big
W which is a solution to (6).

Algorithm II
Algorithm for computation of unique maximal space contained in V

big
W and satisfying the condition

(V.
W WM

↔ VM ) ↔ Ṽ.
W

⊇ ṼW .

Let us denote (V.
W WM

↔ VM ) by V.
W W

. Let V 1
W = V

big
W .

1. Check if V.
W W

↔ V 1
.

W
⊇ V 1

W. If so this is the desired subspace.

2. If not let V 2
W = (V.

W W
↔ V 1
.

W
) ∩ V 1

W and V 2
.

W
be the copy of V 2

W on
.

W . In this case

observe that dim(V 2
W ) < dim(V 1

W ).

3. Repeat taking V
j+1
.

W

to be the
.

W -copy of (V.
W W

↔ V
j
.

W

)∩V
j
W and stop when V

n+1
W = V n

W .

V n
W is the desired maximal space.
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Justification for Algorithm II

We have V 1
W = V

big
W , V

j+1
W ⊆ V

j
W and (V.

WW
↔ V n
.

W
)∩V n

W = V
n+1
W = V n

W . Thus (V.
WW

↔ V n
.

W
)∩V n

W ⊇

V n
W . Hence V n

W is a solution to (6) that is contained in V
big
W . Next observe that if V̂W ⊆ V

j
W

(V.
WW

↔ V̂W ) ⊆ (V.
WW

↔ V
j
W ).

Now if V̂W satisfies (6) then

V̂W ⊆ (V.
WW

↔ V̂.
W
) ⊆ (V.

WW
↔ V

j
.

W
)

Therefore, since V̂W ⊆ V
j
W

V̂W ⊆ (V.
WW

↔ V
j
.

W
) ∩ V

j
W = V

j+1
.

W
.

It follows that if V̂W ⊆ V
big
W and V̂W satisfies (6) we must have V̂W contained in all V

j
W and therefore, also

V n
W = V

n+1
W . It thus follows that V n

W is a maximal subspace contained in V
big
W and satisfying (6).

Computation of the main step in the algorithm is given in Appendix C

6. Computations for Electrical Networks

We illustrate the computations associated with conditioned and controlled invariant spaces for the case of
electrical networks. One primary aim is to show that no explicit construction of state and output equations
are required.

6.1. Multi-port Decomposition

For electrical networks, a convenient way of handling computations is to first decompose the network
into suitable ‘multi-ports’. While this is intuitive, it has been formalized in [42] [7]. This formalization is
topological that is, does not depend on the device characteristics. Let G be a directed graph and let E1, E2

be a partition of edges of the graph. Then it can be shown that we can build three graphs GE1P1
, GP1P2

,
GE2P2

such that

Vi(G) =
(
Vi(GE1P1

)⊕ Vi(GE2P2
)
)
↔ Vi(GP1P2

)

and (therefore through Tellegen’s theorem and the implicit duality theorem)

Vv(G) =
(
Vv(GE1P1

)⊕ Vv(GE2P2
)
)
↔ Vv(GP1P2

),

where P1, P2 are additional sets of branches. This process is called multi-port decomposition.
Let vE = (vE1

, vE2
) be a voltage vector (that is, a vector that satisfies KVL conditions) of G. Then

there exists (vP1
, vP2

) such that (vE1
, vP1

), (vP1
, vP2

), (vP2
, vE2

) are voltage vectors of GE1P1
, GP1P2

, GP2E2

respectively. Conversely, if (vE1
, vP1

), (vP1
, vP2

), (vP2
, vE2

) are voltage vectors of GE1P1
, GP1P2

, GP2E2
then

(vE1
, vE2

) is a voltage vector of G. A similar statement is true for the current vectors.
There is a linear time algorithm available for decomposing minimally, that is, in such a way that |P1|,

|P2| have minimum size. We can show that this size is

|P1| = |P2| = r(G ◦ E1)− r(G × E1)

= r(G ◦ E2)− r(G × E2).

(This decomposition agrees with intuition when both G ◦ E1 and G ◦ E2 are connected but not when both
are disconnected.) When the decomposition is minimal the sets Pi will not contain circuits or cutsets in
GE1P1

, GP1P2
, GP2E2

.
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Theorem 4. Let the decomposition of the directed graph G into GE1P1
, GE2P2

, GP1P2
be minimal. Let iE, vE

be current and voltage vectors of G. Let (iE1
, iP1

), (iE2
, iP2

), (iP1
, iP2

) be current vectors and let (vE1
, vP1

),
(vE2

, vP2
), (vP1

, vP2
) be voltage vectors of GE1P1

, GE2P2
, GP1P2

, respectively. Then iP1
, iP2

can be written in
terms of iE1

as well as iE2
and vP1

, vP2
can be written in terms of vE1

as well as vE2
.

Proof. In any directed graph it is well known (and easy to show) that the currents in a tree can be uniquely
expressed in terms of the currents in the co-tree and the voltages in a co-tree can be uniquely expressed
in terms of the voltages in the tree. In a graph G, if a set P of branches does not contain a loop, it can
be extended into a tree by adding edges and therefore the currents of P can be expressed in terms of the
currents of its complement. If P does not contain a cutset, its deletion (open circuiting) will not disconnect
the graph. Hence the complement of P contains a tree of G. Hence the voltages of P can be expressed in
terms of voltages of its complement.

Since P1, P2 do not contain cutsets in any of the three graphs of the decomposition, we can write vP1

in terms of vE1
in GE1P1

, vP2
in terms of vP1

in GP1P2
and therefore vP2

in terms of vE1
and similarly vP1

in terms of vE2
. Similarly, using the fact that P1, P2 do not contain loops in any of the graphs of the

decomposition we can write iP2
in terms of iE1

and iP1
in terms of iE2

.

For an rLCEJ network such as the one in Figure 1, we do minimal multi-port decomposition twice as in
Figure 2. First we partition E into EC , Er ·∪Em ·∪EL. Next we minimally decompose G into (GECPC

,GErEmELP ′

C
;GPCP ′

C
).

Then we decompose GErEmELP ′

C
minimally into (GErEmP ′

C
P ′

L
,GELPL

,GPLP ′

L
). Now we may think of the orig-

inal network as being decomposed into three multi-ports: (a) the capacitive multi-port NECPC
on the graph

GECPC
and device characteristics for EC being iC = (C)

.

vC and no constraints on iPC
, vPC

(b) the induc-
tive multi-port NELPL

on the graph GELPL
and device characteristics for EL being vL = (L)diL

dt
and no

constraints on iPL
, vPL

(c) the static multi-port NErEmP ′

C
P ′

L
on graph GErEmP ′

C
P ′

L
and device characteristics

for Er as in the original network with no constraints on iP ′

L
, iP ′

C
, vP ′

L
, vP ′

C
.

The port variables iPC
, iP ′

C
, vPC

, vP ′

C
are linked through the KCL and KVL conditions of GPCP ′

C
and

the port variables iPL
, iP ′

L
, vPL

, vP ′

L
are similarly linked through the KCL and KVL conditions of GPLP ′

L

and each member of the primed, unprimed quantities can be written in terms of other. Formally,

Vv(G) =
(
Vv(GECPC

)⊕ Vv(GELPL
)⊕ Vv(GErEmP ′

C
P ′

L
)
)
↔
(
Vv(GPCP ′

C
)⊕ Vv(GPLP ′

L
)
)
.

We will assume that in GEmErP
′

C
P ′

L
there are no loops containing only branches from P ′

C , voltage sources
and current output branches and no cutsets containing only branches from P ′

L, current sources and voltage
output branches. This is true in the present example. It would also be true if all voltage sources (including
current output branches which are short circuits) occur in series with (small) resistors and all current sources
(including voltage output branches which are open circuits) in parallel with (large) resistors. Practical
circuits satisfy such conditions.

The sets of branches PC , P ′
C , PL, P ′

L do not contain loops or cutsets in any of the graphs of the
decomposition where they occur. Hence vP ′

C
can be written in terms of vC , iP ′

C
can be written in terms of

iC , iP ′

L
can be written in terms of iL and vP ′

L
can be written in terms of vL. Using the fact that iC = C

.

vC

and vL = LdiL
dt

it follows that iP ′

C
can be written in terms of

.

vC and vP ′

L
in terms of diL

dt
.

In the discussion that follows immediately we have derived explicit relations for the sake of clarity. We
will however perform the computations of this paper on the network working with multi-ports but without
explicitly computing (8).

If the above loop-free, cutset free condition is satisfied by the static multi-port, then under mild genericity
assumptions we can write

(
iP ′

C

vP ′

L

)
=

[
H11 H12

H21 H22

](
vP ′

C

iP ′

L

)
+

[
H13

H23

]
u (7a)

y = [H31 H32]

(
vP ′

C

iP ′

L

)
+ [H33]u. (7b)

19



G GPCP ′
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C

GErEMELP ′
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P ′
L

GELPL

PL

PL

Figure 2: rLCEJ network graph

Using the constraints of the capacitive multi-port we can write, for a suitable C̃, KC ,

iPC
= C̃
.

vPC
and
.

vC= KC

.

vPC

vC = vC(0) +KC

∫ t

0

.

vPC
dt

= vC(0) +KC(vPC
(t)− vPC

(0)).

This can be done for instance by solving the ‘static’ network on GECPC
, iC , iPC

satisfying KCL,
.

vC ,
.

vPC

satisfying KVL, iC = C
.

vC as device characteristics and
.

vPC
as ‘voltage sources’.

Using the constraints of the inductive multi-port we can write, for a suitable L̃, KL,

vPL
= L̃

diPL

dt
and

diL
dt

= KL

diPL

dt

iL = iL(0) +KL

∫ t

0

diPL

dt
dt

= iL(0) +KL(iPL
(t)− iPL

(0)).
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Using the port connection diagram GPCP ′

C
we get vP ′

C
= TCvPC

, iPC
= −TT

C iP ′

C
and using the port

connection diagram GPLP ′

L
we get iP ′

L
= TLiPL

, vPL
= −TT

L vP ′

L
.

We therefore have from (7) and the foregoing discussion

.

vPC
=
[
−C̃−1TT

C

]
[H11 H12]

(
TCvPC

TLiPL

)
+
[
−C̃−1TT

C

]
[H13]u (8a)

diPL

dt
=
[
−L̃−1TT

L

]
[H21 H22]

(
TCvPC

TLiPL

)
+
[
−L̃−1TT

L

]
[H23]u. (8b)

Essentially (8) captures the dynamics of the network. However, vPC
, iPL

are not all the state variables. But
knowing vC(0), iL(0), vPC

(t), iPL
(t) all dynamic variables can be computed instantaneously as we showed

above. As mentioned before, we will perform the computations of this paper on the network working with
the multi-ports without explicitly computing (8). The multi-port decomposition itself is linear time and
therefore computationally inexpensive.

6.2. Computing V.
WW

↔ VW , V.
WW

↔ V.
W

for Networks

In all the algorithms of this paper the key step is the computation of V.
WW

↔ VW or V.
WW

↔ V.
W
. We

describe how to perform this computation for a rLCEJ network for the usual instances of VM . The essential
idea is to transform the problem to one of solving the three multi-ports under appropriate conditions.

6.2.1. V.
WW

↔ VW , VM = 0mu ⊕ Fmy

We will only show, given a vector w ∈ VW how to find all
.

w such that (
.

w,w) ∈ V.
WW

. In the generic

situation, this will be unique since for w = 0, mu = 0 the only
.

w consistent will be the zero vector. The
space V.

WWLM
↔ VM is obtained by setting all input sources to zero (in Figure 1, u7, u8 are short circuited

and open circuited respectively). The space V.
WW

is equal to V.
WWLM

↔ VM ◦ (
.

W ·∪W ).

Let w ∈ VW . This is a vector vC , iL in N . There is a unique vector vP ′

C
, iP ′

L
(through topological

constraints in GECPC
, GELPL

, GPCP ′

C
, GPLP ′

L
since PC , P

′
C , PL, P

′
L do not form loops or cutsets in any of

the graphs) corresponding to vC , iL. Impose vP ′

C
, iP ′

L
onto the ports of NErEmP ′

C
P ′

L
with the sources set

to zero. As mentioned before, under mild genericity assumptions on the static characteristics, there will be
a unique iP ′

C
, vP ′

L
corresponding to this port condition. By solving this (static) multi-port we would get

iP ′

C
, vP ′

L
from which we can get iPC

, vPL
through the topological constraints in GPCP ′

C
and GPLP ′

L
.

We now solve the multi-port NECPC
with currents iPC

in the ports PC using the device characteristics

constraints iC = C
.

vC , KCL conditions of GECPC
on (iC , iPC

), KVL conditions of GECPC
on (
.

vC ,
.

vPC
).

This yields
.

vC .
Similarly, we solve the multi-port NELPL

with voltages vPL
in the ports PL using the device charac-

teristics vL = LdiL
dt

, KVL conditions of GELPL
on (vL, vPL

), KCL conditions of GELPL
on (diL

dt
,
diPL

dt
). This

yields diL
dt

. We then get the unique vector
.

w= (
.

vC ,
diL
dt

) corresponding to the vector w = (vC , iL). Observe
that the computationally significant steps are the solutions of the three multi-ports.

6.2.2. V.
WW

↔ V.
W
, VM = 0mu ⊕ Fmy

To compute V.
WW

↔ V.
W
, we begin once again by setting all sources to zero. Let

.

w= (
.

vC ,
diL
dt

) ∈ V.
W
.

We will show how to find all w such that (w,
.

w) ∈ V.
WW

.

The first step is to compute all w = (vc, iL) corresponding to
.

w= 0. We will show that generically the
collection of all such vC is the voltage space of GECPC

× EC and the collection of all such iL is the current
space of GELPL

◦ EL.
.

w= 0 implies
.

vC= 0 and diL
dt

= 0. This implies C
.

vC= 0 and LdiL
dt

= 0. Hence iC = 0, vL = 0.
Therefore in the multi-ports NECPC

, NELPL
, since PC , PL do not contain cutsets, iPC

= 0, vPL
= 0. Using

KCL, KVL of GPCP ′

C
, GPLP ′

L
this implies iP ′

C
= 0, vP ′

L
= 0. In the multi-port NErEmP ′

C
P ′

L
, the sources have
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already been set to zero (since VM = 0mu⊕Fmy ). In this network P ′
C , P

′
L contain no loops or cutsets even

when all sources are set to zero. Under mild genericity conditions on the static devices, this network can
be shown to have a unique solution for arbitrary values of iP ′

C
, vP ′

L
. So in particular if iP ′

C
= 0, vP ′

L
= 0

we would have only the zero solution. Hence vP ′

C
, iP ′

L
are zero vectors. This means, through KCL, KVL of

GPCP ′

C
, GPLP ′

L
that vPC

= 0, iPL
= 0. The corresponding space of vC (with vPC

= 0) would therefore be
the space of solutions of KVL constraints of GECPC

with PC short circuited, that is, the voltage space of
GECPC

× EC . (Under minimal multi-port decomposition this is the space of solutions of KVL constraints
of G with all branches other than the C branches short circuited). The corresponding space of iL (with
iPL

= 0 ) can similarly be shown to be the space of KCL constraints of GELPL
with PL open circuited, that

is, the current space of GELPL
◦EL. (Under minimal multi-port decomposition this is the space of solutions

of KCL constraints of G with all branches of G other than L branches open circuited).

Next we compute a single w1 ∈ VW corresponding to a
.

w1∈ V.
W
. Let

.

w1∈ V.
W
. Now let

.

w1= (
.

v
1

C ,
di1L
dt

).

Using i1C = C
.

v
1

C , v
1
L = L

di1L
dt

we get i1C , v
1
L. Using KVL, KCL of GECPC

, GELPL
, since PC , PL contain no

loops or cutsets in these graphs we can compute i1PC
, v1PL

(uniquely). Using KCL, KVL of GPCP ′

C
, GPLP ′

L

we can compute i1P ′

C
, v1P ′

L
. In the multi-port NErEmP ′

C
P ′

L
, the sources have already been set to zero (since

VM = 0mu ⊕ Fmy). As before we can compute v1P ′

C
, i1P ′

L
uniquely. Through KCL, KVL of GPLP ′

L
, GPCP ′

C

v1PC
, i1PL

can be computed uniquely.
One solution v1C can be obtained by extending PC to a tree tC in GECPC

assigning arbitrary voltages to
branches in tC−PC and hence by KVL of GECPC

, computing voltages for EC−tC . Similarly, one solution i1L
corresponding to i1PL

can be obtained by extending PL to a co-tree t̄L in GELPL
assigning arbitrary currents

to branches in t̄L − PL and hence by KCL of GELPL
computing currents for EL − t̄L. v1C , i1L together

constitute the desired w1 ∈ VW .
The collection of all vectors K 1

C ⊕ K 1
L corresponding to v1PC

, i1PL
(and therefore also corresponding to

.

w1= (
.

v
1

C ,
di1L
dt

) ) is obtained as follows: K 1
C = v1C +V 0

C , K 1
L = i1L+V 0

L , where V 0
C , V 0

L correspond to
.

vC= 0,
diL
dt

= 0. In the above, the computations which involve only KCL, KVL are, being linear time, inexpensive.
The significant computation is the one that involves solution of the multi-port NErEmP ′

C
P ′

L
for given i1P ′

C
,

v1P ′

L
.

6.2.3. VM = Fmu ⊕ Fmy, V.
WW

↔ VW , V.
WW

↔ V.
W

In this case we have to compute first as in Sub-Sections 6.2.1 and 6.2.2 above with VM = 0mu ⊕ Fmy.

Next we make the computation with w = 0 (
.

w= 0) as the case may be but with mu = (1, 0, 0, . . . , 0),
(0, 1, 0, . . . , 0), . . . (0, 0, 0, . . . , 1) and get a collection of vectors Bu

.

w
(Bu

w). Let the space spanned by these

vectors be V u
.

W
(V u

W ). Suppose V.
WW

↔ VW is Ṽ.
W

when VM = 0mu ⊕ Fmy. Then in the present case it

would be Ṽ.
W

+ V u
.

W
. A similar sum of spaces has to be computed also in the case V.

WW
↔ V.

W
.

6.2.4. VM = Fmu ⊕ 0my

We will only examine how to compute all
.

w in V.
WW

↔ VW corresponding to a given w ∈ VW and a

given mu. Let w ∈ VW , m ∈ Fmu. Then w = (vC , iL). As before we can compute vPC
, iPL

(by using the
constraints of GECPC

, GELPL
) and therefore (by using the constraints of GPCP ′

C
, GPLP ′

L
) vP ′

C
, iP ′

L
.

Now we move to the network NErEmP ′

C
P ′

L
with all output branches treated as nullators. We obtain one

solution of this network corresponding to input source values mu, and to vP ′

C
, iP ′

L
which in turn will yield

iP ′

C
, vP ′

L
and therefore iPC

, vPL
from which working with GECPC

, GELPL
, (
̂.
vC ,

d̂iL
dt

) can be computed.

We next compute (
.

vC ,
diL
dt

) when (vC , iL) are zero and mu = 0, that is, find all iP ′

C
, vP ′

L
when (vP ′

C
, iP ′

L
)

are zero and mu = 0 in NErEmP ′

C
P ′

L
. Each such (vj

P ′

C

, ij
P ′

L

) will yield a unique (
.

v
j

C ,
di

j

L

dt
) in NECPC

, NELPL
.
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Let the space of all (
.

v
j

C ,
di

j

L

dt
) be denoted by V 0

W . All
.

w corresponding to mu, w is obtained as

(
̂.
vC ,

d̂iL
dt

) + V
0
.

W
.

It can be seen that the above computations on large systems involve ‘solving’ the system under specific
conditions. In our approach, as has been seen, the computatins do not require first casting the system in the
state variable form. However computations such as V.

WW
↔ V̂W for large systems involve solving the system

typically O(dimV̂W ) times. While this is cheaper than going through state equation (both in terms of time
and space) it is still very expensive for large systems and may not be a convincing reason for adopting our
approach.

However, if one is trying to construct a reduced order model of a large dynamical system our approach
would clearly be superior to first constructing the state equation. Suppose the model order reduction is to
be performed on the network decomposed as in Section 6.1. If this system had the state equation

.

x = Ax+Bu

a typical model reduction procedure would use the Arnoldi algorithm. This would involve picking a ‘generic’
vector b ∈ im(B) building the sequence b, Ab, . . . , Ak−1b (upto a suitable value k) and orthonormalizing the
vectors. Suppose the resulting set of vectors are the columns of W , the reduced order system would be

.

z = WTAWz +WT bu.

In our approach building B, AB, . . . correspond to using Algorithm I′ on a copy V̂W of V.
WW

×
.

W on W ,

where V.
WW

= V.
WWM

↔ (0mu
⊕ Fmy

).

The key step in the Arnoldi algorithm is the computation of Ax for a given x. In Section 6.2.1 we have

shown how to make this computation for a given large scale network when we computed
.

W corresponding
to a given W . Computing the matrix W with k columns requires that the process be repeated k times. We
know how to compute AW (as above). Hence WTAW and WTB can be computed.

7. Duality

One of the attractive features of classical multi-variable control theory is the duality that underlies the
development. If anything, duality ideas are even more natural in our way of handling dynamical systems.
The key idea for us is the following: Let

ǫ(V1, . . . ,Vk,+,∩,↔,⊇,⊆)

be a statement. We assume that the connective ‘↔’ is between spaces of the form VS , VT where S ⊃ T .
The statement

ǫ(V ⊥
1 , . . . ,V ⊥

k ,∩,+,↔,⊆,⊇)

is obtained by replacing Vi by V ⊥
i , + by ∩, ∩ by + and interchanging ⊇, ⊆. Then ǫ(V1, . . . ,Vk,+,∩,↔,⊇,⊆)

is true iff ǫ(V ⊥
1 , . . . ,V ⊥

k ,∩,+,↔,⊆,⊇) is true. This fact is a routine consequence of the basic results
(V ⊥)⊥ = V , (V1 + V2)

⊥ = V ⊥
1 ∩ V ⊥

2 , (V1 ↔ V2)
⊥ = V ⊥

1 ↔ V ⊥
2 .

7.1. Adjoint System

For dynamical systems, we need a natural notion of adjoint. In the usual state, input, output represen-
tation, suppose the original system is defined by

.

x = Ax+Bu

y = Cx+Du
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that is,

[
I −A −B 0
0 −C −D I

]



.

x
x
u
y


 = 0.

Then the adjoint is defined by

.

x̂ = AT x̂+ CT û

ŷ = BT x̂+DT û

that is,

[
−AT I 0 −CT

−BT 0 I −DT

]



x̂
.

x̂
ŷ
û


 = 0.

Thus if the original dynamical system is V.
xxuy

, then the adjoint is V ⊥

−x̂−
.

x̂ ŷ−û
. For our purposes the change

of sign for x̂, û is not critical. So we will work with V ⊥

x̂
.

x̂ ŷû
or its equivalent. Note that the positions of x,

.

x

and y, u are interchanged in the adjoint.
We recall the notation for interchanging the variables in a collection of vectors. When A and A′ are

copies of each other, the notation for interchanging the positions of variables A and A′ in a collection KAA′B

is given by (KAA′B)swap(AA′), that is

(KAA′B)swap(AA′) = {(gAfA′hB) | (fAgA′hB) ∈ KAA′B , gA being copy of gA′ , fA′ being copy of fA}.

In our framework the partition of the manifest variable into u, y is achieved by the artifice of using the
space VM (and therefore also V ⊥

M ) and using the projection of the manifest variable m on VM and V ⊥
M .

Let V.
WWM

be a generalized dynamical system and let VM be a vector space on M . Then the adjoint of

the pair

(V.
WWM

,VM )

is
(
(V ⊥
.

WWM
)
swap(W

.

W )
,V ⊥

M

)
.

Again note that the positions of W and
.

W are interchanged in the adjoint. The dynamical system V.
WWM

with reference to the subspace VM will often be referred to by the pair (V.
WWM

,VM ). We will interchangeably

use both these terms.

7.2. Duality in Adjoint Systems

To illustrate the use of duality we will now dualize some of the standard notions in Sections 3, 4 and
5. Let the system V.

WWM
be
.

w-zero relative to VM that is, (V.
WWM

↔ VM ) ↔ 0W = 0.
W
. Replace each

occurrence of a vector space V by V ⊥ and ↔ by ↔. Further, interchange W with
.

W . We then have(
(V ⊥
.

WWM
)
swap
.

WW
↔ V ⊥

M

)
↔ F.

W
= FW that is, (V.

WWM
,VM ) is

.

w-zero iff
(
(V ⊥
.

WWM
)
swap(W

.

W )
,V ⊥

M

)
is

w-free. Similarly, (V.
WWM

,VM ) would be
.

w-free iff
(
(V ⊥
.

WWM
)
swap(W

.

W )
,V ⊥

M

)
is w-zero.
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Next let V.
WWM

be m-zero relative to VM , that is, (V.
WWM

◦ (W ·∪M)×M) ∩ VM = 0M . Dualizing we
get

(V ⊥

W
.

WM
× (
.

W ·∪M) ◦M) + V
⊥
M = FM

that is,

(V ⊥

W
.

WM
◦ (W ·∪M)×M) + V

⊥
M = FM .

Thus V.
WWM

is m-zero relative to VM iff V ⊥
.

WWM
is m-free relative to V ⊥

M .

Let V̂W be conditioned invariant in V.
WWM

relative to VM , that is,

(V.
WWM

↔ VM ) ↔ V̂W ⊆ V̂.
W
. (9)

Dualizing we conclude that this is true iff

(V ⊥

W
.

WM
↔ V

⊥
M ) ↔ V̂

⊥
.

W
⊇ V̂

⊥
W . (10)

that is, V̂ ⊥
W is controlled invariant in V ⊥

W
.

WM
relative to V ⊥

M .

Consider the Algorithm I for building the unique minimal space containing V small
W and satisfying (9).

The key step in the algorithm is

V
j+1
.

W
=
(
(V.

WWM
↔ VM ) ↔ V

j
W

)
+ V

j
.

W
.

The dual to Algorithm I would be to build the unique maximal space contained in V
big
W and satisfying (10).

This of course is the Algorithm II whose key step is the dual

(V j+1
W )⊥ =

(
(V ⊥

W
.

WM
↔ V

⊥
M ) ↔ (V j

.

W
)⊥
)
∩ (V j

W )⊥

of the above mentioned key step of Algorithm I.
Now we had recast Algorithm I as Algorithm I′ using Theorem 1. The dual of this theorem is

Theorem 5. Let V.
WW

×W ⊆ V 1
W . Let the copy of V.

WW
×W on

.

W contain V.
WW

×
.

W . Also let

V
j+1
W ≡ (V.

WW
↔ V

j
.

W
) ∩ V

j
W , Ṽ

1
W = V

1
W

Ṽ
j+1
W ≡ (V.

WW
↔ Ṽ

j
.

W
)

then

k⋂

j=1

Ṽ
j
W ≡ V

k
W .

We can then recast Algorithm II as Algorithm II′ , using Theorem 5, for finding the maximal controlled
invariant space contained in V

Big
W where we assume V

Big
W ⊇ V.

WW
×W .

Algorithm II′

Algorithm for computation of unique maximal space contained in V
big
W and satisfying the condition

(V.
W WM

↔ VM ) ↔ Ṽ.
W

⊇ ṼW .

Assumption: Let V
Big
W ⊇ V.

W W
×W. Let the copy of V.

W W
×W on

.

W contain V.
W W

×
.

W .
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1. Set Ṽ 1
W = V

Big
W

2. Ṽ
j+1
W ≡ (V.

W W
↔ Ṽ

j
.

W

)

3. Stop when

k⋂

j=1

Ṽ
j
W =

k+1⋂

j=1

Ṽ
j
W .

4. The desired space is
⋂k

j=1 Ṽ
j
W.

We illustrated Algorithm I′ using a space V.
WWM

which permitted state and output descriptions and

with VM = FM . Here we could take V.
WWM

, VM dually that is, V.
WWM

should permit state and output

descriptions and VM = 0mu⊕0my. The basis of
⋂k

j=1 Ṽ
j
W (as in Algorithm II′ ) can be computed routinely.

Let us first interpret Algorithm II′ taking VM = (0u ⊕ Fy). This would better clarify the case
VM = 0mu ⊕ 0my. Let the system be in some state w and let the corresponding m1

y be specified. Let

K̃ 1
W ≡ (V.

WWM
↔ {0 ⊕m1

y}) ◦W . This is an affine space and may be available as the set of solutions to,
say

[
S1
W

]
w =

[
S1
y

]
m1

y.

Let

K̃
2
.

W
≡ (V.

WWM
↔ {0⊕m1

y}) ↔ K̃
1
W

and let

(0⊕m2
y) ∈ ((V.

WWM
∩ VM ) ↔ K̃

2
W ) ◦M,

where K̃ 2
W is the W -copy of K̃ 2

.

W
. Let K̃ 2

W be available as the set of solutions to

[
S2
W

]
w =

[
S2
y

]
m2

y.

We can similarly compute K̃
j
W in general. Let

K
final
W =

k⋂

j=1

K̃
j
W ,

where K̃
k+1
W = K̃ k

W .
This space is the set of solutions to

[
S1
W

]
w =

[
S1
y

]
m1

y

...
[
Sj
W

]
w =

[
Sj
y

]
mj

y

...
[
Sk
W

]
w =

[
Sk
y

]
mk

y .
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If two vectors xW and x̃W have the same values for m1
y, . . . ,m

j
y, . . . ,m

k
y , then xW − x̃W must have my =

. . . = mj
y = . . . = mk

y = 0. The space K̃ 1
W corresponding to xW − x̃W is

(
V.
WWM

↔ {0u ⊕ 0y}
)
◦W.

This would be a vector space Ṽ 1
W . Let

Ṽ
2
.

W
=
(
V.
WWM

↔ {0u ⊕ 0y}
)
↔ Ṽ

1
W ,

and in general

Ṽ
j+1
.

W
=
(
V.
WWM

↔ {0u ⊕ 0y}
)
↔ Ṽ

j
W ,

Ṽ
j
W being the W-copy of Ṽ

j
.

W
. Now let

V
final
W =

k⋂

j=1

Ṽ
j
W .

This is the unobservable space.
In the usual A, B, C, D notation for continuous systems x satisfies




C
CA
...

CAk−1


x =




y
.

y
...

y(k−1)




and the unobservable space V final
W is the solution space of the above equation with right side zero.

8. Equivalence of Controlled and Conditioned Invariants

When is a conditioned (controlled) invariant space also controlled (conditioned) invariant? We have seen

that the two notions are duals of each other. A space V̂W is conditioned invariant if and only if whenever x
is a state in it, for all m consistent with x, the corresponding

.

x will be in V̂.
W
. But note that there may be

no m consistent with a given x ∈ V̂W . The space V̂W is therefore controlled invariant if and only if whenever
x is a state in it, for some m, a consistent

.

x will be in V̂.
W
.

A conditioned invariant space is therefore also controlled invariant, if ‘for every’ x ∈ V̂W we have ‘some’
.

x∈ V̂.
W

consistent with it. Similarly, a controlled invariant space is conditioned invariant, if ‘for every’

x ∈ V̂W ‘all’
.

x consistent with it belong to V̂.
W
.

As we know, the defining relations for controlled and conditioned invariants are given by

V.
WW

↔ V̂.
W

⊇ V̂W , (11)

V.
WW

↔ V̂W ⊆ V̂.
W
, (12)

where V.
WW

= V.
WWM

↔ VM in (11) and (12).

A necessary and sufficient condition for a conditioned invariant space to be controlled invariant is given
in the next lemma.

Lemma 6. Let V̂W satisfy (12). Then it satisfies (11) if and only if V.
WW

◦W ⊇ V̂W .
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Proof. (only if): Suppose V̂W also satisfies (11). Then for each w ∈ V̂W we must have some (w,
.

w) ∈ V.
WW

.

That is, V.
WW

◦W ⊇ V̂W .

(if): Next suppose V.
WW

◦W ⊇ V̂W . Then for each w ∈ V̂W we must have some (
.

w,w) ∈ V.
WW

. Since

V̂W also satisfies (12), we have
.

w∈ V̂.
W
. Hence V̂W satisfies (11).

The dual lemma below gives necessary and sufficient conditions for a controlled invariant space to be
conditioned invariant. We give a direct proof.

Lemma 7. Let V̂W satisfy (11). Then it satisfies (12) if and only if V.
WW

×
.

W⊆ V̂.
W
.

Proof. (only if): Suppose it also satisfies (12). Since V̂W is a vector space 0W ∈ V̂W . It follows that
.

w∈ V̂.
W

whenever (
.

w, 0W ) ∈ V.
WW

, that is, V.
WW

×
.

W⊆ V̂.
W
.

(if): On the other hand suppose V.
WW

×
.

W⊆ V̂.
W
. Let

.

w∈ V.
WW

↔ V̂W . Then there exists w such

that (
.

w,w) ∈ V.
WW

. Since V̂W satisfies (11), there exists
.

w
′
∈ V̂.

W
such that (

.

w
′
, w) ∈ V.

WW
. Thus,

(
.

w
′
−
.

w, 0W ) ∈ V.
WW

and therefore (
.

w
′
−
.

w) ∈ V.
WW

×
.

W⊆ V̂.
W
. But then

.

w∈ V̂.
W

because V̂.
W

is a vector

space. Therefore, V̂W satisfies (12).

Results of the kind in Lemmas 7 and 6 have already appeared in connection with multi-port decomposition
problem, see for instance Theorem 11 and Theorem 18 of [43].

8.1. (W,M) Feedback and (M,
.

W ) Injection

Usually in control systems we make a controlled invariant space to behave also like a conditioned invariant
space by using ‘state feedback’ and a conditioned invariant space to behave also like a controlled invariant
space by using ‘output injection’. We introduce notions generalizing these next and use them for the above
mentioned ‘conversions’.

We say we are using (W,M) feedback on V.
WWM

, when the dynamical system V.
WWM

is replaced by

V.
WWM

∩ VWM , where VWM ◦W = FW . The usual feedback situation is as follows:

.

x = Ax+Bu

y = Cx+Du

u = Fx.

Here for each x there is a unique u. But the manifest variables are already partitioned as u and y. We
would not like a partition of the m variables into input and output (except through VM ). So we permit
many m values for the same w value. As in the usual feedback we restrict values of m using w. This in turn
may, in the dynamical system, result in a restriction of w values. But the feedback does not directly put a
restriction on w values. So we keep VWM ◦W = FW .

We are using (M,
.

W ) injection on V.
WWM

, when V.
WWM

is replaced by V.
WWM

+ V
M
.

W
where

V
M
.

W
×
.

W= 0.
W
. The usual output injection situation is:

.

x = Ax+Bu+ Fy

y = Cx+Du.

So, in this case the value of
.

w is restricted by the manifest variable m. Also, the output injection map F

produces a unique value of
.

x for each y. Hence we require V
M
.

W
×
.

W= 0.
W
.

The key ideas of state feedback and output injection appear to be captured by the fact that, in one case
we are performing an intersection with VWM and in the other, the sum operation with V

M
.

W
. Usually state
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feedback is used in control systems to limit the inputs in order to force the states of the dynamical system

to be within a prescribed space V̂X . Output injection is used to provide suitable ‘inputs’ (obtained using

the output) such that starting from a state in V̂X we can continue to remain inside this space no matter
what the input is.

Feedback and injection can be used to alter the ‘eigen-structure’ of the system (corresponding to input
zero condition). This can also be captured in our approach but will take us too far afield [45].

We now show that using (W,M) feedback we can make a controlled invariant space into a conditioned
invariant space without losing its controlled invariance.

Theorem 8. Let V.
WWM

, V̂W be such that V.
WWM

×
.

W⊆ V̂.
W
. Then the space V̂W is controlled invariant

in V.
WWM

relative to VM if and only if there exists a space VWM such that V̂W is both controlled invariant

and conditioned invariant in V.
WWM

∩ VWM relative to VM .

Proof. (only if): Define

VWM = ṼWM + (CW ⊕ 0M )

where

ṼWM = (V.
WWM

∩ VM ) ↔ V̂.
W

and CW is complementary to ṼWM ◦W in FW , that is,

ṼWM ◦W + CW = FW and

ṼWM ◦W ∩ CW = {0}.

We claim that V̂W is both controlled invariant and conditioned invariant in V.
WWM

∩ VWM relative to VM .

(i) Claim: V̂W is controlled invariant in V.
WWM

∩ VWM relative to VM

We know that

(V.
WWM

↔ VM ) ↔ V̂.
W

⊇ V̂W .

Suppose w ∈ V̂W then there exist (
.

w,w,m) ∈ V.
WWM

with
.

w∈ V̂.
W
, m ∈ VM . But then by the

definition of ṼWM , (w,m) ∈ ṼWM ⊆ VWM . Hence w ∈ (V.
WWM

∩ VWM ) ↔ VM ↔ V̂.
W
, that is, V̂W is

controlled invariant in V.
WWM

∩ VWM relative to VM .

(ii) Claim: V̂W is conditioned invariant in V.
WWM

∩ VWM relative to VM

By Lemma 7, we need to show that

((V.
WWM

∩ VWM ) ↔ VM )×
.

W⊆ V̂.
W

Let
.

w∈ LHS. Then there exists (
.

w, 0,m) ∈ V.
WWM

∩ VWM such that m ∈ VM . Now (0,m) ∈ VWM .

Since VWM = ṼWM +(CW ⊕0M ) and CW is complementary to ṼWM ◦W , we have (0,m) ∈ ṼWM , that

is, (0,m) ∈ (V.
WWM

∩VWM ) ↔ V̂.
W
. Hence there exists

.

w1∈ V̂.
W

such that (
.

w1, 0,m) ∈ V.
WWM

∩VWM .

It follows that (
.

w −
.

w1, 0, 0) ∈ V.
WWM

∩ VWM ⊆ V.
WWM

. Hence
.

w −
.

w1∈ V.
WWM

×
.

W⊆ V̂.
W
. We

conclude that
.

w∈ V̂.
W

since
.

w1∈ V̂.
W
.
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(if): This is trivial since

(V.
WWM

∩ VWM ) ↔ VM ↔ V̂.
W

⊇ V̂W

implies

V.
WWM

↔ VM ↔ V̂.
W

⊇ V̂W ,

which is the definition of controlled invariant.

The result on (M,
.

W ) injection is the dual of Theorem 8 and follows by duality. We thus have the
theorem for ‘output injection’.

Theorem 9. Let V.
WWM

, V̂W be such that V.
WWM

◦W ⊇ V̂W . Then the space V̂W is conditioned invariant

in V.
WWM

relative to VM if and only if there exists a space V
M
.

W
such that V̂W is both conditioned invariant

and controlled invariant in V.
WWM

+ V
M
.

W
relative to VM .

9. Conclusions

In this paper, we developed an alternative formulation for linear dynamical systems which combined the
advantages of two major approaches to dynamical systems, namely, the state space and behavioural systems
theories. We defined the conditioned and controlled invariant subspaces of linear systems theory using
our approach and gave algorithms to compute the minimal conditioned invariant and maximal controlled
invariant subspaces. We showed that the computations of the fundamental invariant spaces could be carried
out without transforming the system to the state space representation. We also showed that by appropriately
choosing a subspace on manifest variables, the input-output partition could be avoided as in the case of
behavioural systems theory.

For an important subclass of dynamical systems, namely electrical networks, we demonstrated how the
operations involving ‘generalized minor’ could be carried out. This eliminated the need for computing the A,
B, C, and D matrices of the state space theory. The main idea was to reduce most of the computations of the
full network to ones on the static multi-port subnetwork. This was achieved by using the computationally
inexpensive multi-port decomposition of electrical networks.

We showed how duality is natural to our formulation. We defined the adjoint of a dynamical system
and established its properties using the “implicit duality theorem” and the duality of sum and intersection
operations on vector spaces. Specifically, we demonstrated the duality between the definitions and algorithms
of controlled and conditioned invariant spaces.

We derived the circumstances under which the conditioned and controlled invariant subspaces were equiv-
alent. We also generalized the notion of state feedback and output injection. Finally, we characterized the

controlled invariant and conditioned invariant subspaces using (W,M) feedback (M,
.

W ) injection subspaces,
respectively.

Appendix A. Computing the basic operations

Appendix A.1. Representation

A vector space VA may be specified in one of the two following ways:

1. Through generator set for VA:

fA = λT
[
RA

]
,

where the rows ofRA generate VA by linear combination. When the rows ofRA are linearly independent
RA is called a representative matrix of VA.
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2. Through constraint equations:

[
SA

]
fA = 0,

where the rows of SA generate V ⊥
A . The solution space of this equation is (V ⊥

A )⊥ = VA.

One or the other of these representations might be convenient depending upon the context.

Appendix A.2. Computing VAB ◦A and VAB ×B explicitly

Let VAB be defined through

[
SA SB

](fA
fB

)
= 0.

We do row operations so that the coefficient matrix is in the form
[
S1A 0
S2A S2B

]
,

where the rows of S2B are linearly independent (or, if more convenient, columns of S2A are dependent on
columns of S2B ). Then [S1A]fA = 0 defines VAB ◦ A and [S2B ]fB = 0 defines VAB × B. The statement
about VAB ◦A may be seen as follows: Clearly if any (fA, fB) ∈ VAB , then fA satisfies [S1A]fA = 0 so that
VAB ◦ A is contained in the solution space of the latter. Next let fA satisfy [S1A]fA = 0. Since columns of
S2A are linearly dependent on columns of S2B , the equation

[
S2B

]
fB = −

[
S2A

]
fA

has a solution f̂B . Thus for any solution of [S1A]fA = 0, we can always find f̂B such that (fA, f̂B) ∈ VAB .
This completes the proof that VAB ◦A is the solution space of [S1A]fA = 0.

The statement about VAB ×B is routine.

Appendix A.3. Computing V 1
A ∩ V 2

A Explicitly

Suppose [S1
A]fA = 0, [S2

A]fA = 0 define V 1
A , V 2

A respectively. Let A′, A′′ be copies of A with A, A′, A′′

disjoint. Build the space VAA′A′′ defined through



S1
A

S2
A

0 I −I
I 0 −I






f1
A′

f2
A′′

fA


 =



0
0
0


 (A.1)

It is clear that the vectors fA are precisely those in both V 1
A and V 2

A . Thus VAA′A′′ ◦ A is V 1
A ∩ V 2

A . The
explicit construction of the dot operation has been discussed above.

Appendix A.4. Computing V 1
A + V 2

A Explicitly

Let V 1
A and V 2

A be defined as above. We define V̂AA′A′′ through



S1
A

S2
A

−I −I I





f1
A′

f2
A′′

fA


 =



0
0
0


 . (A.2)

In this case again it is easy to see that V̂AA′A′′ ◦A = V 1
A + V 2

A and we complete the explicit construction as
above.

Often the spaces V 1
A , V 2

A may themselves be available to us only implicitly — usually in the form of
a generalized minor VAB ↔ VB . We discuss this situation below after we discuss the computation of the
generalized minor.
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Appendix A.5. Computing VAB ↔ VB Implicitly

Let VAB be defined by

[
SA SB

](fA
fB

)
= 0

and VB by
[
ŜB

]
fB = 0.

Let V̂AB be defined by
[
SA SB

0 ŜB

](
fA
fB

)
=

(
0
0

)
. (A.3)

Then

V̂AB ◦A ≡ {fA | (fA, fB) ∈ VAB , fB ∈ VB}

= VAB ↔ VB .

Appendix A.6. Computing VAB ↔ VB Explicitly

In order to explicitly represent VAB ↔ VB as the solution space of an equation
[
S̃A

]
fA = 0,

one has to do row operations and recast (A.3) as


S′
1A S′

1B

S′
2A 0

0 ŜB



(
fA
fB

)
=

(
0
0

)
, (A.4)

where the rows of S′
1B together with those of ŜB are independent. The solution space of

[
S′
2A

]
fA = 0,

is clearly V̂AB ◦A that is, VAB ↔ VB (V̂AB as in A.3).
In general when one is performing operations such as intersection or sum with vector spaces, their

representation may not be explicitly available but in the form VAB ↔ VB .
Let f̂B ∈ (VAB ∩ VB) ◦ B. To find VAB ↔ {f̂B} we first find one solution f̂A to the equation using the

first rows of (A.4)
[
S′
1A

S′
2A

]
f̂A =

[
S′
1B f̂B
0

]
.

Then

VAB ↔ {f̂B} = f̂A + VAB ×A.

VAB ×A can be seen to be the solution to
[
S′
1A

S′
2A

]
f̃A =

(
0
0

)

and VAB ↔ {f̂B} as the collection of all solutions to
[
S′
1A

S′
2A

]
fA =

[
S′
1B f̂B
0

]
.
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Appendix A.7. Computing V 1
A ∩ V 2

A Implicitly

Suppose V 1
A ∩ V 2

A is to be computed where

V
1
A = V

1
AB ↔ V

1
B

V
2
A = V

2
AB ↔ V

2
B .

Let V 1
AB , V 2

AB be defined respectively through

[
S1
A S1

B

](f1
A

f1
B

)
= 0,

[
S2
A S2

B

](f2
A

f2
B

)
= 0.

Let V 1
B , V 2

B be defined respectively through

[
Ŝ1
B

]
fB = 0,

[
Ŝ2
B

]
fB = 0.

We proceed now as in (A.1) by first copying set A into A′, A′′ and B into B′, B′′ and write the final
equations as




S1
A S1

B

Ŝ1
B

S2
A S2

B

Ŝ2
B

+I −I
I −I







f1
A′

f1
B′

f2
A′′

f2
B′′

fA




= 0 (A.5)

If the above equation has the solution space VAA′A′′B′B′′ then we can show that

VAA′A′′B′B′′ ◦A = V
1
A ∩ V

2
A .

To see this, note that V 1
A′ is the collection of all f1

A′ which can be part of a solution vector (f1
A′ , f1

B′) of
the first two rows of (A.5). V 2

A′′ is the space of all vectors f2
A′′ which can be a part of the solution vector

(f2
A′′ , f2

B′′) of the next two rows of (A.5). Now fA, by the last two rows of the equation, is seen to a copy of
both f1

A′ as well as f2
A′′ . Any such vector therefore belongs to V 1

A ∩ V 2
A . Conversely any vector in V 1

A ∩ V 2
A

can clearly be a copy of a part of some solution vector of the first two rows and therefore of the middle two
rows also — which means it is a part of a solution vector of (A.5).

Appendix A.8. Computing V 1
A + V 2

A Implicitly

By similar arguments we can show that we can write the constraints for V 1
A + V 2

A as an implicit version
(A.2) as follows:




S1
A S1

B

Ŝ1
B

S2
A S2

B

Ŝ2
B

−I −I I







f1
A′

f1
B′

f2
A′′

f2
B′′

fA




= 0 (A.6)

If ṼAA′A′′B′B′′ is the solution space of the above equation then

V
1
A + V

2
A = ṼAA′A′′B′B′′ ◦A.
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Appendix B. Computation of the main step in Algorithm I

1. Computing V.
WW

Let V.
WWM

be defined by:

[
S̃1
.

W
S̃2
W S̃3

M

]


.

w
w
m


 = 0

and let VM be defined by

[
ŜM

]
m = 0.

Then V.
WWM

↔ VM is defined implicitly by

[
S̃1
.

W
S̃2
W S̃3

M

ŜM

]

.

w
w
m


 = 0. (B.1)

More explicitly we could perform row operations on the coefficient matrix of (B.1) and get an explicit
representation of V.

WWM
↔ VM as in Appendix A.6

[
S2
.

W
S1
W

](.
w
w

)
= 0 (B.2)

where (B.2) is equivalent in the variables (
.

w,w) to (B.1).

2. Computing (V.
WW

↔ V
j
W ) + V

j
.

W

Next let V
j
.

W
be defined by

[
Ŝj
.

W

]
.

w= 0.

Then V.
WW

↔ V
j
W can be represented implicitly by

[
S1
W S2

.

W

Ŝj
W

](
w
.

w

)
= 0,

where Ŝj
W is a copy of Ŝj

.

W
, and (V.

WW
↔ V

j
W ) + V

j
.

W
be represented implicitly by




S1
W S2

.

W

Ŝj
W

Ŝj
.

W

−I −I I







w
.

w
′

.

w
′′

.

w


 = 0. (B.3)

If we represent the solution space of (B.3) by V̂
j

W
.

W
′ .

W
′′ .

W
, then V

j+1
.

W
= V̂

j

W
.

W
′ .

W
′′ .

W
◦
.

W represented

explicitly as, say, the solution space to [Ŝj+1
.

W
]
.

w= 0. When we move on to compute (V.
WW

↔

V
j+1
W ) + V

j+1
.

W
it may be usually worth while to have V

j+1
.

W
explicitly as a solution space.
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Appendix C. Computation of the main step in Algorithm II

1. Computing (V.
WW

↔ V
j
.

W
) ∩ V

j
W . Let V.

WW
be defined by

[
S1
.

W
S2
W

](.
w
w

)
= 0.

Let V
j
W be defined by

[
S̃j
W

]
w = 0.

As we had noted earlier (V.
WW

↔ V
j
.

W
) ∩ V

j
W can be represented implicitly by



S1
.

W
S2
W

S̃j
W

S̃j
W



(
.

w
w

)
= 0. (C.1)

If we represent the solution space of (C.1) by Ṽ
j
.

WW
, then V

j+1
W = Ṽ

j
.

WW
◦W , represented explicitly by

[S̃j+1
W ]w = 0.

Observe that the above could also have been achieved by dualizing (B.3) as below:




S1
.

W
S2
W

S̃j
W

S̃j
W

I I
I I







.

w
w′

w′′

w


 = 0. (C.2)

If we represent the solution space of (C.2) by Ṽ
j
.

WW ′W ′′W
, then V

j+1
W = Ṽ

j
.

WW ′W ′′W
◦W represented

explicitly by [S̃j+1
W ]w = 0. When we move onto compute (V.

WW
↔ V

j+1
.

W
) + V

j+1
W it may be usually

worth while to have V
j+1
W explicitly as a solution space to [S̃j+1

W ]w = 0.
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