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We regard (row vectors) oveR[¢] as functions on a col-
umn set. A row vectofp; --- p.) may be thought of as
ABSTRACT the function fs(e;) = pi,i = 1,---,n, the p; being real

The notions of controllability and observability are regarde@0lynomials in{. - A module Cs is a collection of row vec-
as duals in the conventional input-state-output formulation d¢rs on the column sef, over the scalar domai¢], closed
dynamical systems. We examine the duality between these thBder addition and scalar multiplication. If the rows of the
notions in the case of a Behavioural System by building its ‘adDatrix 2[¢] are linearly independent, the module generated by
joint’, using a result which we call the ‘Implicit Duality The- them is said to hav&[¢] as arepresentative matrix. For our
orem (IDT) and prove in this paper. Using the same resuRUrpose it is copvenlent to gharacterlzg a system Qeflned by
we also prove that this ‘adjoint’ has some attractive propertiesf[d/dt])w = 0, in an operationally equivalent way, in terms
In order to indicate where one might hope to find an IDT like?f the collection of all row vectors linearly dependent upon the

result we present one of its analogues and prove it similarly. "OWS 0f R[¢], the scalars being members®f¢]. This mod-
ule is said to beassociated with53 and is denoted bg(B). A

| INTRODUCTION square matrixz[¢] is said to bauinimodular iff its determinant
is a real number (i.e., does not involve the transcendéintal

In the conventional input-state-output formulation of dynamwe say a module isinimodular iff we can adjoin additional
ical systems, the notions of controllability and observability areows to one of its (therefore any of its) representative matri-
regarded as duals. The situation is less clear in the more geesR[£] to make it unimodular. It is easy to show that this is
eral, representation-free approach taken in Behavioural Sysessible iff R[¢] has a Smith Canonical Form (SCHp 0),
tems theory [1],[2]. In this paper we examine the extent tvhere D has only real entries. Such a matrix is said to be
which these notions can be regarded as duals in that thearyw g-unimodular. Column g-unimodular matrices are de-
Our main tool is a result we call the ‘Implicit Duality Theo- fined similarly. If the SCF is real but may have zero rows and
rem’ and prove in this paper. This theorem is a modification afolumns we say the matrix g-unimodular. It can be shown
a result found in reference [3]. that a behaviouB is controllable iff the modul€ (B) associ-

A behaviour B is the solution set of a system of linearated with it is unimodular. Also when behaviaBy, is repre-
constant coefficient differential equatiog&[d/dt])w = 0, sented by(R,[d/dt])w + (R;[d/dt])l = 0, it is l-observable
where the entries ab areC> functionswy, - - -, w,. R[d/dt] iff Ri[{]is column g-unimodular.
is a matrix overR[¢] (i.e, the entries are real polynomials When a behaviou3 is defined through(R[d/dt])w +
in £), with ¢ substituted byd/dt . A behaviourB is said (R[d/dt])l = 0 its projection onto the variables is the col-
to be controllable iff for each w'!,w?> € B, there exists a lection {w : (w,l) € B} and is denoted by3/w. A kernel
w € Band at' > 0 such thatw(t) = wq(¢) fort < 0 representation for this projection can be obtained as follows:
andw(t) = wo(t — ¢t') for t > t'. Let a behaviou3,; rewrite the coefficient matrix of the kernel representatiof of
be represented byR,,[d/dt])w + (R;[d/dt])] = 0. We say through reversible row operations (with entriesfifg]) as
B is I-observableiff (R,,[d/dt])w + (Ri[d/dt])ly = 0 and
(Ry[d/dt])w + (Ry[d/dt])l; = 0 impliesl; = I,.It can be [ Riw 0 ]

shown that whei8 has the input-state-output representation Ray Ry
dz/dt = Az + Bu where the rows ofz,; are linearly independent. Now the equa-
y =Cz + Du, tion (Ry;[d/dt])l = f always has a solution owing to the linear

that the system is controllable, respectively x-observable, in tfgdependence of the rows of the coefficient matrix. It follows
‘behaviour sense’ ff it is controllable, respectively observabléhatB/w has the kernel representatioR, , [d/di])w = 0.

in the conventional ‘state sense’. The usual way in which the L€t fs, gs be vectors ort. Thedot product < fs, gs > of
duality between the two notions is brought out is through thés- 9s is defined by< fs, g5 >= 3", .5 fs(ei).gs(ei). We
definition of the ‘adjoint’. In this paper too we study the du-SaY fs, gs areorthogonal to each other ifi< fs,gs >= 0.
ality between controllability and observability for behavioural-et Ksp, Kp denote collections of vectors ofi & P, P re-
systems through appropriate definitions of the adjoint. spectively. Thegeneralized minorKsp <+ Kp of Ksp with

respect tdCp is defined by

This work was supported by grant DNRD/4003/NRB/15 from ttawal Re- Ksp < Kp = {fs : fs = fsp/S, where fsp €
search Board. Ksp s.t. fsp/P € Kp}.



We denote byCsp + Kp, the collection of all vectorgsp +  we haveyZzg = 0.

(0s|fp) onS'w P, wherefsp € Ksp andfp € Kp. Givena Thus,zs € Ksp <+ Kp iff x5 € (K5p ¢ Kp)*.
collection of vectorsCs on S, we denote byCs*, the collec- This proves (a).

tion of all vectors orthogonal to vectorsffis. We sayKs and The statement in (b) follows from (a) and Lemma ll.2.

Ks*, arecomplementary orthogonaliff (Ks*)* = Kg. (c) Supposel ¥, + K} is unimodular. Since by Lemma
I11.2 we already have(?, K}, as unimodular, we can use (a)
lll. IMPLICIT DUALITY THEOREM above and conclude that
The following is the main result of this paper: (K& & Kp)*=Ktp & Kp

Theoreml11.1: (The Implicit Duality Theorem (IDT)) Let But Ksp, Kp are unimodular and so by Lemma IIl.1,
Ksp, p be unimodular modules of @ P, P respectively, K&p = KspandKp' = Kp

such thatCsp + Kp is also unimodular. Then, Hence(Ksp <> Kp)* = (Kp < Kp)

(a) (}Cgvp <~ }C})* =Ksp < Kp.

(b) Ksp <> Kp is unimodular. Statement (d) follows from (c) and Lemma lll.2.

If, in addition, K%, + K} is unimodular, then u

(C) (]CSP <~ ]Cp)* = }Cgp <~ ]C};

(d) K% p < K3 is unimodular. IV. ADJOINTS FOR BEHAVIOURAL SYSTEMS

The proof of this theorem requires the use of the following lem- The following appear to be desirable while building adjoints

mas. of which the first two have their proofs omitted. « the notions controllability/observability of the original sys-
Lemma lll.1: Let A be a g-unimodular matrix. tem should appear to correspond to observability/controllability

Let C be the module generated by the rows or columng.of for the adjoints;

ThenC** = C. _ « the adjoint for systems in the i/s/o (input/state/output) form
Lemmalll.2: Let K be a collection of vectors ové[¢] on  should correspond to the standard construction for systems in

S. ThenK* is unimodular. this form:;

Lemmalll.3: Let A be ann x n g-unimodular matrix over , the computational effort for building the adjoint should be
R[¢], banm x 1 vector ovefR[¢]. ThenAz = b has a solution very mild whatever be the original representation for the be-

(with z a vector ovefR[¢] ) iff haviour.

for every(1 x m) vector\” overR[¢] we haveA™ A = 0 = |n addition we note that if the adjoint is in some way related

AT =0. to the module complementary orthogonal to that asscociated
Proof - Az = b has a solution ifh belongs to the column yith the orginal behaviour, there are technical advantages. Let

moduleC generated by columns of, behaviour3 have the kernel representation

i.e., iffbe C** (C =C**, sinceA is g - unimodular),
i.e., iff wheneve\”T e C* we also have”h = 0,

w
i.e., iff wheneve\T A = 0, we also have”b = 0. (R R ) [ 0
| )
) il . .
Proof of the Implicit Duality Theorem Define the adjoinB*®" as having the kernel representation

Let Ksp have the representative matfiks Ap] and letkp 7 _RT 1 0

have the representative matfixp]. ThenKsp + Kp has the [ 0 R% Pz ( 0 )

Y

representative matrix R
Observe that, whilev, w0 have the same number of entries
{ As  Ap ] may not have. It is easy to see that
0 Ap B is controllable= B%1 is | - observable
which is g-unimodular by hypothesis. Bisi- observables B*¥! is controllable.
Nowzs € Ksp ¢ K iff Ih1, \» overR[e] s.t. We further have (through the use of Implicit Duality Theorem)
TheoremIV.1: :- If behaviourB is controllable

AsT 0 N[ xs C(B/w) = (C(B*Y [w))*.
) - ()
C o . If B isl-observable then
i.e., iff (since column module of the above matrix is unimodu-
lar) whenever, foys, yp overR[¢] we have (C(B/w))* = C(B™ /)
AT 0 This theorem is a restricted version of Theorem IV.2 proved
[ & vh ] [ A% AT ] =[0 0] below. Its proof is therefore omitted.
P P Note that the adjoint is essentially, but not exactly, unique.
we also have If (R, R;) is replaced by a matrix obtained by unimodular row
yixs =0; transformation, then in the adjoimt would change through
i.e., iff whenever(yl yl) € K5p, yl € Kj, we also have the inverse transformation. Similarly the adjoint of the adjoint
yLrs = 0; would be essentially the original behaviour but would not be

i.e., iff whenevelys € K3p < K5, identical to it. We show now that this definition captures the



usual i/s/o adjoint nicely. 2. Bisl-observable= B“dﬂ/;gf is controllable.
3. If B/ul is controllable therC (B242 /ag))* = C(B/uy).

If the original system is in the i/s/o form we have 4. If Bisl-observable the(C(B/uy))* = C(B42/qg).
Proof:- LHS and RHS of part (1) are equivalent to the condition
(takingw” = (uT y7),z =1), that (Ry,Ry;) is g-unimodular and LHS and RHS of part (2)
are equivalent to the condition th@?, R1,) is g-unimodular.
-B 0 (&I — A) u 0 We now prove parts (3) and (4).
[ -D I -C } vy = ( 0 > : Using additional variabldé the kernel representation Bfmay
z be re-written as follows:
The adjoint then is
u
T T (1 Ry, 0 I 0 I (0
Ly B D 1I12_<0> <R2u Ry 0 1)1 =\0 @
0 0 —(I-AT T ;3 0 v
2
. l
The variablesis, [> are seen to be identical using the second [ 0 —Ry I 0 ] T 0 (2

row. The constraints oty , w-, [ are

Y
T T Wy The kernel representation oB*%2? may be rewritten as
I D B Wy = 0 follows:-
o CT —(&r - AT h 0
1 ~
u
Clearly this is the usual adjoint of a system in i/s/o form. I 0 —Rf _R2T i 0
u U N — 3
| o (0 1 3 ) =(0) ©
Next let us consider the behaviour given in the input, output, 9
latent variable form. i
Let the behaviouB have the kernel representation with linearly . i
independent rows [0 I R, 0] po=0 (4)
R R o] ¥ 0 /
R“‘ RU I ] | = < 0 > Let Ky 1.7y, be the module spanned by the rows of the coef-
Zu A y ficient matrix in Equation (1)K, be the module spanned by

Observe that practical systems, when they have clearly defind§ rows of —Ry, 1 ]* in Equation (2). o
inputs and outputs, very often have this form. The latent vari- Cl€arly Kviry™ is Spa””‘fd by the rows of the coefficient
ables need not however correspond to the state variables, Matrix in Equation (3) andi7,, is spanned by the rows of

; Ty i i
Let the adjoint3*%? be defined through the representation (/£1;) in Equation (4). _
Clearly Kpp, Ky y, Ko™, Kyppy™ are unimodular

T 7 U modules since they have representative matrices with full rank
I _Rlu _R2u > 0 . . .
0 _RT _RT I = 0 identity sgb_matnces_. _ .

u 2 ¥ The coefficient matrix for Equations (1), (2) taken together is

Observe that, whiles,§, andy, 4 have the same number of
entries/, [ may not have.

We observe tha/ul has the kernel representation  (Ervipy © K*pp)* = Kvipy © Ko
Since Kyppy < Kppo is the module corresponding to

U B/uy and Ky prv* < Kpp* is the module corresponding
[ R Bu] | =0 to B2 /4, it follows
(C(B“D? /ag))* = C(B/uy)
Similarly, the coefficient matrix for Equations (3), (4) taken
together is g-unimodular if—RY,—R2,) is g-unimodular. If
= 0. this holds, by IDT, we have

- . L . . K y & Kpp)* =Ky & K77,
We note that the original behaviour is invariant if in the kerne] .« ha(NeVLL Y L) VLL'Y LL

representation, a linear combination of the first set of rows Is C(B * _ C(B2 /i
added to the second set of rows. It follows that the adjointis ng§ (C(B/uy)) ( /@)

uniquely defined but depends on the original representation. g1y we verify that the i/s/o adjoint does fit into the present
However, the adjoint does have the following attractive propefainition, et the original behaviou have the representation.
ties which can be proved through the Implicit Duality Theorem.

g-unimodular if (R, Ry;) is g-unimodular. If this holds, by
|

and that3°%2 /i has the kernel representation

~>,

[-RL  —Ry ]

u
TheoremIV.2: 1. B/ul is controllable = B*4? s |- —BE=A) 0 (0

-D —-C I 0
observable.



ThenB%? has the representation Let 5, be associated with the modulg; p + C'p. By defini-
tion, the behaviouBsp < Bp = By /ws . In other words,

I BT pr1 % /o0 wy € Bsp » Bp
0 —@Er-47 cr| ¥ ~\o iff Jw), S.t.
Y
which is identical to the usual i/s/o adjoint. As  Ap | w's _ (0
0 AP ’wlp 0
V. Implicit Duality Theorem 2 i.e., iff Jwp, s.t.
In this section we present an analogue of IDT. Our primary Ap , —Asw'g
aim is to show that such a theorem may be found whenever the [ Ap ] wp = ( 0 )

‘duality’ is strong enough that a result like Lemma [11.3 holds.i.e., (by Lemma V.2) iff whenever
We use the following notatior{;f [¢], b], wheref[¢] is a vector
on S overR[¢] andb a vector onS whose entries ar@> func- [ M€ Xele] ] L{lpj —(0p)
tions, denote§”, . (fe,[d/dH]) (b, ). A

The generalized minor Bsp <+ Bp of behaviourBsp with
respect to behaviousp is defined by

Bsp < Bp = {ws : ws = wsp/S, where wgp €
Bsp s.t. ’wsp/PE Bp}.

(equivalently whenevex, [(]As & sp < Cp),
we also havé\, [¢], Aswi] = 0 (equivalently; [(]As, w] =
0), i.e., iff wheneveri[¢]As € Csp < Cp, we also have
M[€]As,ws] = 0, ie, iff fs € Csp ¢ Cp implies
[fs,ws] = 0 (since every vector i@sp <+ Cp is alinear com-
bination of the rows ofAg). ThusC(Bsp +» Bp) = Csp +

p. 1

Two special cases of the above result may be mentioned.
Consider the case wheg is the zero module o®. In this
%aseCSP < Cp is obtained by restricting t§ all those vec-

Th(_a pr_oof of this theorem requires the use of the Lemma V‘tors inCsp which take zero value oR. This is usually called
which in turn can be proved using Lemma V.1.

LemmaV1: Let A[€] be a matrix oveiR[¢] with linearly in- the contraction o€sp on P. The corresponding behaviour is

: : merely the projectiols p/ws, sinceBBp has no constraints on
dependent rows), a vector whose entries ag° functions. . . P e
Then(A[d/dt])x = b, has a solution. it and is therefore ‘free’. Next léfp be the ‘free’ module o

. ) . . spanned by the rows of the unit matrix.In this c8se + C
The routine proof (for instance by transforming to SCF) I?spobtainedyby restricting t§' all vectors inCsp. The corrF(’a—
omitted. . R :
] . sponding behaviour is the sgbs : (ws,0p) € Bsp}.
1 Vl‘eeCT:EVYi'SeLg;ﬁi[g]SZ%;%:&?ﬂf”_ﬁﬁg&f?’dl; f)imT;) Finally we remark that Theorem IDT2 would hold also for
. . s [/dt] r= those N-D systems for which Lemma V.2 holds since the proof
has a solution (with: a vector whose entries afé® functions)

iff for every (1 x m) vectorA” [¢] overR[¢] we have depends only on that lemma.
AT[E)(AfE) = 0= [AT[¢], 0] = 0. VI. CONCLUSION
Proof :- The necessity of the condition is obvious. We prove
the sufficiency.

Assume for every(1 x m) vector \T over R[¢] we have
M4 =0 = [AT,b] = 0. By reversible row operationd
can be transformed to

TheoremV.1: (The Implicit Duality Theorem 2 (IDT2)) Let
Csp,Cp be modules orb & P, P associated with behaviours
Bsp, Bp, respectively. Thefl(Bsp «+» Bp) =Csp <> Cp.

In this paper we have presented a useful result for building
implicit ‘duals’ of Behavioural Systems which are themselves
specified implicitly, for instance, by including latent variables
in the description of the system. Using this Implicit Duality
Theorem we build two ‘adjoints’ for Behavioural Systems, in
Ay each of which controllability appears as a dual notion to ob-
{ 0 } servability. Both the definitions of adjoints are shown to be

where the rows ofl; are linearly independent and the equatior<|:ompatible with the usual adjoint when the system is specified
Az = b can be transformed through the same operations to through a state space description. Finally, in order to indicate

A by where one might hope to find an IDT like result we have pre-
0 = ) sented one of its analogues and proved it similarly.
Now, the assumption made, implies that every entry-ofs REFERENCES

zero. So if we showA, [d/dt])x = by has a solution we are
done. But this holds by Lemma V.1 singg has linearly inde-
pendent rowsll

Proof of the Implicit Duality Theorem 2
Let Csp have the representative matfits Ap] and letCp
have the representative matﬁ&p]. ThenCsp + Cp has the
representative matrix
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