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ABSTRACT

The notions of controllability and observability are regarded
as duals in the conventional input-state-output formulation of
dynamical systems. We examine the duality between these two
notions in the case of a Behavioural System by building its ‘ad-
joint’, using a result which we call the ‘Implicit Duality The-
orem (IDT)’ and prove in this paper. Using the same result
we also prove that this ‘adjoint’ has some attractive properties.
In order to indicate where one might hope to find an IDT like
result we present one of its analogues and prove it similarly.

I. INTRODUCTION

In the conventional input-state-output formulation of dynam-
ical systems, the notions of controllability and observability are
regarded as duals. The situation is less clear in the more gen-
eral, representation-free approach taken in Behavioural Sys-
tems theory [1],[2]. In this paper we examine the extent to
which these notions can be regarded as duals in that theory.
Our main tool is a result we call the ‘Implicit Duality Theo-
rem’ and prove in this paper. This theorem is a modification of
a result found in reference [3].

A behaviour B is the solution set of a system of linear
constant coefficient differential equations(R[d=dt])w = 0;

where the entries ofw areC1 functionsw
1

; � � � ; w

q

. R[d=dt]

is a matrix over<[�] (i.e, the entries are real polynomials
in �), with � substituted byd=dt . A behaviourB is said
to be controllable iff for each w

1

; w

2

2 B, there exists a
w 2 B and at0 � 0 such thatw(t) = w

1

(t) for t < 0

andw(t) = w

2

(t � t

0

) for t � t

0. Let a behaviourB
wl

be represented by(R
w

[d=dt])w + (R

l

[d=dt])l = 0: We say
B

wl

is l-observableiff (R

w

[d=dt])w + (R

l

[d=dt])l

1

= 0 and
(R

w

[d=dt])w + (R

l

[d=dt])l

2

= 0 implies l
1

= l

2

.It can be
shown that whenB has the input-state-output representation

dx=dt = Ax+Bu

y = Cx+Du;

that the system is controllable, respectively x-observable, in the
‘behaviour sense’ iff it is controllable, respectively observable
in the conventional ‘state sense’. The usual way in which the
duality between the two notions is brought out is through the
definition of the ‘adjoint’. In this paper too we study the du-
ality between controllability and observability for behavioural
systems through appropriate definitions of the adjoint.
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II. PRELIMINARIES

We regard (row vectors) over<[�] as functions on a col-
umn set. A row vector(

e

1

p

1

� � �

e

n

p

n

) may be thought of as
the functionf

S

(e

i

) � p

i

; i = 1; � � � ; n, the p

i

being real
polynomials in�. A module C

S

is a collection of row vec-
tors on the column setS, over the scalar domain<[�], closed
under addition and scalar multiplication. If the rows of the
matrixR[�] are linearly independent, the module generated by
them is said to haveR[�] as arepresentative matrix. For our
purpose it is convenient to characterize a system defined by
(R[d=dt])w = 0; in an operationally equivalent way, in terms
of the collection of all row vectors linearly dependent upon the
rows ofR[�], the scalars being members of<[�]. This mod-
ule is said to beassociated withB and is denoted byC(B). A
square matrixR[�] is said to beunimodular iff its determinant
is a real number (i.e., does not involve the transcendental�).
We say a module isunimodular iff we can adjoin additional
rows to one of its (therefore any of its) representative matri-
cesR[�] to make it unimodular. It is easy to show that this is
possible iffR[�] has a Smith Canonical Form (SCF)(D 0),
whereD has only real entries. Such a matrix is said to be
row g-unimodular . Column g-unimodular matrices are de-
fined similarly. If the SCF is real but may have zero rows and
columns we say the matrix isg-unimodular. It can be shown
that a behaviourB is controllable iff the moduleC(B) associ-
ated with it is unimodular. Also when behaviourB

wl

is repre-
sented by(R

w

[d=dt])w + (R

l

[d=dt])l = 0; it is l-observable
iff R

l

[�] is column g-unimodular.
When a behaviourB is defined through(R[d=dt])w +

(R[d=dt])l = 0 its projection onto the variablesw is the col-
lection fw : (w; l) 2 Bg and is denoted byB=w. A kernel
representation for this projection can be obtained as follows:
rewrite the coefficient matrix of the kernel representation ofB

through reversible row operations (with entries in<[�]) as

�

R

1w

0

R

2w

R

2l

�

;

where the rows ofR
2l

are linearly independent. Now the equa-
tion (R

2l

[d=dt])l = f always has a solution owing to the linear
independence of the rows of the coefficient matrix. It follows
thatB=w has the kernel representation(R

1w

[d=dt])w = 0.
Let f

S

; g

S

be vectors onS. Thedot product < f

S

; g

S

> of
f

S

; g

S

is defined by< f

S

; g

S

>�

P

e

i

2S

f

S

(e

i

):g

S

(e

i

). We
sayf

S

; g

S

areorthogonal to each other iff< f

S

; g

S

>= 0.
Let K

SP

;K

P

denote collections of vectors onS ] P; P re-
spectively. Thegeneralized minorK

SP

$ K

P

of K
SP

with
respect toK

P

is defined by
K

SP

$ K

P

� ff

S

: f

S

= f

SP

=S; where f

SP

2

K

SP

s:t: f

SP

=P 2 K

P

g:



We denote byK
SP

+ K

P

, the collection of all vectorsf
SP

+

(0

S

jf

P

) onS ] P , wheref
SP

2 K

SP

andf
P

2 K

P

. Given a
collection of vectorsK

S

onS, we denote byK
S

�, the collec-
tion of all vectors orthogonal to vectors inK

S

. We sayK
S

and
K

S

�, arecomplementary orthogonaliff (K

S

�

)

�

= K

S

.

III. IMPLICIT DUALITY THEOREM

The following is the main result of this paper:
Theorem III.1: (The Implicit Duality Theorem (IDT)) Let

K

SP

;K

P

be unimodular modules onS ] P; P respectively,
such thatK

SP

+ K

P

is also unimodular. Then,
(a) (K�

SP

$ K

�

P

)

�

= K

SP

$ K

P

:

(b)K
SP

$ K

P

is unimodular.
If, in addition,K�

SP

+K

�

P

is unimodular, then
(c) (K

SP

$ K

P

)

�

= K

�

SP

$ K

�

P

:

(d)K�

SP

$ K

�

P

is unimodular.
The proof of this theorem requires the use of the following lem-
mas. of which the first two have their proofs omitted.

Lemma III.1: LetA be a g-unimodular matrix.
Let C be the module generated by the rows or columns ofA.
ThenC�� = C.

Lemma III.2: LetK be a collection of vectors over<[�] on
S. ThenK� is unimodular.

Lemma III.3: LetA be anm� n g-unimodular matrix over
<[�]; b anm� 1 vector over<[�]. ThenAx = b has a solution
( with x a vector over<[�] ) iff
for every(1 �m) vector�T over<[�] we have�TA = 0 )

�

T

b = 0.
Proof :-Ax = b has a solution iffb belongs to the column

moduleC generated by columns ofA,
i.e., iff b 2 C

�� (C = C

��, sinceA is g - unimodular),
i.e., iff whenever�T 2 C� we also have�T b = 0,
i.e., iff whenever�TA = 0, we also have�T b = 0.

Proof of the Implicit Duality Theorem
LetK

SP

have the representative matrix[A
S

A

P

] and letK
P

have the representative matrix[ ^A
P

]. ThenK
SP

+K

P

has the
representative matrix

�

A

S

A

P

0

^

A

P

�

which is g-unimodular by hypothesis.
Now x

S

2 K

SP

$ K

S

iff 9�
1

; �

2

over<[�] s.t.

�

A

S

T

0

A

P

T

^

A

T

P

�

�

1

�

2

=

�

x

S

0

�

i.e., iff (since column module of the above matrix is unimodu-
lar) whenever, fory

S

, y
P

over<[�] we have

�

y

T

S

y

T

P

�

�

A

T

S

0

A

T

P

^

A

T

P

�

=

�

0 0

�

we also have
y

T

S

x

S

= 0;
i.e., iff whenever(yT

S

y

T

p

) 2 K

�

SP

; y

T

p

2 K

�

P

, we also have
y

T

S

x

S

= 0;

i.e., iff whenevery
S

2 K

�

SP

$ K

�

P

,

we haveyT
S

x

S

= 0.
Thus,x

S

2 K

SP

$ K

P

iff x
S

2 (K

�

SP

$ K

�

P

)

�.
This proves (a).

The statement in (b) follows from (a) and Lemma III.2.
(c) SupposeK�

SP

+K

�

P

is unimodular. Since by Lemma
III.2 we already haveK�

SP

;K

�

P

as unimodular, we can use (a)
above and conclude that

(K

��

SP

$ K

��

P

)

�

= K

�

SP

$ K

�

P

But K

SP

;K

P

are unimodular and so by Lemma III.1,
K

��

SP

= K

SP

andK��

P

= K

P

Hence(K
SP

$ K

P

)

�

= (K

�

SP

$ K

�

P

)

Statement (d) follows from (c) and Lemma III.2.

IV. ADJOINTS FOR BEHAVIOURAL SYSTEMS

The following appear to be desirable while building adjoints
� the notions controllability/observability of the original sys-
tem should appear to correspond to observability/controllability
for the adjoints;
� the adjoint for systems in the i/s/o (input/state/output) form
should correspond to the standard construction for systems in
this form;
� the computational effort for building the adjoint should be
very mild whatever be the original representation for the be-
haviour.
In addition we note that if the adjoint is in some way related
to the module complementary orthogonal to that asscociated
with the orginal behaviour, there are technical advantages. Let
behaviourB have the kernel representation

�

R

w

R

l

�

w

l

=
0

Define the adjointBadj1 as having the kernel representation

�

I �R

T

w

0 �R

T

l

�

ŵ

^

l

=

�

0

0

�

Observe that, whilew; ŵ have the same number of entriesl; ^l
may not have. It is easy to see that

B is controllable� B

adj1 is ^

l - observable
B is l- observable� B

adj1 is controllable.
We further have (through the use of Implicit Duality Theorem)

Theorem IV.1: :- If behaviourB is controllable

C(B=w) = (C(B

adj1

=ŵ))

�

:

If B is l-observable then

(C(B=w))

�

= C(B

adj1

=ŵ)

This theorem is a restricted version of Theorem IV.2 proved
below. Its proof is therefore omitted.

Note that the adjoint is essentially, but not exactly, unique.
If (R

w

R

l

) is replaced by a matrix obtained by unimodular row
transformation, then in the adjoint̂w would change through
the inverse transformation. Similarly the adjoint of the adjoint
would be essentially the original behaviour but would not be
identical to it. We show now that this definition captures the



usual i/s/o adjoint nicely.

If the original system is in the i/s/o form we have

( takingwT

= (u

T

y

T

); x = l ),

�

�B 0 (�I �A)

�D I �C

�

u

y

x

=

�

0

0

�

:

The adjoint then is

2

4

I 0 B

T

+D

T

0 I 0 �I

0 0 �(�I �A)

T

C

T

3

5

ŵ

1

ŵ

2

^

l

1

^

l

2

=

�

0

0

�

The variablesŵ
2

;

^

l

2

are seen to be identical using the second
row. The constraints on̂w

1

; ŵ

2

;

^

l

1

are

�

I D

T

B

T

0 C

T

�(�I �A)

T

�

ŵ

1

ŵ

2

^

l

1

=

�

0

0

�

Clearly this is the usual adjoint of a system in i/s/o form.

Next let us consider the behaviour given in the input, output,
latent variable form.
Let the behaviourB have the kernel representation with linearly
independent rows

�

R

1u

R

1l

0

R

2u

R

2l

I

�

u

l

y

=

�

0

0

�

Observe that practical systems, when they have clearly defined
inputs and outputs, very often have this form. The latent vari-
ables need not however correspond to the state variables.

Let the adjointBadj2 be defined through the representation

�

I �R

T

1u

�R

2u

T

0 �R

T

1l

�R

T

2l

�

û

^

l

ŷ

=

�

0

0

�

Observe that, whileu; ŷ, andy; û have the same number of
entries,l; ^l may not have.

We observe thatB=ul has the kernel representation

�

R

1u

R

1l

�

u

l

=
0

and thatBadj2=ŷ^l has the kernel representation

�

�R

T

1l

�R

T

2l

�

ŷ

^

l

=
0:

We note that the original behaviour is invariant if in the kernel
representation, a linear combination of the first set of rows is
added to the second set of rows. It follows that the adjoint is not
uniquely defined but depends on the original representation.
However, the adjoint does have the following attractive proper-
ties which can be proved through the Implicit Duality Theorem.

Theorem IV.2: 1. B=ul is controllable � B

adj2 is ^

l-
observable.

2. B is l-observable� B

adj2

=ŷ

^

l is controllable.
3. If B=ul is controllable then(C(Badj2=ûŷ))� = C(B=uy).
4. If B is l-observable then(C(B=uy))� = C(B

adj2

=ûŷ).
Proof:- LHS and RHS of part (1) are equivalent to the condition
that (R

1u

R

1l

) is g-unimodular and LHS and RHS of part (2)
are equivalent to the condition that(R

T

1l

R

T

2l

) is g-unimodular.
We now prove parts (3) and (4).
Using additional variablesl0 the kernel representation ofBmay
be re-written as follows:

�

R

1u

0 I 0

R

2u

R

2l

0 I

�

u

l

l

0

y

=

�

0

0

�

(1)

�

0 �R

1l

I 0

�

u

l

l

0

y

=
0 (2)

The kernel representation ofBadj2 may be rewritten as
follows:-

�

I 0 �R

T

1u

�R

T

2u

0 I 0 �R

T

2l

�

û

^

l

^

l

0

ŷ

=

�

0

0

�

(3)

�

0 I R

T

1l

0

�

û

^

l

^

l

0

ŷ

=
0 (4)

Let K
V LL

0

Y

; be the module spanned by the rows of the coef-
ficient matrix in Equation (1),K

LL

0 be the module spanned by
the rows of[�R

1l

I ] in Equation (2).
ClearlyK

V LL

0

Y

� is spanned by the rows of the coefficient
matrix in Equation (3) andK�

LL

0

is spanned by the rows of
(IR

T

1l

) in Equation (4).
Clearly K

LL

0

;K

V LL

0

Y

;K

LL

0

�

;K

V LL

0

Y

� are unimodular
modules since they have representative matrices with full rank
identity submatrices.
The coefficient matrix for Equations (1), (2) taken together is
g-unimodular if(R

1u

R

1l

) is g-unimodular. If this holds, by
IDT

(K

�

V LL

0

Y

$ K

�

LL

0

)

�

= K

V LL

0

Y

$ K

LL

0

SinceK
V LL

0

Y

$ K

LL

0 is the module corresponding to
B=uy andK

V LL

0

Y

�

$ K

LL

0

� is the module corresponding
toBadj2=ûŷ, it follows

(C(B

adj2

=ûŷ))

�

= C(B=uy)

Similarly, the coefficient matrix for Equations (3), (4) taken
together is g-unimodular if(�RT

1l

�R

T

2l

) is g-unimodular. If
this holds, by IDT, we have

(K

V LL

0

Y

$ K

LL

0

)

�

= K

�

V LL

0

Y

$ K

�

LL

0

i.e. we have
(C(B=uy))

�

= C(B

adj2

=ûŷ)

Finally we verify that the i/s/o adjoint does fit into the present
definition. Let the original behaviourB have the representation.

�

�B (�I �A) 0

�D �C I

�

u

x

y

=

�

0

0

�



ThenBadj2 has the representation

�

I B

T

D

T

0 �(�I �A)

T

C

T

�

û

x̂

ŷ

=

�

0

0

�

which is identical to the usual i/s/o adjoint.

V. Implicit Duality Theorem 2

In this section we present an analogue of IDT. Our primary
aim is to show that such a theorem may be found whenever the
‘duality’ is strong enough that a result like Lemma III.3 holds.
We use the following notation:[f [�]; b], wheref [�] is a vector
onS over<[�] andb a vector onS whose entries areC1 func-
tions, denotes

P

e

i

2S

(f

e

i

[d=dt])(b

e

i

).
The generalized minorB

SP

$ B

P

of behaviourB
SP

with
respect to behaviourB

P

is defined by
B

SP

$ B

P

� fw

S

: w

S

= w

SP

=S; where w

SP

2

B

SP

s:t: w

SP

=P 2 B

P

g:

Theorem V.1: (The Implicit Duality Theorem 2 (IDT2)) Let
C

SP

; C

P

be modules onS ] P; P associated with behaviours
B

SP

;B

P

, respectively. ThenC(B
SP

$ B

P

) = C

SP

$ C

P

:

The proof of this theorem requires the use of the Lemma V.2
which in turn can be proved using Lemma V.1.

Lemma V.1: LetA[�] be a matrix over<[�] with linearly in-
dependent rows,b, a vector whose entries areC1 functions.
Then(A[d=dt])x = b, has a solution.
The routine proof (for instance by transforming to SCF) is
omitted.

Lemma V.2: LetA[�] be anm�nmatrix over<[�]; b anm�
1 vector whose entries areC1 functions. Then(A[d=dt])x = b

has a solution (withx a vector whose entries areC1 functions)
iff for every (1�m) vector�T [�] over<[�] we have
�

T

[�](A[�]) = 0) [�

T

[�]; b] = 0.
Proof :- The necessity of the condition is obvious. We prove
the sufficiency.

Assume for every(1 � m) vector�T over <[�] we have
�

T

A = 0 ) [�

T

; b] = 0. By reversible row operationsA
can be transformed to

�

A

1

0

�

where the rows ofA
1

are linearly independent and the equation
Ax = b can be transformed through the same operations to

�

A

1

0

�

x
=

�

b

1

b

2

�

:

Now, the assumption made, implies that every entry ofb

2

is
zero. So if we show(A

1

[d=dt])x = b

1

has a solution we are
done. But this holds by Lemma V.1 sinceA

1

has linearly inde-
pendent rows.

Proof of the Implicit Duality Theorem 2
Let C

SP

have the representative matrix[A
S

A

P

] and letC
P

have the representative matrix[ ^A
P

]. ThenC
SP

+ C

P

has the
representative matrix

�

A

S

A

P

0

^

A

P

�

:

Let B
+

be associated with the moduleC
SP

+ C

P

. By defini-
tion, the behaviourB

SP

$ B

P

= B

+

=w

S

. In other words,
w

0

S

2 B

SP

$ B

P

iff 9w0
P

, s.t.
�

A

S

A

P

0

^

A

P

�

w

0

S

w

0

P

=

�

0

0

�

i.e., iff 9w0
P

, s.t.
�

A

P

^

A

P

�

w

0

P

=

�

�A

S

w

0

S

0

�

i.e., (by Lemma V.2) iff whenever

�

�

1

[�] �

2

[�]

�

�

A

P

^

A

P

�

=

�

0

P

�

(equivalently whenever�
1

[�]A

S

2 C

SP

$ C

P

),
we also have[�

1

[�]; A

S

w

0

S

] = 0 (equivalently[�
1

[�]A

S

; w

0

S

] =

0), i.e., iff whenever�
1

[�]A

S

2 C

SP

$ C

P

, we also have
[�

1

[�]A

S

; w

0

S

] = 0, i.e., iff f

S

2 C

SP

$ C

P

implies
[f

S

; w

0

S

] = 0 (since every vector inC
SP

$ C

P

is a linear com-
bination of the rows ofA

S

). ThusC(B
SP

$ B

P

) = C

SP

$

C

P

:

Two special cases of the above result may be mentioned.
Consider the case whereC

P

is the zero module onP . In this
caseC

SP

$ C

P

is obtained by restricting toS all those vec-
tors inC

SP

which take zero value onP . This is usually called
the contraction ofC

SP

onP . The corresponding behaviour is
merely the projectionB

SP

=w

S

, sinceB
P

has no constraints on
it and is therefore ‘free’. Next letC

P

be the ‘free’ module onP
spanned by the rows of the unit matrix.In this caseC

SP

$ C

P

is obtained by restricting toS all vectors inC
SP

. The corre-
sponding behaviour is the setfw

S

: (w

S

; 0

P

) 2 B

SP

g.
Finally we remark that Theorem IDT2 would hold also for

those N-D systems for which Lemma V.2 holds since the proof
depends only on that lemma.

VI. CONCLUSION

In this paper we have presented a useful result for building
implicit ‘duals’ of Behavioural Systems which are themselves
specified implicitly, for instance, by including latent variables
in the description of the system. Using this Implicit Duality
Theorem we build two ‘adjoints’ for Behavioural Systems, in
each of which controllability appears as a dual notion to ob-
servability. Both the definitions of adjoints are shown to be
compatible with the usual adjoint when the system is specified
through a state space description. Finally, in order to indicate
where one might hope to find an IDT like result we have pre-
sented one of its analogues and proved it similarly.
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