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ABSTRACT

This thesis is concerned with certain fundamental
problemg in Network Analysis ind the problems together with

their extensions that these have given rise to in Matrold Theory.

In Chapter O we give an introduction to this treslis and

.outline, mainly without proof, certain prelimin:ry results
required in the remainder of tie thesis., Chapter 1 contains

a fairly rigorous development of Diakoptics for electrical
networks. This treatment is carried out convenlently in terms
of ‘'‘generalized networks' - 'generalized networks' being an
abstraction of ordinary networks using matroids instead of
graphs, Section 1 of Chapter 1 is concerned with carrying over
certain well known results for ordinary networks to ‘generalized
networks'. In Section 2 we give a description of Kron's methods

&8s well as an extension which should form a natural complement

to his theory.

Chapter 1 also serves to highlight a fundamental problem
in network theory - that of the determination of the topological
degree of freedom of a network and the construction of a partitio:

('Principal Partition' for instance) of the network corresponding
to this quantity.

Chapter 2 is concerned with a partition that 1s, in a

sense, the finest possible refinement of the principal partition.



A key role in the development of this idea is played by the
matroid union theorem of Edmonds and Nashvilliams ( /"Bd 6_7),
(CNa 3 _7). In Section 1 wve give a detailed digcussion of
this theorem. In Section 2 we present a preliminary partition
for a matroid, This we have termed a P-sequence. For a |
Proper description of this partition we need the idea of the
‘density' d (M) of a matroid Mon 8 . ( d(M) = —al Yo A
watroid Mon 38 1s said to be molecular (atomlcg(ugff for every
T C 8

A MX T ) S d(M) /™ a(M X T) < a(M) 7 .

A P-sequence can nowv be defined as follows

Let M be a matroid on 8, 1% sequence I’I,P3 eoe Pn of pairwise
disjoint subsets of 8 1s a P=sequence of M iff

n J
(1) u© Pp = 8, (2) X U Py o PJ is molecular
i=] i=]l

for all J ¢ {1,2... 0% and
‘I k
(3) d(uxiglpi. Py ))d(H1121P1 . P )
1££ J <k ( 3k @ 1,2 eccn} ).

The idea of a F-qmco is based on the following theorea 3

‘Let M be s matroid on 8. Then the maximal subset T of 5, such
that

d(M X T) = max d(MXR) , 1s unique. We are then
RS 8



able té gshow that every matroid has s unique P-gsequences,

In Section 3 of Chapter 2 we digcuss the relationships
between the matroid union theorem and our partition., ' The

central result in this section is the following :t (Theorem 3.1)
Let Ml and M, be two matroids on a set on 8.

If max d(u1 Xg3) = d(Hi XP) fori=1l,2 then
REs

max d4((M; VM,) XQ )-d[(nlvxa)xr’_?.

RESs
We then describe certain functions called ‘admissible funetions'
on the class of all matroids, and study the P=sequence of the
image of a matroid under any 'admissible function' in terms of

the P-seyuence of the original matroid,

The P-sequence of a matroid M represents, essentially, =
break up or decomposition of M into molecular matroids in s
certain rishion. The natural further step would be to decompose
the molecular matroids into atomic matroids. This we do in
Section 4 of Chapter 2, In order to describe the decomposition

1

coiplctoly ve define the set 8" of atoms of & wolecular matroid

and a partial order L on 31. Further we give efficient ;lcorithna_
for-constructinc 81 end L, Hb also discuss the effect of
admissible functions on 8° and L of & moleeulur matroid and

extend this idea to general aatroiﬁs.' By the end of this section
ve achieve a partition for any general matroid which can be

regarded as the finest refinement of the principal partition



since ve are left with only atomic mmtroids on the individual

elements of the partition,

In Section & we disecuss applications of the prineipal
Partition to Network Theory., In Section 6 we have given q
partial desecription of the P-gejuence of a single element
extension of a matrold in terms of the P-sejuence of the

original matroial,

8ince the matroid union theorem plays a key role in
Chapter 2, we have studied 1ts applications in other branches
of matroid theory in s separate chapter. 1In Chapter 3, wve show
that the matroid union theorem has an important part to play in
the theory of ‘transversal matroids, base orderable matroids and
gammoids, Section 1 and 2 are devoted to applications to
transversal theory. In Section 3 of Chapter 3 we use the matroid
Union theorem to obtain some new results. We show among other
things the following

(1) Gammoids, strongly base orderable matroids and base

Orderable mitroids are closed under matroid unions,

(2) Minimal non base orderable and non strongly base orderable
matroids are atomic of kind (2) and 8= connected.

(3) Minimal non gammoids are $= connected.

(4) BSeries connection is a special case of matroid union.
Dually, parallel connection is a special case of matroid

intersection,



(6) The elasses of binary gamsoids, binary base orderabdle and
binary strongly base orderadle matroids, and series parallel
aetworks are identical,

Finally, ve give a partial description of the P-sequence
of a series or parallel coanection of two matroids in teras of

the P-sejuences of the original matroids,
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1.

NOTATION AND CONVENTIONS

By Tl 0, 'f._, ve mean the disjoint union of sets Tl and T,
(1.e. union of T, and Towhen T, N Ty = ¢ ). Similscly,
Tl ) ‘1'2 —— L'/Tn is the union of the sets Ti
(1 = 1,2, 400, n) where the T, are pairwise disjoint.

By A C B we mean A is a subset of B but A 3= B, i.e,

A 1s a proper subset of B.

We use I“ for the identity matrix of order #, If the

_ order is clear we just use / U _7 .

We use |8]| for the cardinality of the set &.

By % on 8 we mean the matroid on 8 which has 8 ag its
set of coloopsy i.e, r / Hn J = 18] .

By Mo on 8 we mean the matroid on 8 which has 8 as its
sot of loops § l.e. r L N, 7 = 0.

We write At for the transpose of the matrix A.

Let T be a set and a be an element. Then we use
TUa instead of the more correct T U {tf « We use
T2 instead of T » ‘La} .

Unless otherwvise stated all the matroids are assumed to
be dottn_cd on finite sets.



3.

4.

6.

Let v be a column vector of order r x 1, When there
is no possibility of coafusion instead of Yy = 0, _
we write simply v= 0 ,

In eyuations involving matrices, we may partition some
of the matrices and vectors while leaving others as

they are.

Bxaggle 3 Instead of

=\ -

( N Of ( (p. )
Y1 | M2 B1y lBw 1) 21
St S PRl S [ Ju P el
A A B l B u P
e zaJ | Pa | P2 | [32) B2

we may write E s -
(B Isw r-‘!1
(M= "
B B u
"a1 | “en | -2

/ Our partition of the matrices may be just to indicate
the structure of some of the matrices and not to
express the product as a partitioned matrix _/.

Any entries omitted in any matrix are always to be taken

ags zero entries! ®

When it is sufficiently clear that a certain matrix 1is
partitioned wve sometimes omit the partitioning lines.

Capital letters are always used to indicate the submatrices

into which the matrix is partitioned. Block diagonal
mgtrices are similarly represented.



7.

Ko/ AL B X

ﬁn!].o_ :

[Rn | Rpg | |
(1) I is represented simply as 3
R R
i .
B1 By
R;m Rop
- l ~
(2) 0, |
T G, | is represented as
o e
| 95
.. : / 5 -
|
G
¢ -
. 3;

Quite often we have to perform a chain of matrix
multiplications and are unable to compress this chain
into one line. VWe then proceed as illustrated in the
following example ¢

Instead of ¢ K = A7 BT L0 Ln)
ve write ¢ |

or simply K=/ A/ /57 X

A A W

(R.H.S. contdo)

AW Y

We use the symbol ( X ) to indicate matrix multiplication

in such sitmtions. ¥



(8) In describing the standard representative matrix with
respect to a base we generally speak of it ag if it ig
unijue. It is of course unijue only for a particular
ordering of the rows and a particular ordering of the
columng., We implicitly assume such an ordering to be

glven 80 that we may regard it as unique.

(9) With regard to naming of Theorems and Definitions we have

used the following convention i

The name given to a theorem or definition indicates
the section in which it 1s included and 1ts number in that
gsection. But the Chapter in which the theorem is present

1s not indicated in the name of the theorem,

Example ¢ The name Theorem 4.1 ia given to three

different theorems namely the first theorem in Chapters

1,2 and 3.

In a particular Chaptcr, if ve wish to refer to an

earlier theorem or definition we specify its chapter only
- 4f 1t belongs to a different Chapter. If, however, the

theorem or definition belongs to the same Chapter its

Chapter is not specified,

Example t - If in Chapter 2 ve vish to refar to Theorem 2.1

of Chapter 1 we would say ‘Theoresm 2.1 of Chapter 1' but if
ve wish to refer to Theorem 2.1 of Chapter 2, we would

merely say 'Theorem 2.1°.



CHAPTER 0O

Section 1

I NTRODUCTI G N

This thesis is concerned with certain fundamental .
problems in Network Analygis and the problems together wiéh
their extensions that these have given rise to in Matroid
Theory.

Here, in Network Analysis, we are interested primarily
in efficient methods of solving an electrical network., It
turns out that the efficlency of any method of analysis is
primarily dependent upon the structural properties, i.e, the
geonmetry, of the network., It is, therefore, imperative, for
a good understanding of Network Analysis, that a fairly deep
study of the geocmetrical aspects of a network be carried out,
Fortunately for us there is a well developed branch of
Rathematics which can be applied directly to our probleums.
This'brsnch is the abstract theory of independence otherwise

known as 'Matroid Theory'.

Matroid Theory was introduced by Hassler whitney in a
Ploneering paper in 1936 £ wh 1 _7. 1In this paper Whitney
defined matroids for the first time and further gave five
equiValent'systons of axiouns for the theory. He was motivated
in his work primarily by a desire to generalige the idea of
~duality in zraphs. Since this is precisely the asgpect that 1is

-



of 1nforeat to network anaiysts it is not surprising that
matroid theory is anplicable, Extensive and profound work

on this aspect has bﬁn carried out by Tutte in a series of
Papers that appeared in the late £0's and early 60's / Tu 4/,
" Ta6_J,/. T 6_J,/ Tu10 /. Among other things Tutte
g§ave necessary and sufficient 'geometrical conditions' rox; a
given matrix with 0,1, -1 entries to be the cutset matrix of

& graph.

Currently, attiracilve work in Matroid theory is being
carried out in two directions. Some of the workers are
adding newer examples of matroids t> the classical list

comprising of vector spaces, chain groups, function spaces,

| incidence geometries, graphs ete, Prominent amone these new
additions are transversal matroids and gammoids / ®4 23 _/,
{ Ma 4 _/, L Brl 7 /. The benefits here are two-fold -
Matroid Theory develops in a nitural way wvhile a deeper insight

is gained into the theory of transversals, gammoids etec,

The second section of workers seems to be interested
primarily in unification, These iorkers appear to be motivated
by an 1nt.orest- in classical problems such as the 'Four Colour
Conjecture' (which they have clevated to a more general setting
and study as an example of the ‘critical problem' in
" combinatorial geometries (combinatorial geometries being
matroids without 'parallel elements')’.



"In Chapter 1 of present thesis we have carried out s
detalled, self-contained and falrly rigorous discussion of
‘*Diakoptics of Electrical !etuofks' or 'Network Analysis by
tearing', 'Diakoptics' 1is a term coined by G. Kron for
‘Plecevise Analysis of large scale systems'. He has given
an exposition of his theory in / Kr 1 _/ where he has made
use of tensor calculus to increase its range of applieability,
For Network Analysis, however, the ideas of vectors and linear
transformations are sufficient and we have, therefore, develoned

the theory using only these concepts,

Although it 1s common practice to describe networks
in terms of grapha; ve find that they mask rather than
1lluminate the fundameantal properties of the network.

The fundamental idea in graph theory - the idea of nodes -
is not really fundameatal in network theory. For a description
of'netwnrkn, sufficient to permit annlysis; it i3 not necessary
to know which edges are incident at a particular node; it 1is
hovever necessary and sufficient to know whether a given set
of oriented edges form an oriented eircuit., In fact every
occurrencs of the word ‘node' can be replaced in Network Analysis.
For 1nutance,'in the case of two terminals making uwp s port, ve
can add an imaginary oriented edge between these terminals and
use 1t to replace every oecurrence of the word ‘torminals’.

The 1doa-ot graph duality does not correspond exactly to that of
the electrical variables, whereas mtroid duality does. By



restrieting ourspl:von to graphs we ;un Yery 2{?& tg:}”:
erroneous idea of duality in / See / Br 1 _)7(_7 electrical
networks, Matroids of vector spaces over ordered ﬂgldl may
therefore be used for a rigorous development of Network
‘Analysis since such an attempt in terms of graphs would prove
unwieldy., 1t is perhaps appropriate at this stage to stress
that the model one chooses for a particular physical phenomenon,
1s dependent upon that aspect of the phenomenon in which one
1z interested. Our model for the electrical network, though
eminently justifiable, need not necessarily be the most
convenient in order to study a differeant branch of network
theory. We have called the model that we have used in this
thesis a 'Generalized Network'. We have here followed, in
the main, the line of thinking of Bruno and Weinberg in / Br 1 _/
wvho Pavo also defined a 'gencralized network' for the study of
neﬁorts. - Since ve are interested in different things our
- 'generaliszed network' differs slightly from theirs - for
instance ve have used matroids of vector spaces over ordered

fields where they have used regular matroids.

In 8S8ection 1 of Chapter 1 we prove some cf the vell-known
results on ordinary electrical networks for 'Generalised
!eiuorka'. . This section is added primarily to liko the
treatment self-ocontained, In Section % of Chapter 1 both the
methods of Kron for Network Analysis are described in some
detail. Further, a new and important extension of Kron's methods
1s given, This method should be regarded as a natural

» complement to Kroa's theory.



“The first Chapter also highlights a fundamental problem
in Network Theory with whose extensions we are concerned in
Chapter 2. This is the problem of partitioning the set of
edges S of a graph G into two sets Sl' S2 such that.

(r (G . sl) +« 4 (G X 82)) is a minimum, This number has been
called the 'topological degree of freedom' of a network. An-
efficient algoritﬁm for finding such a partitioh (Prinecipal
Partition') has been given by Kishi and Kajitanl in /X4 2 /.
This problem has been discussed in the context of matroids by
Bruno and Weinberg in / Br 2 _/ where they have also givea an
extension of the principal partition in terms of Principal.r-

minors and Augmented principaler-minors,

Chapter 2 is concerned with a partition of a1 matroid
that is in a sense the finest possidle refinement of the
principal partition. A key role in the development of this
idea is played by the matroid union theorem of Edmonds and
Nashwilliams (/ Ed 6/, { 8a 3_/). We therefore discuss
this theorem in some detail in Section 1 of Chapter 2, Here
ve give a new algorithmic proof of this theorem. This proof
though longer than the known proofs helps to illuminate the
structure of the union of two matroids (we indicate the union
of M, and My by ¥, V Mg). Also the methods used in the proof
are used repeatedly throughout this Chapter. Among other
things we have describedi



(1) thg eircuits of N; v M, ia terms of those of M, and My

(2) sufficient conditions to be satisfied by a set T & 8
80 that the following equation holds @

(M1 . T)V (ug e T7T) = (nl ' Mg) s T .

(3) a necessary and sufficient condition for the union of
matroids to be connected., We show that T © 5 1s a separator

-0f M, V My 1ff T 1s a separator for both M, and M, (except in

one degenerate case).

In Section 2 of Chapter 2 we present a nreliminary
partition for a matroid. 7This we have termed a P-sequence.
For a proper description of this partition we need the idea
of the 'density' 4(M) of a matroid Mon § , (d(M) = #%;— Yo

A matroid Mon S is sald to be molecular (atomic) iff for
every T C 8§

d(M X T )< d(M) ( a(M XT) < d(M) ).

A P-sequence c¢an now be defined as follows 3
Let M be a matroid on 8. A seyuence PI,P2 soe Pn of pairvise
disjoint subsets of 8 is a P-gequence of M 1ff

n
(1) UPitB

1=l
3
(2) WX T P, . P, 1s molecular for all J @ fi,2 ... n}
i=]l
and
: ) ) ( ( - )
(2) a(Mx( U P e P >d (M X U P e P )
: =1 1 3 1= 1 k

11 3 <k gk e {1,2... n]).



The idea of a Pegeyuence is based on the following theorem §

Let M be a matroid on S, Then the maximal subset T of S,
such that (M X T) = R-E?S d(M X R), is unique. We are then
able to show that evepry matroid has a unigue P-ge uence. A
matroid vhose P-sequence has only one slement is obviously

molecular,

A recurring theme in matroid theory is the characteriza-
" tioa of different clagses of matroids in tarms of excluded
minor conditions. A typlecal statement of such theorems would

run as follows @

'A matroid M belongs to the clags eM i1ff M has no minors
isomorphic to the matroids “1' “2 vee Nh'.

Examples of matroids so charscterized are graphic
matroids, cographic matroids, binary matroids, regular matroids,
ganmoids, bage orderable matroids etc, It is an interesting
fact that the forbidden ainors in each of these cases is an

atomic matroid, VWe give some examples below 1

(1) The four point line -~ forbidden minor for binary wmatroids.
(2) The seven point seven line geometry of dimension 2 ( Fano
Matroid), | |
e forbidden minors for regular matroids, binary matroids
which do not have this matroid or its dual as a minor being

Tegular,



(3) The polygon matroids of Kuratowski's graphs Kg (complete graph
on 5 nodes) and Ka.:! (complete bipartite graph with 1ts nodes
being partitioned into two sets of 3 nodes each),

~ Forbidden minors for graphic matroids, regular matroids

which do not have these matroids as minors being graphic,

(4) The bond matroids of Kg and Ks,a == Forbidden minors for
cographic matroids, regular matroids which do not have these

watroids as minors being cographic,

(6) The polygon matroid of K, (complete graph on 4 modes) —

A forbidden minor for base orderable matroids.

(6) Let § ={a;y 8y 8y, gy &3y dgy dgy 4 1. Let M be the
matroid on 8 such that

(1) r (M) =4 _

(2) Circuits of M of less than § elements are the following 3

{0 40 800 fap 8 a9 800 (g 0g0 8 &
and any 4 of {‘1’ Bay l:' 43: 43} .

Thig matroid is a forbidden minor for base orderable matroids.

(There is no exchange ordering for the b“"{‘l*‘a"s"4§ and
{8199g089044] e

'(?) . Let 8 = {"1’ 'té, Sgr 840 dl' dag dgs d‘ } °

Let M be the matroid on 8 such that

(1) r (§) = 4 |

(2) Circuits of M of less than 6 elements are the following



{‘l’dl' dgg d“} '{‘1’ ‘3’ l‘ ’ da} ’ {‘2 ’ dl’ dg ’ 63}
{‘2’ 33’ a‘s d4? ] {.'1’ ‘2 » d3 ’ d4} .

This matroid is base orderable but is a forbidden mwinor for

strongly base orderable matroids,

(There 1s no 'strong' exchange ordering for the bages

{817 890 290 2 ] and {4, dpdyd d),

(8) Let 5={1,2 ... 7.

Let M be the matroid on S sueh that

(1) r (M) = 3

(2) the bases of M are all 3-sets except {1,2,3}, /4,6,6 7,

{1v07F , {2,6,77 , {3,6,2} .

This matroid is base orderable but can be shown to be
a forbidden minor for gammoids,

(Bxamples (8), (7) and (8) are due to Ingleton £~ Ing 1 7 %

In Section 3 of Chapter 2 we discuss the relationships
between the matroid union thesrem and our partition, The
central result in this section is the folloving s-

(Theorem 3.1)

"Let lll and Il, be two matroids on & set S.

1 4 X = d XxXp fori=1,9
fql;:s 011 Q) (Hi ) for 1

then JaE, A00g VH) X Q) . AL V) XP )



An 1nioresting consequence of this result is that union of
atomic (molecular ) matroids is atomic (molecular), We can
define functions on the class of all matroids through rereated
Use of the binary matroid union operator and the unary
dualisation operator. ( Clearly the image of an atomic

(molecular ) matroid under such functions is atomie (molecular)).

In Section 3, however, we are interested only in a
subclass of such functions called 'aduissible functions'. It
1s shown that given the P-geyuence of a matrold My the P-sejuence
of £(M), where f(M) is an admissible function can be easily
obtained. We have 2lso {atroduced the concept of 'aligned’
matroids (depending primarily oa the 'relative positions' of the
P-sequences) and describe the P-sequence of M, VM, in terms of
the P-sequences of Hi and He‘whore Hl and H? are aligned,
Flnaliy ve show that the P-gsejuence of a matroid M can be
obtained by considering the sets of loops and coloops of
Certain matroids which are the images of M under certain
admissible functions. This enables us to give an efficient

~ algorithm for the construction of the P=ge(uence of a matroid,

The P-sejuence of a matroid M represents, essentially, a
break up or decomposition of M into molecular matroids ina
certain fashion. %he natural further step would be to decompose
the molecular matroids into atomic matroids. This ve do in
Section 4 of Chapter 2. In order to deseribe the decomposition

completely we define the set S' of atoms of a molecular matroid



and’n partial order L on 81. We give an efficient algorithm

for constructing él and the partial order L by using the idea

of 'approachability', We discuss the set of atoms and the
corresponding partial order for "1 v Hg in terms of the
corresponding entities for Hi and Hz‘wbon the molecular matroids
Ml and H2 satisfy certain conditions. We also digcuss the effect
of admissible functions on 81 and L of a molecular matroid,
Finally we extend these ideas td general matroids, By the end of
this section we achieve a partition for any general matroid which
can be regarded as the finest refinement of the principal partition,
since we are left only with atomic matroids on the individual
elements of this pa:tition.

In Section 5 we discuss applications of the principal
partition to Network Analysis. We give a new proof for Kishi-
Kajitani's theorem on the principal partition. We also show
that the partition described by Ohtsuki et al in / Oht 1 /7
i1s a special case of our partition for molecular matroids in

terms of the set of atoms and the partial order on this set.

In Section 6 we have given a partial description of
the P~sequence of a single element extension of a matroid in

terms of the P-sequence of the original matroid.

The material presented in Chapter 2 represents a
detailed study of ah important conecept in network theory (and
its extensions) and therefore such work needs no other
Justification. However, we should liké to point out that our

partition, since it is invariant under the automorphisms of



the matroid, ( and can also be easily ‘manipulated’ theoretically),
can be used as a starting point for the generation (and study)
of all invariant sets of a matroid (and in particular, of a

graph ).

Since the matroid union theorem plays a key role in
Chapter 2, we have studied its applications in other branches
of matroid theory in a separate chapter. In Chapter 3, ve
show that the matroid union theorem has an important part to
play in the theory of transversal matroids, base orderable
matroids and gammoids., In fact practically all the known
structural results on finite transversal matroids can be
obtained by using this theorem. Sections 1 and 28 are devoted
to the illustration of this point.

In Section 3 we use the matroid union theorem to obtain

some new results,
We show among other things the following -

(1) Gammoids, stronzly base orderable matroids and base

orderable matroids are closed under matroid unions.

(2) Minimal non-base orderable matroids and minimsl non-strongly
base orderable matroids are atomic of kind (2) and 3-coanected.

(3) Minimal non gammoids are I-connected.

(4) B8eries connection is a special case of matroid union.
Dually, parallel connection is a special case of matroid

intersection,



(6) ‘i'he classes of binary gammoids, binary base orderable
and binary strongly base orderable matroids, and geries parallel

networks are identical.
Finally ve give a partial description of the P-sequence
of a series or parallel connection of two matroids in terms of

the P-sequences of the original matroids,




PRELIMINARIES

Below we have listed the definitions and terms used
in Chapters 1 and 2, Additional material required for
Chapter 3 is described geparately in that Chapter.

Most of the results given here are quite simple, They
are generally easy consejuences of Tutte's theorems /- Tu 8 _/.
The axiom system 1 is taken from/ "™d 1 _7. Axiom system 2
g due to Whitney 2~ wh 1 _J.

we have used Tutte's notation for the most part
(especially the definitions of contraction and reduction).
Probably the most significant divergence from his notation is
our use of the term bage for the 'complement of a dendroid' and
the use of the 'rank function' in keeping with the notation of
recent authors / Cr 10 _7,

Section 2 :+ General matroids

Definition 0.1:_ Matroid, Axiom System 1 3

A matroid s a pair (S,1), vhere 8 is a set and 1 {s
2 class of subsets of S called independent subsets such that
(a) BEvery subset of an independent set is independent

(b) Maximal independent sets contained in any subset of 8
are finite and have the same number of elements.

Dotinit}gn 0.2, Base t A mgximal independent gubset of a

matroid is called a base of the matroid,



Definition 0.3, Cobase : Complement of a base of a matroid
is a cobase of the matroid.

_lgonni.}_i_gn O.4. Circuit : A circuit of a matroid is a

mnimal dependent (or non-independent) set of the matroid. It
follows that every proper sgubset of a cirecuit is independent.

The class of circuits of a matroid can be shown to
determine a matroid uniguely, One can give an eyuivalent

‘definition of a matroid in terms of its eircuits as follows

Definition 0.!_5_,_ Axiom System 23

A matroid 1s a palr (S £ ) vhere S is a set and € 1g

a class of subsets called circuits guech that

(a) No prober subset of a eircuit is a cirenit

(b) I1f C, and Cy are two circuits and a 2 C; N Cy s
b¢g 02 - cl. then there exists a eircuit c.! such that
b2 Cy ad Cq Cuecy U Gy

Axiom systems 1 and 2 for a matroid are equivalent under

the following substitutions 1

Circuit = Minimal non-independent set

Indopon%ent 2 A set that does not contain a eircuit.

In the succeeding pages we will generally speak of a
EBatroid as a 'Matroid M on S', and usually avoid describing it

vholly in terms of its circuits or independent sets.



Definition 0,6, Contraction of a matroid :+ Let M = (8, & )
be a matroid and let T € 8, Let € X T be the class of those

meabers of 7= which are contained in T, The class €X T
obviously satisfies (a) and (b) of axiom system 2,

Consequently (Ty €X T ) 1s a2 matroid on T, We denote
this matroid by M X T, The matrold M X T is called the

contraction of M to T,

Definition O.7. Reduction of a matroid :+ Let M= (5, < )

—

intersections of the members of 2 with T, Let £, T be the
class of minimal members of L,. Tutte £, Tu 5_7 has shown
that 7, 'r_ satisfies the conditions of axiom system 2 and
therefore (T, £. T) 18 a matroid on T, VWe denote this matroid
by M, T, M, T is called the reduction of M to T,

be a matroid and let T € S, Let I.T be the clags of non-null

Definition 0.8, Minors of a matroid Let M be a matroid on 5,

Let T < 8. A matroid M, on T is called a minor of M iff

Hl'(nxa).l'whororf R € 8, We denote (Hia).'rby
MXR.Te

Definition 0.9, Dual metroid: Let M = (8,I) be a matroid

on a finite set 8 with I as its class of independent sets. Let
) & -bo the class of subsets of 5 which are contained in the
cobages of M. It is eany to see that (8, I* ) satisfies the
conditions of axiom system 1. Hence M= (S, I*) s a matroid,
™ 4, cnihd the dual of M,



We will next define duality in terms of axiom system 2.

Qefinition 0.10.  Qrthogopality:

Two sets S and T are sald to be orthogonal 1ff 8 N T 1s not

a singleton,

Definition 0.11. Dual matroid 3

Let M= (S, € ) be a matrodd on a finite set 5, with
£ as its class of circuits, Let © be the class of subsets of
§ which are orthogonal to every member of < , i.e, 6 -{1‘} TCs
and T is orthogonal to every member ot-e};

Let {’,‘ be the class of minimal members of 6,
Tutte / Tu -8 ./ bas shown that 2% gatigfies the condi tions
of axiom system 2 and therefore M* = (3, 2%) 18 a matroid on 8,
K" 1s called the dual matrod of M,

It can be shown that Definitions 0.9 and 0,11 are
squivaleat definitions under the substitutions

Circuit = minimal non independent get

Independent set = A set that does not contain a circuit,

‘Definition 0,18, Bond 1 Let M be a matroid on 8, A bond
of M 1s a cirecuit of M~,

T

Definition 0,13, arator + Let M be a matroid on 8. Let

T € 8 Then T is a separator of M {ff there exists no eireuit

intersecting both T and 8-T, We note that if T is a separator
80 is 8T, |



Definition 0.1l4, Elementary separator and connectedness

A separator that has no separator as ite proper subget
1s an elementary separator. A mitroid M on 5 is saild to be
connected 1ff S 18 an elementary separator of M,

Definition 0.15, Closure and closed sets @

hY
Let M be a matroid on S and let © <€ S\ Then the

closure of T in M 1g the set T , where
in{a‘ ag T or 1a‘ = C = T where /
C is a circult of H}'.
If T= T we call T a closed set.

Definition _g'.m. Rank and nullity

Let M be a matroid on S. Then the rank of M ig the
cardinality of a base of M, Rank of M is denoted by r / M_/.
Nullity of M 1s denoted by # £ M/ and defined by

AR B ER W ol A
Definition 0,17, Rank function t Let M be a matroid on S.
We define a rank function € on the subsets of S as follovws.

Let T C 8, then (T)=spr 2 MXT_/.

We now state some theorems without proof.  These results
are either taken directly from / Tu 8 _/ or are easy consequences
of results found thers.



Theorea J_Ih_ Let M be a matroid on S, Let b be a base of M,

let e 2 S=-b, Then (e} U D contains one and only one circuit
C. If e 2 Cy jel UDb = fe,l is a base of M,

Definition 0,17,  Pundamental circuit 3

Let M be a matroid on 7, Let b be a base of M and let
e 2 S~ Db, Then there exigts a uvnigue circuit C suech that
e C & ]05 Ub, We call C as the fundamental circﬁhit of e
with respect to b, A

s

Theorem T2, Let M be 2 matroid on S. (1) Let T & S. Let

A € T, Then A is independent in M X T 4ff A is independent in
M. (2) If A is indepeadent in M.T, then A 1s also independent
ian M. (3) If A is independent ia My and A N (S = T) is a1 base
of MX (S = T), then A N T 18 independent in N , T,

Theorem T3. Let M be a matroid on S, Let T € §,

(1) Ifbisabaseof Mand DN T is a baseof MX T (M. T),
BN (s-T)isabaseof M, (8= 1) ( MX (8~ T)),

(2) 1t b) 1s a base of (is independent in) M X T, by is a base
of (is independent in) M , (S « T), then b]. U l'.~8 is a base of
(is independent in) M,

Hence

(8) e sl  MXT T+l Mo (8-T)_T.

(4) If b i3 a base of M, thena b N T 1s independent in M X 7,
and b AT contains a base of K. T, |



‘Thcbrcl:_g‘d. Let M be a matroid on S, Let A & sS. If 1

is not contained in any base (cobase) of M, A contains a
circuit (bond).

Thecrem TS5, Let M be a matrold on S, Let C be any circuit

of Mand B be any bond of 4, Then C OB o= la], where
ae S.

Theorem T6, Let M be a matroid on S, Let A and B be disjoint

subsets of S such that A can be contiined in a cobase of M and B
can be contained in a base of M. Then there aerists a base b of

M such that A € S=-b and B < b,

Theorem T?, Let M be a matroidon S, Let T £ R € S. Then

(1) MXRXT = MNXT

(2) M. R.T = M, T

(3) MXR,T=M, (5« (R=-T))XT
(4) M, RXT= MX(5«(R=T)), T
(6) Every minor of a minor of M is a minor of M.
(6) (M)* = i

(7)) 2 LN 7+ M7 = 5|

(8) (Mx ¥ =™, 1

) M. H*=u"x7

(10) (Mxr. N = . rRxT

11) (M. RXY ="XR. T .

Theorem T8, Let M be a matrodidon S, LetR S T < s,



(1) Then R 1s a separator of Niff r /'K XR J = ¢ M. R

(2) If R is a separator of M, then
MXR=M,R=MXT,R=sM,TIR

(3) If R is an elementary separator of M and @ 2 R, 4 ¢ R,
then there exists a circuit Cy of M such that a ¢ Cy
‘and 4 € Cl.

ggeorou 9. Let M be a matroid on S and let ¢ be its rank

funetion, Let Tl' Ta be subsets of S, Then
UTy UTo) + Ty N Tg) g (7)) + € (T,) .

Theorem !12; Let M be a matrold on S, Let T C 8, T is a

union of circuits of M, 1fL (S-T) is closed in M, Tise
circuit of M iff (S - T) 1s closed in N* and r LM% X (8-TYer/ " /-

Section 3 s Matroidas of vector spaces

Let 8 be a finite set, S = {;1, O oo 'n} and let F
be a fleld,

Definition 0.18. Vector By a vector on 8 oveyr F ve mean 1

Bapping f of 8 into F,
f(oi) is called the value of £ at o.

The support |If/| of the vector £ 1s the set of all members of
§ whose values under f are mon-sero, If |[f[| = ¢ , then f s

the zero vector and it i{s denoted by 0 1 x (8]°



Definition 0.19. Sum of vectors @ The sum of two vectors

f and g on S over F is the vector f + g defined as
(f£+ g (e, = f(e,)+ gle,) forall 1€, ...n} .

Definition 0,20, Product : The product of A 2 F and a

vector f on S over F is a vec'sr )\f defined as

(M) (o) = A (f(e)) forall 1@ {1, .cccn} .

Definition 0.?21. Egctor space Let V be 3 collection of

Vectors on S over I which 1s closed under the operations of
addition of vectors and produet of elements of ¥ and vectors.

Then V ig called a vector space on S over F,

Definition 0,22, Elementary vector ¢t If V 4s a veector

space on S over F, then a vector £ 2 V is called elementary if
it 1s non-zero and there is no non-zero vector g 2 V which

satisfies |[g][C()f]| . (We use C to denote proper inclusion,
that is, AC B implies AS B but A wk B),

The following is a special case of a theorem proved by
Tutte £ Tu 8 7 s
Theorem Tl1, . Let ¥ be a vector space on S over F and ‘C'—v
the class of supports of elementary vectors in V. Then €y

satisfies the conditions of Axiom system 2.

Definition 0.23 We denote the matroid / 8, T, _7 by M,.
"V is called the matroid associated with the vector space V.



Definition 0.24. Binagy vector space : If V is a vector

space on S over F, where F 1s the field of integers modulo 2,

then V is called a binary vector space.

Definition 0,25, Binary matroid : The matroid My = (5, zfv)

assoclsicel with a binary vector space is called a binary matroid.

Definition 0,26, Primitive vector : Let F be the real number

field and V a vector space on S over F, A\ vector g2 Visg
called a primitive vector 1f 1t is an elementary veetor, all of

whose values are + 1 or O,

Definition 0,27, Regular vector space : A vector space V on §
Over F, where F 18 the field of real numbers, is called regular

1f corresponding to each elementary vector £ 2 V, there is a

primitive vector g ¢ V satisfying |[[f]| = ))gl| .

Definition 0.28; Regular matroid s If V 13 a regular vector

'Space on S over F, then we call “V = (8, f?v) a regular matroid,

Definition 0,929, Linear dependence of vectors

Let ri, ra P rn be vectors belonging to a vector
space V on S over F, Then ql’ tz ses th are linearly dependent
1£f there exist elements X s Ay eos N, belonging to F such that
(1) 5, are not all identically equal to O ¢ F.

(2) NI ¢ Ay fg oo anfn*- o .

L9 £g e f, are said to be linearly independeat iff they are

not linearly dependent.



Definition 0,30, Representative vector :

. Let V be a vector space on § over F. Then for any f e V
we define Rg1 the representative vector of f, as the l-rowved
matrix Rf = L-f(.l)’ seey f(.n) J.

Detinition_ghSI. Lineaf combination : Let V be a vector

space on S over F. Let f,, f,... f,.1 D€ Vectors of V. 4
Vector f is sald to be a linear combination of fl’rﬁ"'rn-l
irs £ rg...fn is a set of linearly dependent vaectors,

Definition 0.32, Representative matrix : Let V be a vector

Space on § over F. A matrix R with elemeuts in F {s ¢alled a

representative matrix of V 1f it satisfies the following

(1) The rows of R are linearly dependent
(2) Bvery non-szero vector of V has a representative vector

vhich is a linear combination of the rows of R,

It 1s clear that a representative matrix of V determines
the vector space V completely,

Definition 0.33, Let V be a vector space on S over Fy, and
let R be & representative matrix of Vo If T S s, then by

R(T) we mean the submatrix of R consisting of those columns of

R which correspond to members of T,

From linear algedra ve kaow, for finite S, that all
Fepresentative matrices for V will have the same number of rows

and that the number of rows cannot exceed the number of columns,



It is also a c&ﬁscquenco of linear algebra that if R is a
representative matrix for V; then any other representative
matrix R' for V can be obtained from R by R' = QR where J1is a
non-singular matrix. Consequently if R is 4 X an, the columns
of R which form non-~zero #-th order minors will also form

non=zero 4-th order minors in R' and vice-verss.

Theorem T12. Let the # X n matrix % be a representative

matrix for V, a vector space on S over F, Let T be a subset
of S. Then det [/ R(T).7 w4 0 1ff T 12 a cobase of My. The

dimension of the vector space is ejual to &4, the number of

elements in a cobase of M.,

Definition 0.34. Standard representative matrix

Let R be a # X n representative matrix for the vector

space V and let T be a cobase of H.‘,. By Theorem T12

det {"R(T)_7 w& 0, Let R' = /"R(TL7"L R. R' 4s called the
standard representative matrix of V with respect to the cobase T.
It follows that R'(T) = I, (The identity matrix of order &),

It is easy to see that a representative matrix R is a
standard represeatative matrix 1ff it has a unit gudbmatrix of

order equal to number of rows of R,

Theorem T12, Let V be & vector space on S over F and R be a
4 X n standard representative matrix of V with respect to the

cobase T of M,. Then the rows of R are the representative

Vectors of elementary vectors in V.



Theorem T173, Let V be a vector spice on § over F, Let h

and g be two elementary vectors in V satisfying |/ h}| = |[g]| .

Then h = g where ) 1s some member of F,

Definition 0.35, Orthogonality ¢ Two vectors f and g on §

over F are siid to be orthogonal 1iff

o r(Qi) E(Gi} = 0 »

91.

(£} ]

Definition 0,36, Complementary orthogonal space

Let V be a vector space on S over F. Let VX = {f { f
is a vector on Sover F, £ 2 Vand £ 1isg orthogonal to every
member of V} .

The set V© can be shown to be a vector space on § over F under
addition of veptors and multiplication of vectors by members of
F. V" is called the complementary orthogonal space of V,

From linear algebra we know that the dimension of the
vector space V*© {is equal to (8] - dim V.

Theorem T14. Let V be a vector space on 8 over F and V© be
its complementary orthogonal space. Let R be a representative
matrix for V and R* be a representative matrix for V. Then

x .t

where # = dimension of V* » r = dimension of V.

Theorem T16, Let V be a vector space on S over F and V™ be




its complementary orthogonal space, let the matroids associated

with V and V™ be M, and M;x respectivcly. Then, (M) = Mv‘ .

Theorem T16, Let V be a vector space on S over ¥, Let

dim V* = r, Then the bases of MV correspond to the non-gero
r-th order minors of R™ (where R" 1s the representative matrix

of VXy,

Another relationship bctween the structure of Hv and the
matrix RX follows from Theorem Tld4. By a minimal dependent set
of columns of a matrix we mean a set of columns which are
linearly dependent and any proper subget of them is linearly

independent.

From Theorem Tl4 it is clear that the minimal dependent
sets of columns of R correspond to the representative vectors,
in the row space of R, of elementary vectors in V, COnuqucntiy
the minimal dependent sets of columns of R™ correspond to the

members of fv.* A dual statement can be made for Rand ¢ _ .

v
Theoremr T17. Let M be 2 matroid on S and M" be its dual, Let

D beabagseof Mand let € € S= Db, Let d @ b, Let Cl
be the circuit of N such that C, ¢ {e}U b, and let C, bo the
eircuit of M* such that C, € 4{U (8 - b).

Then 4 ¢ Cl iff e ¢ Cgo

Theorem T18, Let V be a vector space on S over F and let V"



be ‘11:3 complementary orthogonal sgpace. Let R be the standard
representative matrix of V wi th respect to a cobase S - b of
M, and R® be the standard representative matrix of V" with
respect to the base b of M, ( or cobase b of Mv“ ).

Let dimof V= r, dimof V" = 4

kK J/
1,7

(where I, 1is the ideatity matrix of order «),

Then 1f R = [ I,

R® = ("-k®

Lo p—

Definition 0.37. VXT, V, T 1

Let V be a vector space on Sover F, Let T € S, Then
wve define a vector space V X T on T over F (under the usuval

vector addition and scalar multiplication) as follows

VyX7Ts= {r{ fev , r(oi)so ifr oies-'r}.

We define the vector space V., Ton T over F as
V.Tas{t/rPeev] . #/T=1 restricted o T .

Theores 718, Let V be a vector spaceon Tover F, Let V X T
and V . T be defined as in Definition 0.,37. Let My, M, Y 7
My, . T be the matroids associated with V, VX T, V. T
respectively.

Th.ﬂ uvxr.(w)x,

My = OR) . T



Also . (V. T = v®x7o , (v )Yav®*,r .

Theorem 720, Let V be a vector space on S over ¥, Let R

Cornlaing
be a representative matrixof V., If T &S, R(T) ira

representative matrix of V o T, asc Anbmaluy

Theorem T2]1, Let V be a vector space on 8 over F, lLet T C 8.
Let Ll be a base of (Mv)‘ X (s« 7T) and L2 C T be a base of

()% . T,
Let r (M X(s=-1)7 = #

“L.(HV)‘X(S-T)J- ry
rL-( "v)‘,o TJ = “g
sl or ) =,

Let R be a staniard representative matrix of V chosen with
respect to the cobase I'l ) I.2 of K .

T | ST

R | o ! 1 ]

n | w1 Rie

. I | —
Let R = l I 1

Then (1) Ry, = O%ug x 7,

(2) The standard repressntative matrix of V X T with
' | - ]
respect to the cobase L, of is = R I .
sp seLoof My x gis Ry x o =L Ry 1 Lo J



Section 4 Graphs

Definition 0,738, Graph s A graph G is defined by.

(L) E (G), a finite set of edges

(2) V (G)y, a finite set of vertices and

(3) a relation of incidence which associates with each edge
a palr of vertices, not necessarily distinct, called its

ends,

Definition 0.39. Loop : An edge with coincident ends is

called a IOO‘D-

Definition 0,40, Subgraph A graph H 18 called a subgraph
of G if E(H) < ®(G), V(H) S V(G) and the ends of the edges

in H are same as in G.

Uefinition 0.41. Reduction of a graph : If § S E(G) we

denote by G . S that subgraph of G whose edges are the members
of 5 and vhose vertices are the ends in G of the members of S,

G . 8 i8 called the reduction of G to &,

Definition 0.42, Valence of a vertex : Let v ¢ V(G). The

A T R

valence of v is equal to the number of edges incident tc v,

vhere loops are counted twice,

Definition 0.43. Polygon graph A connected graph with
each vertex having valence 2 is called a polygon graph.

Definition O.44. Polygon and loop ¢ A set 8 & ®(Q) is



called a polygon of G 4f G . S is a polygon graph., A single
edged polygon of G is called a loop of G,

Theorem T22 (whitney) £~ wh 1 _7. Let G be any graph and
let {G denote the class of polygons of G, Then ﬁG satisfies
the conditions of axiom system 2 and thus defines s matroid on

the sat F(G).

Definition 0.456., We will call the matroid (m(G), 7.} as

the polygon matrod of the graph G and denote it by Pol (G).

Definition 0.42;_ Cographic matroid A matroid whieh can

be represented as the polygon matroid of some graph G is said

to be cographic,

Let G be a graph and 8§ €& E(G), Define H to be the
subgraph of G with vertices V(G) and edges (E(Qd) - 8). Let
B, for 12 {1, «00 p | denote the connected components of H,

(A graph G is said to be connected if between nodes Vyr e v(a)

one can find a sequence of edges such that -—

(1) vy is an end of the first edge, vj.ia an end of the last
edge.

(2) 1f €1 @, 8T edges in the sequence they have a vertex

in common,

A maximal connected subgraph of a graph is said to be a connected

component of the graph). %The graph @ c¢iv. 8 has the vertex set

{.“1’ Hy oeo Hp} and the edge get 8. The ends of a member ¢ ¢ 8

in G cv. s are those components H‘l uﬁd Hia which contain the ends
of e in G,



Definition 0.47. Contraction of a graph Let G be a graph.

Let S € B(G). The contraction of G to 5 18 denoted by G X ©
and is defined by G X 8 = (@ c&. g) . s,

(¢ ctv. s may have isolated vertices, G X S is obtained from
G ctv 5 by deleting the 1solated vertices).

Definition 0.48. Bond graph s A graph G 1s called 2 bond

graph if V(G) = {vl » Yol » E(G) £ ¢ and the ends of each
member of E(G) are Vi and Vo

Definition 0.49., Bond and coloop t Let G be any graph and
S S E(G). S 1s called a bond of G 4ff G X 8 is a bond graph.

A single edge bond of G is called a ecoloop.

Theorem T23,  Let G be a graph and €., be ite class of

bonds. € ;, satisfies the conditions of Axiom system 2, and
thus defines a matroid on the set %(G),

Definition 0.60, Bond matroid s  (E(G), £;,) s called the

bond matroid of G, and denoted by Bon(G).

Definition 0,51, Tree 3 Let G be a graph, A tree of G
1s a maximal set 8 < E(G) which contains mo polygon of G,

Obviously a tree of G is a base of the matroid Pol (G)

and vice versa.

Definition 0.52, Cotree 1

Let G be a graph. A maximal set T & B(G) which contains

no boad of G 1is called a cotree of G,



Clearly every cotree of G 1s a base of Bon(G) and
vice versa,

Definition 0.83. gbtf_g_e_ ang_z subcotrg_o_ ] A subsét of a

tree is called a subtree and a subset of a cotree is called a

subcotree.

Subtree and subcotree are the graph theoretic counter-

parts of an independent set of ™M and M” nspy.).

The number of edges in a tree of G 1s the rank of G
denoted by Y*(G).

The number of edges in a cotres of G is the nullity of
G denoted by 4(G),

Theorem T24.  Let G be a graph and § < E(G). Then

Pol(G) X S = Pol(G . S)
Pol(G) . 8 = pPol(G X S)
Bon(G) X8 = Bon{(G X 8) .
Bon(G) . 8 = Bon(G , 8) .

Theorem T25, Graphic and cographic matroids are regular

matroids.

Theoren Tﬁ_ Every regular matroid is a" binary matroid and

hence graphic and cographic matroids are binary matroids,



Section 5 s Matrices

Definition 0.54, Positive definite and semidefinite matrices ¢

Let P be 3 real sjuare matrix, Then P is saiq to be a

positive definite matrix iff

Yt PY > 0 for all non-=null real column matrices of the
same auaber of rows as pP.

P 1s gaid to be a1 positive semidefinite matrix $£f

It PY > 0 for all none=null real column matrices Y of the
same numsber of rows as P,

Theorem T27. Every prineipal submatrix /~ submatrix whose

. Principal diagonal is a subset of the prineipal diagonal of

the original matrix _/ of a positive-definite (positive semi-
definite) matrix ig positive definite (positivo-aeud-dotinito).

Theorem T28, Every positive definite matrix is non=gingular,

Inverse of a positive definite matrix is positive definite.

Theorem T29, (1) If P is a positive-gsemi-definite matrix the

“
matrix TPT® where T 1s a real matrix, 1s positive semidefinite,

(2) If P is positive definite and T has linearly independent
rows TPT® is positive definite,

Theorem T30, Sum of a positive definite and a positive sonl-I 3
definite matrix is positive definite,

Theorem T31, Let P be a symmetrie positive semi-definite mtrix,




Then there exists an orthosonal matrlix T such that
3

Tp = A

'OJ

{

where the Ay are posit:ve 224 ¥ = rank of P,

Section 6 : Partial order andjartitiog_g

Definition 0,86, Partial order and its dual 1 Let 5 be a

set. By a partial order L on S we mean a pair (&, >) whers (>)
is a relation defined on 5 such that

(1) a > b implies b > a is not possible (we write briefly b i a).
(2) a>by, b>d4 implies a > 4.

Let L be the partial order (S, >). The dusl L’ of L is the
partial order (S) >'), vhere a >' b ( a, b2 S) 1£ff b > a 1n L.
It is clear that the dual of L' is L,

We writera 2> b 1ff a >Dd or as=b,

Definition 0,56, Partial order on the set of partitions 1
Let § be a set. LetP be the set of all partitions of 8.
g

Then we define a partial order on 1 as follows 3

e}
Pz Py Pyeee Pp) L UP =8 PO Py=0 (1)) 7.



' o
QE(QI’ anoo Q-)Liulqi-s’ ‘din"‘J'dJ (1*1)_7
=
Then ¢ > p 1ff p 1s a refinement of q i.e,

(1) a > m
(2) - For every 1 2 {},2 — n} g we can find a § € {1,2 ...n}
such that

If q>2p we say p 1s finer thang or q is coarser than p.

Definition 0,57, Let T S ., Then p 2 P 1s said to be

the supremum of T 1ff
(1) p>q forall q€ T and
(2) s8>q forall g€ T implies s >p or s =p,
pe ¥ 1s said to be the infimum of T 1iff
(1) ¢g>p forall g€ T
(2) p>8s orp=s (p>s )..i.é?i«mJolLeA by 9>3 forallgeT,
For any py q € ¥ 1t can be shown that {p,q} hag both
a supremum and an infimum,
(_ If ’! ( p1’ Pa-oo Pn)
‘I: ‘ Q1' q’_"° Q. )
the infimum is formed from
Pln Ql' Pln Qa ssep Plﬂ Q-’ eee 'Pﬂn Ql’ ceey Pnf) Q.

by dropping the wvoid sets).



' The above order on partitions actually defines a

geometric lattice.

Section 7 1 &utologghisu of matroids and graghs

Definition 0,58, Let M be a matroid on a finite set S,

A mapping o~ from S onto S 1s an automorphism of M Iff
(1) o 1s one to one
(2) If b is a base of M, then o~(b) is a base of M (By o~(P),

P £ Swe mean U {O"(l)} de
agp

The fcllowing simple theorem from / Gal 1 _/ is stated without

proof.

Theorem mﬂg_._ Let M be a matroid on a finite set 8, Let o~

be a one to one mapping from S onto S, Then the following are
equivalent.

(1) o~ 41s an automorphism of M

(2) "1 15 an automorphism of M .

(3) If C 1s any circuit of M, o=(C) 1s a circuit of M
(4) If b is independent 4n My, o~(b) is independent in M
(6) o~ is an automorphism of W%, |

Definition 0.59, Lef M be a matroid on 8.

Thea A(M) = fa | 425, a can be included 1n some base of M and
some cobase of H}.

B(M) = {a I a8, a cannot be ineluded in any cobase of ll.}



i.e. a2 2 B(M) iff fa‘; i3 2 bond of M (a is a coloop of M),
B(M) would be referred to as the set of coloops of M.

C{M) = {a ) a2 8y a cinaot be included in any base of M}
C(M) 4ff fa$ 1s a cireult of M

6id

l.e. a

( a 1s a loop of M ).
C(M) would be referred to as the set of loops of M,

Theorem T33. Let M be 2 mtroid on S. Then A(M), B(M),

C{M) are invariant under the automorphisms of M,

'l'heot_'_gn T, Let 4 be 3 matroid on 5, Let Bl' B B

2 [ B 2 n
be its elementary separators, Then if o~ is an automorphisgnm

of M, -
0"(31) - BJ s for QQJ‘“-é:g. e {1’2’ eee n} °

Proof +  Suppose o=(B )N B: & ¢ and o-(Bi) N By 56 ¢
Vhere BJ e B . Then there ex:lstg a8 ¢ B, and age B, such that
o—(a) ¢ B-J and o~(d) ¢ Bk' Now there exists a circuit C of M
such that a 2 C and 4 £ C by Theorem T8, But there oxists no
eircuit C; of M such that o~(a) @ C, and o~(4) g8 C;. Hence

0~(C) 1s not a circuit, which contradiets Theorem T292,

Definition 0,60, Alitomi'phim of a graph ¢ Let G be a graph

and V(G), B(G) be 1its set of vertices and set of edges
respectively. A mapping o= from E(G) onto B(G) 1s an edge
sutomorphism of the graph 0 iff

(1) o= 1s one to one
and



(2) 1f edges ¢ 1 0 ... 9 are lncident at a single node,
AT ave Cle,)y - - &€ |

and

(3) 1t e is a loop of G (ecoloop of G) c—(ei) 18 a loop of G

(coloop of G).

A mapping « from V(G) onto V(G) is a vertex automorphism
of the graph G iff
(1) « 1s one to one and
(2) Ir Vir V5 2 V(G) and k edges ( K 2 0 ) have v, as one end
and Vs, 38 the other end, then k edges have d(vlj ag one end and

«(v,) as the other end.

Theorem T36, Given 3 vertex automorphism « it 1s always

Possible to find an edge automorphism o~ (and vice versa) such
that if edge e 15 incident on vertices Vv, and v,, then o-(e) 1s

~incident on vertices «(v,) and «(72).

1t 1s easy to see that every eodge sutomorphism of a graph
is an automorphism of Pol(G) and Bon(G)., Hence sets which are
invariant under the automorphisms of Pol(G) (or Bon(G)) are
invariant under the edge automorphisms of the graph G. / However
unless the graph is 3-connected every automorphism of Pol(0) is
not necessarily an edge automorphism of the graph G _7. From
Theorem T35 it follows that edge sets invariant under the edge
Sutomorphisas of G 'induce' vertex sets invariant under vertex
automorphisms of G and vertex sets invariant under vertex
automorphisms of G ‘induce’ edge uta. invariant under edge

automorphisms of G,



Definition 0,61, Let 01 and ll3 be two graphs. A mapping

« from V(G,) onto V(Ga) is said to be a vertex 1somorphism
from 01. to Gg 111

(1) o« 1is one to one and
(2) 1r v V0 V(Gl) and k edges ( k > 0) of Gy have vy, as
one end and v, as the other end, then k edges of G, have q(vl)

as one end and d(va) as the other end,

A mapping o~ from E(Gl) onto E(Gg) is an edge isomorphism
from Gl to c}2 iff

(1) o= 1s onec to one and

(2) 1r @7 €5 seo & are incident at a single node in G;» then
o-(ol), o-(e,) «oo o-(e, ) are incident at a single node in Gg»
and

(3) 1If ¢, 18 a loop (eoloop) in Gy» then o~(e, ) 1s a loop
(coloop) in Qg o

Two graphs 01 and 62 are siid to beisomorphic iff there
exists a vertex automorphism from 01 to G?. We can see that
this i1s equivalent to the following :

Two graphs 01 and 03 are said to be igomorphic 1ff there
exists an edge aisomorphism from G; to G, |

S8ection 8 Graphs and vector spaces

Definition 0,82, Oriented graph s A graph G, each of vhose

edges has a positive and a negative endy, is an oriented graph,



Definition 0.63, Let G be an oriented graph., We define

the integer 7(e,v) for esch e € B(G) and v g V(G) as follows

0 if v 18 not an end of e or ¢ has coincident
ends
N{ey,v) = 1 1f v 18 the positive end of ¢

-1 1f v i3 the negative end of €.

Dofinit{gg O.64, Let G be an oriented graph and let

E(Q) = {01; ceeny 'n} and let f be a vector on E(G) over the
field of real numbers F. We call £ a l=cyele of G over F irr

n
T N(e,y v) £(e,) = 0 for all v ¢ V(G).
j=1 i i

Definition 0.68, Let G be an oriented graph and V the class

Of lecycles of G over F. It is clear that V is a vector space

on B(G) over ¥,
V is called the le-eycle space of G,

Theorem T36, Let G be an oriented graph on E(G) = £ and V be

its l-cycle space. Then if 7 vy 1s the class of elementary
'Qﬂtor. of Vg
Pol (G) = (3. ﬁv) ®

Definition 0.66, Any representative matrix of the l-cycle space

V of the orieanted graph G, 1s ealled a gircuit matrix, A standard

Fepresentative matrix of V is called &8s a fundamental circuit
Natrix, -



Definition 0,67, Let G be an oriented graph. Let g be a
vector defined on V(G) over ¥, where V(G) = i'lg sos V-} « We

define a vector f on E(G) over F by

m
T M(ey 13) t(vJ) for all e, € B(G). £ 1is

f(oi) = L

called the coboundary of g.

Perinition 0.68. Let V' be the collection of all coboundarioa

of all vectors g on V(G) over F, It is clear that V' 1s a
vector space on E(G) over F, V' is called the coboundary space

of G,

Theorem T37, Let G be an oriented graph on E(G) = 8 and V' be

{ts coboundary space. Thea if Zy, 1s the class of elementary

vectors of V',

- Bon(G) = ( 8, ZV' ) .

nginition 0.69. Any representative matrix of the coboundary

space V' of an oriented graph G 1s called a cutset matrix, A
standard representative matrix of V' is called a fundamental

cutset matrix,

Egeoron T38. Let V be the l=-cycle space of the orienfod grnph

G and V' be the coboundary space of G, Then V's (vy* .



CHAPTER 1

DIAKOPTICS FOR ELECTRICAL NETWORKS

In this Chipter we give 21 self-contained znd fairly
rigorous aceount of 'Wetwork Anilysis by Tearing' in the

glightly abstract setting of ‘'generalised networ:s',

'"Diskoptics' 15 a term coined by G. Kron for plecewise
analysis of large scale systezs / Kr 1 _/. FKron has claimed
that his theory is apnlicable to nurerous fields such as
linear programming, hydrodynamics, elasticity, crystal optics
ete, |
| We have, however, confined our interest only to
electrical networks, We, therefore, do not need to use tensors;
vectors and linear transformations being sufficient for our
purpose. We have pertitted the presence of Ry L, C elements

and mutual inductances.

In /" Br 1 _/ Bruno and Weinberg have used regular
matroid theory to examine neport resistance networks. ( A
consequence of such a study is that one obtains a clear and
accurate picture of duality in :uch networks). This is done
thfough the use of an interesting abstraction of ordinary
networks which they have termed ‘generalized networks', In
this Chapter, in the main, wve follow their line of thinking,
However, our interest is primarily in methods of network



analysis, For this study one basically needs the following

ideas

(1) The coboundary space and the l-cyele spice are vector
spaces over the field of real numbers,

(2) These spaces are orthogonil complements of each other.

(3) It is convenient to imagine eich edge to be a composite

entity being composed of a voltage aource, a current source

and a passive element in the usual manner (as in Fig. 1.1).

Of course one or two of these elements might be abseat in

& particular edge. Actual analysis is carried out conveniently

in a network which has no edge composed wholly of sources.

For thig we need the idea of transportation of sources,

(4) There is no need to restrict oneself to resistancs

netwvorks. The methods that we digcuss are equally valid with

mutual inductances, We, therefore, assume a symmetric positive

definite immittance matrix,

(6) uWe do not need the fact that the fundamental eircuit or

cutset matrix is unimodular.

(6) We do need the ides of matroids of vector spaces in order

to bring out the duality of the inthnll of analysis. Ve deal

with duality in a fairly simple manner. We develop the theory

in terms of certain vectors, matrices and satroids obeying

certain conditions. At no stage in our analysis do we use

properties which are possessed by current vectors but not by

voltage vectors or vice versa. Hence from this theory one e¢an

obtain the dual methods of analysis by making substitution of



duﬁl entities in our vectors, matrices, matroids ete,
Consideration of the above leads us to the conclusion that we
can afford to be more general than in Br 1 _7. Our model
of an electrical network, therefora, differs from that of
Bruno and Weinberg, Hence our definition of a'generalised

network’ is different.

It must be emphasized that the abstraction carried out
1s not just for the 'sake of abstraction'. Our abstraction

hag two main aims :~-

(1) to define basic concepts precisely and

(2) to develop a theory that brings out the dulity aspects
clearly.

A justification of our approach is ylelded by the fact that

the insikht ve gain by it has enadled us to develop a simple

and new method of analysis by tearing (see Case 1II) without

which Kron's theory cannot be regarded as complete.

In Section 1 we define and study generalized networks.
We develop certain results which enable us to confine our
attention to 'canonical generalised networks' which correspond
to networks in which each source is 'accompanied's We also
show that solving for a certain mixture of the network variadles
is ejuivalent to obtaining the solution of the network., In
Section 2 we develop and justify Kron's method of Diakoptics
and in addition, give a2 aew extension which, in a sense,

completes his theory.



s.qg}on 1

Generalized Networks

Let V be a vector space on a finite set S over the
field of real numbers F, Let M, be the matroid associated
with V. The set S is partitioned 1nto_throo sub-gets So’ Su
and S i.e, 8 = So W S, YV B

Let So = {gl, €ny eee op} ’ so = 'The set of ordinary elements'

Su = {c_p+1, vecee 'q} |
| S\f w {.qtl' secee Qn} °

~Definition 1.1,  We now define the solution vectors u, w and

the source vectors u, w, with 9y = uleg)y v, = wleg),

g = Bey)y W= ¥(e,)s (o, @ 8). We partition the vectors p, v,

8, as follows

y ¥ in conformity with St Syr 8,
r - 4 h '-dl 3 '- i
L Yo % Yo




where

t t
‘Eo = (ul’uz see up)' gu = (up+1' eesn uq )
t t t,=t =t =t =+t
Yo = (uq+1' cee “n) and Yo ¢ ¥ o ¥, VU0 Byr Uy ¥
iut, §vt etc. have similar meanings.

= =

Ilu Ilu 9 u 0 §
= =

W v wu 0 ]

Qur aim here is merely to introduce analogous concepts
to the three types of edges in an ordinary electrical network —
(1) the set 5, of edges each of which is a composite edge
associated with a passive element, a voltage source and a
current source as in Figure l.1. / The direction of positive
current flow is in the direction of the current arrow. (The
arrow head is not darkened). The direction of the voltage rise
ig opposite to the direction of the current arrow dbut ian the
direction of the voltage arrowv. (The arrow head is darkened) _/.
(2) The other two sets of edges are each composed wholly of
one type of source i.e. if one takes § (§) to be voltagc‘lourecs
and b(¥) to be current sources, then 3, 1s composed wholly of
current sources (voltage sources) and 8, is composed wholly of

voltage sources (current sources).



F1G-1-1.

THE ORDINARY EDGE




Next w§ stipulate

L vy ~¥, 7 = 0o p -8, 7

Wwhere G 13 3 real symmetric positive definite matrix,

G serves as our 'immittance matrix'., There is some
possibility o: confusion here, In actual practice, when one
works in the frej uency domain, G could be composed of three
types of olemnta -

(1) R, a positive element
(2) sLJJ and ILJk s where ij. ij are positive and
s is a complex variable

(3) —;é—-— ’ Cpp a positive elenent.
PP ;

One then obtains certain matrices, involving s, to be iaverted.
In order to justify the Diakoptice procedure, one has to show
that these matrices are non-singular at least for some values
of s, wWhat we are doing here is to show this for all positive
real values of s,

-1

G is non-singular by Theorem T 28, VWe denote G = by H.

We now introduce conditions equivalent to KCL and KVL.
This we do by stipulating that ut

e

be the representative vector
of some member of V, and !t be the representative vector of some

member of V', As there is no possibility of confusion, in the
interest of simplicity ve write the generaligzed XKCL and KVL as



€ V (instead of ‘'there exists a vector £ ¢ V such that
'gt is a representative vector for f')

v!

€

v
We are now in a position to define a generalized network.

Definition 1,2 A generalized network N 4is a guadruple

(MV' Vy Gy S), where S 1s a finite set, V is a vector space on

S over the real field F, "V is the matroid associated with V
ind G 15 a real symmetric positive definite matrix., We nay
often call N just a 'network', since only generalized networks

are considered in thig Chapter.

The generalized network equations are

aev oo (1)
ve v o (2)
!o-gclc(go-zlo) o0 (3)

The set qo is the set of ordinary elements while 8 ’ aw are

v
sets of gource elements. (Equations (1) and (2) are the
‘topological' constraints on u and ¥ vhile matrix G corresponds

to the immittance matrix).

Definition 1.3. A palr of vectors ( uw,¥v ), satisfying the

- generalised network equations (1), (2) and (9), we will eall a
‘solution’ of the generalized network for the souree vector pair
( @ ¥ ). When the source vectors are clear from the context

ve will call ( u, ¥ ) merely as the "solution’,



Analysis of Generalized Networks

We will now consider the problem of obtaining the
solution ( ¥, y ) when the source vector pair ( 8, ¥ ) 1s
glven. This procedure we will term 'solving' the generalized

network,

Definition l.4. A generalized network N = ( M#, Vy, G, 8 )

is 8ald to be a U,5.G. (unijyuely sclvable generalized network)
network iff

(1) S, 1s contained in a cobase of My » and

(2) Sw i3 contained in a cobase of ( My )'- Ilvl .

One of our aims in the succeeding pages is to show that
this name is justified for such networks 1.e. 1f N 1s a U.S.G.
network, for arbitrary source vectors u, w there exists a

unique solution ( u, v ).

We note here that 4f £ 8 V and xt is a representative
vector of f, we write x @ V;also we define ||x|| = |if]| .

The following theorem is well known for ordinary networks.
In £'Br 1 _7 this theorem is proved for a slightly different
kind of 'gonerauzod’ network', The proof however is essontially
the same,
Theorem 1.1, Let N be a generalized network that is not U.8.G,
Then there exist source vectors U, ¥ such that ¥ has no solution.
Proof. Let N be not U,5,G. 8ince the network eguations are



obviously symmetric with respect to V and 7= {(and therefore

"V and Hv' ) ve need merely consider the case wvhere condition

(1) of Definition 1.4 1s violated.

Suppose S, can be contained in no cobase of My, Then 1t is
clear from Theorem T4, that there exists a circuit C of (Mv)'
such that C £ 3 .. Then there exists a vector x 2 v™ sueh

u
that || x]] = C by the definition of M, .

By the generalized network eyuations

-x°y = 0 te. xPu o= o0 .

This shows that there exists a linear relationship between the

coordinates of u . But by definition of source vectors we

have u = Uu

Hence there exists a linear relationship between the coordinates
of B, which means that 1f we choose U violating this linear
relationship, the network would have no solution,

Q.E.D,

The reader may note that U,8,C, networks correspond to
networks which do not have a cutset composed wholly of current

sources or a circuit composed wholly of voltage sources.

Definition 1.5,  Two generalized networks N, = (My, V, G, 8)
and .8 = (u,,l, 71. G, sl) are said to be similar iff there
exists a bijection T 5o < 89 (from the set of ordinary
elements of Nl to the set of ordinary' elenments of ’z) such that



for any specification of sources ( U, ¥ ) for network Np»
there exist sources ( u', ¥') for N, such that if ( u, v ),
( u'y w' ) are any corresponding solutions for N, and N,, the

following conditions hold t

wvhen L g2 8

o °? T(.i) 2 310 9 then

(1) 9y =8 = Pyqq)~ 2 eq) o

(2) wy~¥% = ¥y~ ¥ ray -

It is easy to see that similarity is an equivalence

r.latiﬂno

Definition 1.6, A generaliged network N, = (Myy V, Gy 8)

is said to be in canonical form iff

S_u =8, = ¢. We will call Ny, a canonical network.

We will find it convenient to handle canonical networks.
(Theorem 1.2 indicates this), If we could transform any network
into a canonical network wvhose solutions corresponds to the
solutions of the original network, we could be satisfied with
considering methods of analysis for canonical networks alone.

Theorem 1,9 describes such a transformation.

Theoren 1,2, Let ¥ = (M;y ¥y Gy 8) be a canonical network.

Let u, v be 1ts source vectors. Then N has a unique solution

Cuy ¥ )



Proof. Let R be a standard representative matrix of vX
with respect to a base b of l(v. We then have the following

condition on v .

g =0 .

Let R® be partitioned as follows
b | s-b
R® = |
x
o L

conformity with g as

] $ let u Dbe partitioned in

Then
[U i“la'] E"W =0 .

(%2 |

o i"lﬁ‘] ahl L o {lﬂu"}' B

20 © %9 | | N | 9e

>

8Bince u - 3= H(y e~y ) for a canonical network by (3) in
Definition 1.2, wve impose this condition next.



l nN | v |&
o« o
[U I Rlz ] B ---:-.. 2 e [U 'Inlg | :—-
Y2782 (%2
Hence
. r- h /- -\
' 51 | LSTE ]
o «
[U :812] H|eea| = [u ,'312 ]H-:--»w e ee (1)
¥a \‘3% L.‘.’g J
- )

= § ' say.

But by (2) of Definition 1.2, w ¢ VX, Hence ve must have

’!1 h [ W ?
- = = Vo o e !1 ®
g | (Rlz!)t [ ]
\, / - p
Hence
- B ~
o o] o | g
| x.t
(Byq )" | |

Let us call the coefficient matrix on the L.H.8. as H. Now by
definition G 1is positive definite. Hence, by Theorem T28 H is
positive definite, Hence

!

- ]

H = [U lam'] H |eecceses is positive definite
I

%
\.(nll ) 3
by Theorem T29 and is therefore noan-singular,




B wy= 8 .
H l boosti -1 -‘
ence y=(H)"9 .
Clearly v, is uniquely determined for given 4 and y . Now
x .t
Yo = ( Ry ) ¥ . Hence w 1s uniquely determined.

Also, since N is a canonical network,

.H(!'i) .

Thus u 1s uniquely determined., It is easy to verify that the
Vectors u and w that we have obtained above do indeed satisfy
conditions (1), (2) and (3) of Definition 1.2, Henece ( u, v )
is the unique solution of the network N for the given source

pair ( v, v ).

q. E. D.

Theoren 1:_:3:_ Let N = ( llv. Vs Gy S ) be a U,8.,6, network.,

Then there exists a canonieal network Nl = ( llv ’ Vl, G, 31 )
1
such that N and N1 are similar,

Proof, Let R® be the standard representative matrix for v" |
vith respect to a base b of My Let R be the sﬁndard representa-
tive matrix for V with respect to the cobase 8 - b of My. R, R‘.
are partitioned according to 1, ¥y as follows

%0 , % E & 80 | 8

SECRES LTI R AR



Let us take b to be such that b 2 3, and b N8 = 9.
This 1s possible by Theorem T8, We can then further partition

R as
8, N (8-b) 8yN ® I 84 Sy
r ' J “\
U - Bg 0 Ris
R =
0 R 1

By Theorem T18, R' can then be expressed as

so N (8=b) son b sn 8,
f £ t *
R‘ =
t t
. “Me ! 0 *Ryy | U |

Consider the matroid llv X ( 8°U S, Yo S&rs M, .(Bo i su) X8, = N

(Viae (VX( 8o U 8, )) ¢ 8y)e By the use of Theorem T21, V'
has the standard representative matrix R' with respect to 8, N (8-l

8o 0 (s=8) | 8,0 b
|- |
R' = [ U I 81’ J
By Theorem T18, (n'j" y the standard representative matrix of

(V)% vith respect to the base b N8, of K, , bas the
following form @



8, N (5=b) I 8,0 b

e [ g v ]

Now suprose N has the source vectors

. o
%0 (!10
- .
220 | | ¥a0
E’ = - . o 9 i = : - "
Pa Yu
\ g' y . !' o

the partitions of @ and ¥ being carried out in conformity
vith the partitioning of matrices R and R*.

Let the corresponding solution of ¥ be ( 4y v ) such that

RN NS E AR A S I

t t: ¢t

v o= (¥ | ¥ | ¥y .

!v .

¢

Goni:lc_hr the eanonical network '1 - (llv.. V', G, so) with the

lourecf ) ; 5
o | %0 em  [fgmg, | 50 e
§' = -----—-;:“ » i' - ---:-—-m
*\gm-aﬂ qu-u J - B’ nd L !m J | Son -




Then we claim that the pair ( u) w' )} defined below forms g
solution (and therefore by Theorem 1.2, a unigyue solution)

for N,. We have to show that

(1) R'y'=0 , (2) ()% y' = 0  and

(3) (w,' -9, ) = a(u'-38"') .

&'

From the generalized network equations for N we have

(1) R w = 0 ,

Hence

o dn) =y mnes

Therefore . %

!id*n14 v

(I [t

\ !m

o

Again, from the equations of N,

R‘!IO "
-



Hence 2o )

But u. = . . Therefore

l ] -‘-'10-‘

t |
[-E’llg I U ] -------;“- = g °
L QO-RBQ % J
S
We now define
’ : r. - “
i 0, | ¥10*P1q Yy
E 9 = - e o ou e & @ O G o » !' = - 9 5 O I W e P
{u,.~R ta v
\. 20 ga -n ¥ \, -m )r

It is easy to see that

G- Bo =0 -8 = #'-B' (8,78 =0 for N )
Yoo ¥ ¥ ¥ xS .

Bince (w, ~ ¥, ) = 6(g°-§°) s it follows that

(Yo' = %' d=0(g'=8') .



Thus the pair ( u', wv' ) satisfies the generalized network
equations of Nl and also the conditions of similarity with N,

We have shown that for any source pair ( u, y ) of N
and a corresponding solution ( u, w ) we can specify a source
pair ( u', w' ) of N, such that the corresponding unique
solution of Nl satisfies the conditions of similarity of N with
Nl' Clearly this implies that N and N, are similar. Since Nl
1s canonical, this proves the theorem,

Q. F‘. D.
Corollary, Let N = ( Mys Vy Gy 8 ) be a U,S,0, network.

Then 1f u, w are a pair of gource vectors for N, there exists

a unigue solution ( u, v ) of N for this source pair.

Proof, We will first show that if a solution for N exists

it 1s unique. Choose a base b of M, such that b 2 8, »
b N 8y ® ¢ . As in Theorem 1.3, take R ag follows

8, N (8~b) 5N b Sy : 8,
( v Ry g 0 Ry h
R = i .
. o aﬂ I v | Rm

Take V' to be the vector space, V' = V X (BO'U 8') o By o

Then llv. OHvX(SoUG').So -



V' has the standard representative matrix R' with respect to
(5, N (S=b)).

g N (s=b) son b

:
(e )

(v")* has the standard representative matrix (R')“ with respect

to Sonb,

|
|
ey -r v |
(R*) [ R12 i U ]
The network N = ( Mgy ¥y G, 8o ) 18 canonical and has a

unique solution ( u', w') for the source pair ( u', y' )

f - - - 1
%10 | ¥10*R14 ¥ |
§' - cCoRTeoEeeos ) g. B W I e B .
- o te -
(820722 %y . Yo

(We have taken U, ¥ to be partitioned in accordance with R
30 that |
t

-t & -t ).t ot - t]s
CASE NSRRI AN Pars

1 l
I t] o tl

If nov ( @ y ) 1s any solution of N for the source pair ( 9, ¥ )

L -
829 ¥

|
t
I ¢ |

¥e have by Theorem 1.3,
(p'=-3') = '(Eo':-ao)

(y'-y¢' ) = (¥ = ¥, )



t t .t t : [ t
b =y, ! 9aot|| P !-"wt“! =( -‘-'1ot:!'aotl!ut,!'v )
| o
= wt Tetlatyy a0yt B

Hence Y, » ¥, are uniquely determined.

Now, 1f ( u, w ) 1s a solution of N, then ue VvV, and ¥y € ve .

Hence
4 3 4 3 -
910 1 u 0 910
- - .- ------L.--. L& 2% _J
t t
220 12 lag 2u |
- e - L 2 Y Y -
' 0 j
t ' t
u R R
L =W y \_ 1‘ 24 J

But by definition p, = 8, . Since @, and g are uniquely
determined it follows that U is uniquely determined. Similarly
ve can show that v is uulqﬁely determined by

¢ N f. ~ N
Y10 B2 _l'_ e (¥e0
v ' U 0 W
-20 h..'J
ron = A 2 R P O S D
L “Rea | °Rgy
-0 ) | j

. 4




or \
Thus if a solution N exists for ( 8, w )y it 1s unique. We

will now give one solution of N,

’ ‘ A ( " - e
» ¥y ~fie ¥y
t =
'
UathRgn By ¥y'

E = LE T T TPy ¥ o R T ) » ! = -l A e W e b O ek G o D W

u - b LI by

Eu. ngas? Rﬂ‘ !ﬁ

t t - -
F1e M10*R2e %o ¥y

-

It 1s easy to see that (y, =¥, )= G (u, - §, ), since

(wy =¥ )=(y' =¥y, (g -3 )= (p'=-8"),
( ¥ ‘=R ¥,
(v | | ) ;
Rig | 0 IR ¥y
B ! 2 ---4-----T---¢L---- B s M —
| | | .
(% [Baa | U [Raq | | “Foa¥a'-Rgy ¥,
_*\ !v g
't Mo, *Rg¥a't R, .
L 0 _
- P
r'11' + Riq ¥o'
= b L AL D LT 2 L L
1 ¢ )




since (y'yy') 1s a solution of N,

3 SR
j r"1' -,
| e
[U l“m] . -
0
L!2 J L= )

Hence

R w = 0
Hence w € ve .

In a similar manner one can verify that ue v.

Thus ( py, v ) satisfies conditions (1), (2) and (3) of
Definition 1.2, Hence N has a unique solution ( u, v ) for
the source pair ( @, v ). ‘
Qe Ee Do

The procedure that we have adopted for showing that a
U.8.0, network is similar to a canonical network is known as
'sourcs transportation' in ordinary network theory terminology.
We will now use this technique to arrange the sources about the
network in a convenient maaner, The next theorem corresponds
to the fact that the current sources can all be taken to be in
parallel vith some tree branches vhile the voltage sources can

be taken to be in series with some cotres branches.

Theorem 1.4, Let N = (Myy Vy Gy S ) be a U,85.G. network.
There exists a network Ng = ( Mye9 V'y Gy 8, ) simdlar to N such



th#t, if u, y are the source vectors for N, a corresponding

set of source vectors for N, are u', ¥' ( s0 that the resulting
solutions of N2 and N satisfy the condition for sizilarity of
the networks in Definition 1,5) having the following characterist

There exists a base b of Mv. such that

4'=0 4f e 3 by ¥'=0 1f e ¢ b.

roof, There exists a canonical network N, similar to N by
D P R A 1

Theorem 1.3. Since similarity is an ejuivalence relation we
need prove the theorez just for the case when N is canonieal,

Let b bq a base of Hv.

-~ Let R be the standard representative matrix for V assoclated

with § = b, Let R® Dbe the standard representative matrix for
V™ associated with b,

We could then partitioa R, R’. Uy W, g,*i according to
by 8= b as follows @

b | s=b d | 8-b
| I
ns[nnlu]. R’-[u l"“ut
r!l\ h r!I
!. eoae ™ ! . | »ew
!n) 8-b h-‘..‘.'gJ
(= (o )
5] 41
i= i B v .
\E'J LE*J



( ( uy v } being the solution for N when the source vectors
are §, E’ )o
Let N, be the network N itself,( Note that N is canoniecal), i.e.

N,z’N’(MV:VQGgS').

But let the new source vectors for N, be

- L] r
Y=Ryy Yy 0

ﬁ' = P o ’ i' = a4

S k!*Rllil )

It is easy to verify that the corresponding solution is

4 t = p 7 P h
5 Ru U BN
u' = - - o = e 0 o Y g' = 9 4520 00 @ @ = w #
[ PR v.r v
. ¥ ) LG T
and that

!._gl.y-

e

This proves the theoren,
Q+B.D,

While obtaining the solution of a network it is often

convenient to solve for some curreant iariahlcl and some veltage



variables., The next theorem indicates the kind of mixtures
that are equivalent to the solution of the network,

Theorem 1.5. Let N = ( Myy Vy Gy S ) be a canonical network.

Let S = 5y L‘)Sg andletb1beabaseotﬂvxsl,cgbea
cobase of M; . Sy Let U, ¥ be the source vectors., If G

can be partitioned as :

.‘

G | o

!
G = e ry T e T L Ll L ] ’

0 G S
S
\. 2 J ®

then the determination of the solution ( u, w ) is equivalent
to the determination of !bl and p. (in the sense that no

2
matrix other than G has to be inverted to arrive at ( u, v )

from u and w Yo
“Cq =By

Proof,.. Let b be a bage of M, such thatd ()8 = b;. Let
R be the standard representative matrix of V associated with

8 « b, and let R* be the standard representative matrix of e
associated with b,

Let 5, = b =C oy B8g=-Cy = Dbgo

Then ve cad partition R, R‘, Uy ¥y §. §,_G as follows :

¢, I by 'Ica :bs
¢ ‘ N
u i Bot @ | By
R = | | |
: |
Nq | Ree I v | 394)



Y ¥ -f - ar e

“,
L) b A
ril*ll
I
. e ¢
2
R
ot
s
§
Il.
]
]
o ¢
- T | S,
oe o
© E -]

0=

Since y ¢ v* wve have



, \ r Y

rw T - @ :

¥e, Ba | “Ma %,

U 0 v

o, P
- - = ------4.-.-'-

Yc, “Rgg | =Rag

= g ---u----l.““.

gbe ] { 0 I U )

Hence if wb]. and ¥, Vere known, w is known, and therefore,
-3 L a -

since

l(y-%)s=s (p-3) ,
U is known.

Hence to prove the theore: ve need merely showv that !bl and U

?
determine v, .

|
8ince u € V, wve have
» b "4

N L K

B
" | t R _

o | 12 I 23 ‘EQL
co= - ""“4""" |
Ll | !9

Fb"- Lﬂ l l“ p

(singe by the Theorem 721, R = 0, Ry b = 0 ),



b B, |
- 0
“Cq “Ca
v o W = G G - - - o -
-b2 =b, (43 M] .
3 ] -
\ ba - Esz
r W
« 0
- [0‘3 : 0“] -.t--------- ®
- Ry, U = @
.24 =¢ =b
2 2

“

Thus 1if !bl and y., vere known we can determine !bl ’ !bs and
2

therefore the solution ( p, y ) of N , for the given source

vectors u, y .
Q.E.D.

Example 1,1. We give an emmple of a U,.8.3. network and a

canonical network similar to it, Our example corresponds to a
realistic network. If G is the oriented graph in Figure 1.9,

V 1s its l-cycle space, B8 its set of edges, Z the impedance

matrix, then the U,8,0, network we are considering is

N=(Pol,.Q,V,2,8)

In Figure 1.2 we have given the 'diagram' of this network and
in Figure 1.4 the ‘dlagram’ of a canonieal network '1 similar to
it. The diagrams contain enough information for eonstructing the



FIG-13. THE GRAPH OF N




n.fuerks N and !1 and also to obtain the source vectors for
these networks. The procedure for obtaining Ni from N is
given belov.

We first interpret the vectorsy, yw and j, ¥ in conformity
with our definition of N.

Put  § =3 v =y

e
|
L]
g
i
P

being the current and voltage vectors respectively and

-

the curreat source and voltage source vectors respectively,

L ]
PIRP

g 0>

Then R = fundamental circuit matrix
R = fundamental cutset matrix,

We will take R™ with respect to the tree t = §1,2,3,4} . Note
that 2¢ t and B2 t whieh proves the network s U.8.0,

We partition R® and the eircuit matrix R as in the proof of

Theorem 1 -o 3.

Noting that
8§ 0 t = {1,3,4}

8, N (5-t) = {5,6,7,9,10}
W o= )

s = {8



1 -1 -1
) +1
R= 1l -1 =1
1 ) =1
-1
,\ 1
Hence
1 3 4 1l 3
r-l 0 -1 1
o 0 +1
Rl.a - 0 -l -1 Rs2 = [0 +1
+1 =1
\.-1 0 /
2 2
4 o A
Rle ® o foe * ["1]
- 0
(=1

( for the matrix R we have omitted the sero entries ).




The l-cycle space of the graph of "1 is given by
Vi=VX(S U 8 )e8, » My =My X(87TB8).58 .,

The corresponding representative matrix for V' is given below @

1 ) § -1
% 1 1
1l -] =l
1 b § -l
1 -]
\ /

(R' being the fundamental circuit matrix of the graph of Nl.

with respect to the cotree 66710 ). The oriented graph
corresponding to !ll is given in Figure 1.5. The original

source vectors are

5 6 7 9 10 1 3 4 8 @

i*’-[ooo o 1 o]
. i Im L L

..;_
o
s
.:_

=t i ll i
y'= |0 1 0 0 1 t 0 0 o, 0 !1
b3 4 3
%10 Y90 su v
The source vectors for N; are given in the proof of Theorem 1.3

ag follows
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210

y' = crcsnccsssonces i' =

.

Hence the source vectors for Nl are

t -

920

(Y ( -«
8 1o 0
6 |o 0
7 |o 0
i'= 9 Jo|-| o -
10 1 0
1 (0] (1)
3 +1
(1) e}
58 (o) fo ) )
6 |1 -1
7 |o|+]|o
9 |o 0
¥'= 10 1 -1 -
o —
0 0
4 (0] Lo,

(-
Y10

(] A

20

&

o

-

( See Figure 1.4 )

* Rig ¥y
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Section 2 lnnlzlil of Canonical Networks by Tcariq!

In this section, we analyse cinonical networks by
‘*tearing'y 1.0, we discuss Diakoptics and Codiakoptics and
a useful extension, By the results of the previous section we

lose no generality in limiting ourselves to canonical networks.

Let N = ( Mys Vo Gy S ) be a cinonical network.
Let & = 81 O 82 e
, of
Let b be a base of 4 such that b N § 18 a basoLHv X 8;. 8ueh
& base exists by Axiom System 1. Let R be s standard representa-
tive matrix of Hv associated with s = b, and R* be the

of
corresponding standard representative latrixﬁﬂf' associated with

b,

Let E be the set such that e 2 E 1iff

(a) o288, N (8=-Db) , and

(b) 4Af L is the circuit guch that ¢ 2 L € e U b, then
LN 8, 1s nonvoid,

Let C be the set such that ¢ ¢ C 1ff

(a) e ¢ 8 Nb , and

(b) There oxists d € E such that 1f L is the circuit with
d¢L S AdUDb, then e QL .

It is clear from the definition that E and C are dual
quantities, i.e. one could define C to be the set such that
eg C1ife |



(a) w¢ BgNd, anol

(b) If Listhebdbond such that e 8 L C e U (8= D0 ),
then L N 8y 18 nonvoid and E to be the set such that
e2 E 1ff

(a) @€ 8,N(8=b), and

(b) There exists d € C such that 1f{ L is the bond with
deL € 4AU(83=-Db ), thenm eg L.

e

We further define sets B and D such that
B C sln {8=-D0)

=
F & Sgﬂb .

Ve next define mets A\, 11. A._?. D, Dl’ IJa as
A = 8 = (BUC)
N "8 N(b-C)
A.a- Bl-b-B .
It 13 clear that Ao Ay Uiy .
D = 8- (REUF)
D™ 84=be-E

Dg= 8N (b-F) .

It s clear that D= D, U Dy .
Ve make the folloving assumption on G for the preliminary part
of the analysis, |

G can be expressed as the following bloeck diasgonal ﬁosltlvo
definite matrix



c
“ N Yy,
Ag Y iy
g = ) 4 0'
g T
o e %0g
B Oy
x » Oy

Hence 0°% = H can be expressed as the following blook diagonal
positive definite mtrix s

19




Howévar for reasons that would be appardnt later wve prefer
to write G and H in the following forms i

c

Gc

A

F

Dg

%19




The solution and source vectors are correspondingly partitioned

a8 i_'_ollown Hl

t t | t oty ot ottt ¢
v o= Cue” om0 8y 8, 1% 8% )
t t ! t, _t _t ottt ¢
¥V =

v Cwe™ Yny ) ¥F 1 ¥p, 1 ¥R I ¥, I ¥ 1 ¥p )
=t _ st atligtigtigti=tl=tlet
u Cuc™ | 9y, 8 ! G 18y S, % ) %, )
e (gt wtietl wtlietlantl st gt

We partition the matrix R as 3

g 4, F D, B Ag B By

T 0 o o mE om3 omE omE) (nT

0 U 0 0 Rgg Rgg Rgs Reg Ry
RY = o 0 U 0  Rgg Ryg Ry7 Reg| = | RS

& 3 0 U Reg Pe R7 Res )L R 4‘)

For this matrix we are able to effect & simplification proceeding

ag follows

(a) Since C U Ay 1s a base for My X 8; by definition, and
B C 5y and Ag & &) ve have by the use of TheorenTl 1

Rk =0 4 Ry§ =0 4, RJF =0 , RE =0 .




Again, by the definition of E and Dy =

m.o,ne’.;-o.n;-o.

c A, F D, B A, & Dy
t N
X ¢ X
« x
0 L3 0 0 RES P‘?G C 0
R* = (1)
¢ «
0 0 U 0 0 0 R37 338
« x
L° 0 0 U 0 0 Re7  Red

The standard representative matrix R associated with the cobase
S = b can then be written by the use of Theorem T18, as

c A, F D, B A, F Dy
f-nl's't -n,f 0 o ° o0 0 o | R,
-algt -nz’;t 0 0 0 u 0 0 R,
R = --algt 0 --nagt -'n‘;‘e 0 0 U °o |=|R,
L © 0 -nagt-n‘:t o o o U | |Ry
ese ()

We now proceed to obtain the solution ( gy, y ) by the use of
the methods of Diskoptics when the source vectors u, ¥ are given.



Since W E Vand V and v are orthogonal complements, we have,

Hence

,

-

’

0

Ry

n
L 2 )

=
=l

Expanding (1) by the use of (1) wve get

U

Hence

o

\

U

“2

0

U

"5
Ros

"uf

Rge

/

A B

2
Rig
Rag

ag Sag)

)
Ry7

[

121
4

I’.‘f' l’ﬂl !f! El

-

3

{
Rs M7

=
\Faﬁ ° )

(3)

\ul-gB)

~Hence by the use of the network equation (2) of Definition 1.2
of the last section



« ¢ Y ¢ e O
U 0 Rg He ¥ = ¥¢
o o rEX H v, = W
26 fy Pagg Ay =k
H H ¥, = W
| Ay “Ag J RN Ag .&q/
- N
X «® = ( - )
By Bis M7l |2 - @
e | -
Rg A Rss g LEE - EE
’ /
c (g o o o ){g) (o
A, |0 U o o
L Ay N,
F |lo o © o ¥ -
= o= !F
D 0 0 0 U v v
2 t t k-Dg, -Dz
B *R5X o0 o (8)
Rlﬁt ﬂt ¥p
L 4 4
Ag [Rjg Rgg © O N,
t t t
; X S ®
E |R{g O Rey Rey Yp
t _t
x x
Dp \0 0 Ry Reg | \¥p, ‘|
Hence .
‘ -
0 v
!.'1 _ !‘1
e = - ' (‘)
lt lt
¥s B15 ‘nt
L - e —-—t Y -
u &
YA e By
A '8/ N

/



Using (6] we modify (4) into

‘ -
U 0 Rg ] He
‘ f)
0 T Rpg J ”*1
H
I ‘n
&
U 0 Rg Hg
0 U R.= H H
* 26 AL Mg
H, H
g Aay A
- - ,
x W i= 7 «
U 0 Rg | |¥ B8
- g‘l -
o u &r: i P
L 26 / L!‘ﬂ,. \ a6
( Note that
® (o & x -
By . s P7| |8
- g+
o - « -
Denoting _ N
U o Rg| |K
0 U Rgg 3‘1 \q
X, BH
“~ ‘n k’ 7

3 ro~
0 !C
u v
Y
't
Rog
/
(7)
j!
l_- "t'a )
Me | |=C
'.
reg | |5 *
u
J Lo&"’ )
A
as Hc“l

U
G
Ma .
3 o
L k“m
r- w
Yo
b
",
v
=i
. 2
« (
’2 s
4] (3]
10 U
( A
U 0
0 U
) A
ny ®
f1e Hog




U 0 Rg* | R !c"’°“1:}9c
0 U R * H ¥ |-]0o U rX u
26 Ay H‘m Ay %6 %,
i H v 0
L ‘g Ra | | Ay (“Aq)
88 U, , we can rewrite (7) as 1
~ . r = ‘“ N
(¥e B L HEH S
R S T T (8)
H(:a.l v | r X 0 u
k"l , | 28 ) (-B J
( o take R to be suitabl titioned ).
(] ® Hc‘l ¢ sultably par ®
We now proceed to apply the dual process %o ¥ .
ve V" and V and V™ are orthogonal complements,
Hence .
Bq 0
By * o .
Therefore,
r 5
Ry [ } Ry |
! - E = [ i (9) \

8inoe 2@ V we have




« ® =«
c R/ -K{e -B17
= =
Al ‘R“ 'R“ 0
x
F (¢ 0 -R37
=
B 4] 0 0
*3 0 U 0
E 0 0 i
Dl \ 0 0 (4
Hence
(o 3 é -p. %
Up . g
"] 0
"Dl , 4

Now (9) can be written as

C 4 Dg )
& ¢
= x ®
Bi7 <~Rgp ~Rg7 u
t %
0 -Ryg <“Rgg O

(10)

(11)




Hence

Dy o Dy
t ) ™
( 4 { - r
=R U 0 -
47 !Dg ‘--'s:,3
!t -
v - W
-Dl -Dl
\. S
c F
o £
' u 4 -
I f17  “Rez Yo - ¥
8 = ! - ‘t' -
Ry ° ~Reg Yp = ¥

Using the network equation (3) of Definition 1.2 of the lagt

section, wve get,

r ’t ~\ ~ ~ e
“Rq7 U 0 ODQ GDQ]. EDQ - : o
" Og b - B
“Raa® 0 U G On = 8
\_ R‘e J \OD].' Dl J \!DI .D].J
( % t) - 0
r“s "M7  ~Rep r1'-'(: -~ ¥g
- - i - t -
Re 19 ~Reg Yp ~ ¥p }
\ \ # \

Using (11) aad simplifying, we get,






We can write (11) as

( 2 A
r 8 t % (
. g Pr Ry “Rgy" Ye|
- W . t 18
%, u " 0 ~Rgg" !pJ )
; 0 | L /A |

(We take Eml to be suitably partitioned),

We note here that Ecal 1n equation (8) and \aznl in equation
(13) are positive definite by the use of Theoreas T297 and T20,

Writing the network e uations (3) of Definition 1.2 for
B and F we have i

- N Y . 5
G5 U = B ¥s - ¥
v g - Uy . ¥ %

U !c"'ic !c"ic

Hy Yp~ ¥ [2p = B
i / \ B, \ J

Using equations (6) and (10) the R.H.8, of the above
equation reduces to

i A ' t t 3 ¢ ~
- 5 &«
Yy Be Rog °c o Yo
i, 0 0 U o v, |
ey |
R.H.s.-- - *
o U 0 0 0 Bp
= g ®
$r 0 0 *Ra? =Rag u
- J ¥ Ra Ra ) L“DI'J



R.H. 8.

rs

¥s
)7
Ye

Yp

N

-1

/

\
v
U
g
P
(eontdo )
4 !t
ke Rog
0 0
&
o 0
0 0
.

™ f_ \
Ue [ _
U ic
¥ -
F v
J \°F)
(!c Y
W
¥y
1 (14)
Oy
\“,

Representing the terms in the R.H.f., involving source vectors

by E' and the coefficient matrix in the L.H.S. by J and using

equations (8) and (13), we obtain,

L)
8
Yo

Yy
.

N\

P

R
o

0
.

x
16

U

t

t
Rm‘lo
0 | ©
o |0
0

0
v}
0

l-na7' S 33‘)

\

(X = represents matrix multiplication)R.H.8. (contd,)

x
Ryt O 0
0 o _, 0 _,
R e
0 “Bp2 "“;7t
° ’ “Ryg"

%E 1l
Cll |
3
[Cxo, ?
u i J
)
(9
r
¥c ...
g!F, onas,
J




. Hence

([ at
Rs
. 0
J +
\
.
L.H.S. (contd.)
[, = ®
BT Ri7
ReX O
X - 951— s
0 0
0
\
re t
o«
Rs
= +
4 U
0
\

representing R,H.8. by p

Definition %2.1.

any o ¥ b matrix TR results in a persutation of rowsof R,

%
Rog | O 0
o ) u 0
o | o 0
} L 4 L 4
(4] { -lt37 'Raa )
-
0 0
@ . o s
— -
“Ryj9 ~Re7
0 ~Rag"
o
%
X
Rog | O |
0 v
0 0
= %X
~Hae ~Rea )

R, |
(Fox, I
_ B X
“ o el
FGEDI)
L | )
\
(o)
e
¥
hMLHFJ
“ o (-
(g, ) ; %,
L
; "
‘- -1 -
(G ) €
|50 / u_z.
(18)

Let T bDeann xn mtrix such that If R is

T is called a permutation matrix.

Then




We state the following well known results about

perautation matrices in the fora of a lemam,

I_l!ma 2.le

(1)
(11)
(111)

If T1s an n x o permutation matrix

T is nonsingular
1 o ot
Let R be any b x n matrix,

Then RT results in a permsutation of the columns of R,

Theorem 2.1, Let K = (n, 9 V9 Gy S ) be a generalised network

in the canonical form. Let 8 = 8, U S, «eee U5, s vhere the

51 are elementary separators of the matroid l(v ¢« Suppose there
exists s permutation matrix T such that rort has the

following block diagonal fora i

, ~
a
e |
I‘GT.t - “ss.
o
3
L o,
Then
(1) 1t H=a}, s
B
" |
% "
m = .‘.
q
8a




(11) If B® 14 the standard representative matrix of V™ with
respect to the base b of M, , 20d b N g8, = bi( 1€ {1.9....:;} I

there exists a permutation matrix T, such that, ( denoting

RE arS Y vy H ) , Y
Y
T RT.® - (n")n(nﬂt'r t . ;b
1Hy =0 "1 2.
R
bﬂ
\ o

{(1.0. Tll’ﬁ‘ Tlt has a bloec.: diagonal form corresponiing to the
partition of b into by By eee b, e

=)

(444) If R is the standard representative matrix of V with
respect to the cobase C of “v and C N S‘ = Ci (1 ¢ {1,2.-..:&} )'

there exists a permutation mtrix To such that, (d‘noting nant
v
b’ G ) 4 “
a
AL t .t 01 "
'1'20‘1'2 = TQBGR 1'2 = T 3
cn
\ o

" _
(1.0. Tq G 'r: has a block diagonal form corresponding to the
partition of C into 01: Ga see Cn. de ‘
Proof, T 0'_'1 ‘1‘1;" = (TG Tt )'_'1 s since '1"1 = ‘l’t .
Henoe THT® = "let . | .

- : RE : \

Ba

| o . 4.
n . . 2 -1 . * -.

(G

-
9

( each 031 is a positive definite matrix by Theorem 797).



(11) Let r"= [U F]
b S=b
and let Tl be the permutaticn matrix that permutes the rows of

R as follows @

f -
I F

b, | 1
. R F

'IIR = 1 \b",l ‘2
I F

I byl a

I|b I being the unit submatrix corresponding to b1 and F1

i

correspoanding to (s-b) N (81). Now post multiplication of
TIR* by the matrix Tt clearly results in a rearrangemsent of

the columas of Tlﬁ' as follovs :
o

byl FCsyoby)

I
x .t b X
T,R T = | (2] (3470y)

-

I[hnj x(sn-bn

,

vhere K(Bi'bl) is obtained by the rcarrangounut of colulnu of
Fi aeoordin; to the pcrautttlen.dofinod by T o Hence

t

1 - 'rl(a')n(a')"rlt

Tl HT

= 1 ()t rartr (%)t r,*



~ . ( -
I,., K H
jof (8D )‘. Sq
.‘ H
I. K - S
- ¢ ‘v’bn' (Sn bn) 2
\ J e X
H
Sn
\ e
(X - represents matrix multiplication). R.H.S. (contd.)
r b | s ]
1 ) H
Y by
t e
K H
(54-2y) b,
X 1 = .
,bn, H
b
Kt ?
(s _=b ) \ .
\ n B
The proof of (i11) is similar to the above.
Q.E.D.
We will now consider a number of cases.
Case 1, 8o = & (hence) C = ¢.
The matrix R- in (1) would then have the following form.
[~ We bave not changed the indices of the submatrices for ease -
in identification 7.
Al B A2
B! = o (16)
« x



The matrix R in (2) would have the following form

M B Ay
t _
¥
Rl : '(Rm } g 0
R= " " (17)
L
Rg .(Raﬂ ) 0 U

Suppose nowv B 1s s0 chosen that M, X A has k elementary
separators say Al, .&3 s Ak. We know from Theoremz T19, 79
: (see Den. 0:3%)

that ( VX A )"t has R‘(-\)!_al a standard representative matrix,
We will assume that there exists a permutation matrix T such

that

1 i
A 01
)
y g
T G Tt = *k "
X %
B Gy

(When G has off-diagonal terms B has to be so chosen that the
above assumption is satisfled., 1t may be noted that this
assumption is ¢ffectively the same ag saying that there shculd
be no waguetic link between the separated pleces or the set B,
If G 1s a positive diagonal matrix the assumption is
automstically satisfied).

Let us denote by G, the matrix obtained from G(41) by



deleting the sero rows. Since G, is & prineipal submatrix of
G and G 1s positive definite it follows that GA is positive
definite and therefore nonsingular by Theorems T27 and T28,

Hence (GA)-I exists, Let H, = (Gk)-l .

It 1s easy to mee that H, is a principal submatrix of
H, and that its rows aad columns correspond to the set A.
Now by considering the network ( My y , » VX Ay G 4 A ) and
using Theorem 2,1 we find that there exists permutation matrix

Tl such that . >
ey

B

R,
“ H

P = t.t -
Tl(R(A ))HA(R (1)) Tl .HAI

We, therefore, lose no generslity in assuming that R*(A) has
its rovs so arranged that

)

® i t
R7(A) B‘ (R°(A)) = th .

Henceforth we will make this assumption,

Equation (7) wm_ now have the following form

£ m) @t 7 ) Y- Cngt 7y am

1.0,

(‘.ﬁ‘l) (!!Al) L ﬁl - L‘ nm‘_? !B . (19)



( We note that the source vectors have tc be calculated in

accordance with the baslc assumptions S5, =4, C= ¢ ),

Equation (15) ecan be written as

& “w -1 -
£ 35+ (g™ ¢ My (R9g" 37 5 = B (20)

W
Denoting the coefficient matrix on the L.H.S. by JB ve get,

Sy

Jg % =

-1

. (1)

Now Jh = GB and hence by Theorem Teq,
JB is positive definite,

(ﬁ; ) 1s positive definite by Theorem T 29
1

M -
(B, ) 1 is positive definite by Theorem T 28
1

(Rye™ )% (H, )% R,™ 18 postti i defind
25 ‘AI a8 s positive semide te by

Theoren T29, Hence by Theorem T30, '5; is positive definite

and therefore nonsingular,

Hence U, ';4‘3; )2 2 - | (m)

Substituting in equation (19) we obtain

oy [ 4 b .1.
oy ¥a, = Y -Ryg (J3) B



!&1 - (EAI).I L.fil - R?.S‘ (?B ).1 E J . (22)
i.0. ¢ i
v =1
(Hl)
T, - . W, =]l e
!’tl: -‘- [‘ -h% (JB) E] .
B
! P
Hence Y. is known,
1

Since 4 is a base of M, , by Theorem 1,5, thig is equivalent
to the complete deteraination of the solution- ( g, w ) for the
generalixzed network N,

Let us now compare this procedure with that in the proof
of Theorem 1.2,

The equation (A) of Theorem 1.2 would have the following

form | S ) A
A, B A ﬂAl U
, ¢
[“ Rog Rae'] Hy (Rgg ) [!\1]
H t
Ay (Rog™) )
\ J ~ ? _
f . ) ]
L ]
M N, 4
- [" oy “ae"] s s | - [" Rog" “ae'] By
\ g. 24 L!AQJ




| Ny
We will denote the coefficient matrix on the L.H.S, by E,
Let us now suppose that ilz = 0, 8 = O sd ¥ =0,

Then froam equation (7) we have

-

A

4
=
v
-

g
\.-AB,J

From eguation (18) we have

vy - - - - "'1 <
P o= L(Rg™ )" T (A ) L R RAlC I L/ N A N

Hence equation (22) can be written as

-1
e =l = x,- '3 x.t,0 =1 -
= - R

vhereas equation (23) can be written as

= (R g, (%)

¥y 1

1
8ince ( §31 )t ean take any of the values L 130y eee O _7 ’

L- Oy 1, ees O J see L- Op O oeo Oy 1 J it follows thlt

el Lo el e el mew vroox st e e
(B)" =(H ) -(Bﬁ.) Reg ( J5 ) “‘ss)“’ulr

- 1 (96)
'(ﬂll) - g lllf-.



Then (

(H‘ ) f; h
“ N
[ wy -1 = w -
LA Qi} [U e e ] & 5 iy
i} v
- % | "
\,
5
r':'a
- [p R..® R *] ﬁ,l
| ¥g
4
We know that
c‘ﬁl 1
v -1
( H‘l ) = -
. - -1
L ( &)

Let the order of H‘ be mxm and the order of Fl1 be
k
n, X ith -a that of J, be X .
G 5 Swith 7 A= W s the B U Oy ¥ 0y,

Nov if ve take the time reyuired to invert a symmetric mtrix

of order n x 0 tobo«.ns(vhcu o« 13 a constant ) ihe

time rcqul.rcd to invert b} directly would be « , w’ = t

ﬂhoro‘ the time uqurod to invert indirectly as im R.H.8. of (u)

k
ty 2 13;1 o, 51 +a, "kﬂ. (mc}oetlu the time ' required

to form products and sums of mateices).



, 3
In general td 18 4 to since T «.n,

<< «.m° with o,
relatively smill for reasonable values of k, Very large values
of k can increase Beal to a value that nullifies the aim of

our procedurs,

Our purpose should be to sininise td for a given k,
Clearly this means that 3 should be 86 chosen that the ni's

are approximately ejual while B+q 1< as low as possible.

Diaskoptics for electrical networks is, essentially,
inverting ‘ﬁ' by the above indirect procedure by the use of

eguation (35). (See Note at the end of Case ITI),
Case I', 5 =& (and hence), E= @ .

This case is the dual of Case 1 i.,e. we work with Hv',

Vl, U ¥ R‘. Ry § N E instead of Hv’ E’ Wy 2' Ry R" § y B &

We note that we need corresponding blook disgonal
conditions on G, We do not trace out the whole procedure all

over again but merely write out the analogue of equation (98),

R e Rl R P

o By
e (98)°
Hote 1~ As far as electrical aetworks are concerned Case f
suffices both for Diskoptics and codiakopties,

For Diskoptics we take

e
"
(=T

u=4i, v sy , @= 1,



‘R = fundsmental circuit matrix

R® = fundamental cutset matrix.

For Codiskopties wve take

gey o w=3 4 G=F , Gl

R = fundamental cutset matrix
K% = fundameatal circuit matrix,
Here we state Case I' separately only because it is a econvenient
reference wvhen we consider Case Il1I,

The next two cases should rightly be c2lled "Mixed
Analysis’®.

Case_ II, (Mixed Analysis (1) )

B‘@' F-Q’o

We take as our starting poiat ejuation (2) and eqguation (13)

o v | _ f“u' \ |

(Bcul) « U [93] (8*)
v 0
(4 y ‘
M P'“rz'ﬂ o

Egnl) = _—.a- [!c-l | (18*)
1 )



We will rewrite these syuatioas as

5 ¥c - Ry O F!n |
(Her,) = b
0 0
'L!AIJ L J LEDL
Y ( t h! ()
_ % T ¥c
( GEDD - -
0 0
S L sy
Therefore,
1' !E ] r(‘“].?‘)t lro ]
oy — Ty -1
C “r.o;) = X . (Hgy, ?
u
| *Dy | L J
\ ' ~
r - h
- r“l?‘ 0 )
-
4 - 3 0 ]
9 - . DIJ J
— (‘317‘jt o -l
- 4\’;' - : A
W o of o, [2)]
(- o] | (n® o
-Ry7 ] Bg O
# 1€ )“1 |
- 0 ) E“l Lo o)

(26)

(a7)




o femr o]
= ® - (Hull'l [.LL‘] ()

S

= -_&:-’5 8.7-

Calling the coefficient maitrix on the L.BE.S. as ?

w, Vo have,
—- f‘-"xW
(6“%) - %
\!DIJ

Novw in is a positive definite matrix by the use of Theores
TS89 since Gwl is positive donnl_to.

S8imilarly ﬁﬂc 5 is positive definite and therefore

(E"ﬁ "1 1a positive definite by Theorem 798,

, T

1 .t i [ =

| (Rp)" 0 " B ©
Henae (ic ‘1) '
0 0 (¢ 0 J
- # \

is positive semidefinite by Theorem THO.



' 2
Hence, by the use of Theorem T 20, ‘3; D]. is positive definite

and therefore nonsingular,

Therefore

N
[EE “ -1
| = (Gey) 3]
- u,
e
By using equation (28) we have X
-
4 R r\ & b
L Y12 O
= g M) - | (&, -é}z]
v, 1 = o 0) 1
.\ 1 -
- J

Hence ve have determined the vector

By Theorem 1.6 this is equivalent to the determination of the
solution (9 , ¥ ) &

NSov suppose M, X 51 has a2 number of elementary separators.
Then,as in Case I provided a corresponding block diagonal

condition holds for G, 'ﬁ'c‘l would be of the block diagonal
form (perhaps after pre- and post- multiplication by a permutation



matrix and its transpose), and therefore easy to invert. Ailso,
note that the vector q may well have less number of rows than
the rank or nullity o;' M; « The number of rows of q 1s ejual
to[r(uvxsl) ""(MV' 82)_7. (InEnmpl‘;Z;’e
consider 3 case where this number is less than r(M;) or #(M,} ).
In this connection a very important problem is to partition the
set 8 in such a fashion as to minimige

L’r(r&,xsl)+a(u‘,.s.a}_7 .

This problem was completely solved by Kishi and Kajitani £ ¥1 2 _7
for graphs, Essentially thcir procedure is to divide the edges

of the graph into three sets 840 8 » 5, such that ( My being

the polygon matroid of the grapnh).

r L M X5, sl M. (8,05 ) ]

=r['HVX(51Us°)J+u[Mv.82J

= mia Cr(mXsg)+u(My.8) 0 mry (M),
SigBj

81\:)53'3

The results of Xishi and Kajitini have been extended to
Matroids by Bruno and Weinberg £ Br 2 7.

Case II is far superior to solving a network by direct

inversion of the matrices K or G e FoP in thisg case ve are

[V o
ey

inverting two ngtrieos ‘ﬁml and GED]_I y the sum of wvhose orders



ey

may well be less than the order of H or E « Further ;c*l
is of the block diagonal form, Thus there is considerable
saving in computational labour., Even then, however, Case II

is not sufficient for the full utilization of Kishi and
Kajitani's powerful result, For, a partition of S corresponding

torH(Mv)l

(1) need not leave M X s1 with a suitable number of

elementary separators.

X A .
(2) wouaymhanr(lv &‘51) (M, . 85 )%
since only HCAI and not Gm)1 is of the block diagonsl form

the procedure is not as efficlieat as one could wisgh,
Case II1 gets around these difficulties.

Cases I and II were originally formulated by G. Xron
in ‘Diakoptics' £ Kr 1 _J. A treatment in terms of matroids
of vector spaces and generalised networks is hovever believed
to be not available prior to this thesis. Case III is believed

to be nevw.

( I1f one were to treat only Cases II and I the best method
would be to develop Case II first and derive Cases I as a special
case, We have proceeded differently, primarily in order to

' give a unified treatment for Cases I, II and III),

Computational time for Case Il @

As before let us assume the time required for inverting



a mtrixof ordern xn to bes , na. Let N be & network
( “V y Vo Gy 8 ),

Let us doeolpdu 8 1iato 31 and Sao Suppose uvxal

has elementary separators 81. s2 eee 3k and let,

r(!vlsi)'ri(iﬁ {_ljzotdk})
and let ﬂ(Kv.Bq)cﬂg.

Then the time f'l. required to solve the network by Case II
is (neglecting time for multiplication and addition of matrices)

%

k , 3
tl.“.igltri)a "“o(“g) .

Case III, (Mixed Analysis(2)) .

In this case also ve take B = ¢ and F= ¢ bdut
proceed dittor_ontly.



R
and (2)).
U 0 0 Rig
R® = 0 U 0 a%'
o G 0 0
.
c A D, A,
] x.t x.t
(-RygM)* (-Rye™® 0 v
Ra (=R l)t o (=R t)t 0
17 47
0 0 "“43' ¢ o

Bquation (16) would have the following form @

4

I
g

I

C N '
oo!uo]
9 olo o

(€,
cal

)-1

| €
!

pi ] ——— —— ——

Wy

ngl

)“1

/

Dy
0
0
w
R‘BJ
Dy
0
0
v
y
( ®
R O
0 0
0 (-31§
10 0

( p being evaluated in ecaformity with the -
ssgumptions of this oase).

Ve can rewrite the above equation as §

and R will have the following forms (from equations (1)




r

+ | CA |
\ | ‘_}(Gr ) T o ‘
\. _ J
S
| )
(X « represents matrix|/multiplication)
( N\
. ('Rl'l‘)t 2
X = p (29)
‘ -
Ry? 0 ) ¥

3

- ' oy
Let us write the coefficient matrix in the L.H.3. of (29) as J.
Then

(7) || -5 .

¥c

Now ? has the following form
T=s I+KL

vhere I is the identity matrix of the same order as J,

¢ B
0 (.317¢ )t
I =
X
BHos O
L y .
L is a skev symaetric matrix and hence ponitivo senidefinite,
-
o o v o mm)'ll (0 v]
K= | '—i o 0
U 0|0 o ( = s i
| v o0
\
g 0




K can be seen to be symmetric nositive definite by the same

arguments as in Case I,

[ #23
Lommg 2,2, J 18 nonsingular.
Proof, Let the order of X ba m, I ince X 1s a gymmetric

positive definite matrix there exist: an orthogonal matrix T
such that

™
t

IKT" = ey by Theorem T3l.

-"A-,

- L,

( 5 positive for 12 {1,2, see @ J )
- [)\] say .
Hence TJT =/ r11tscrrtrset

=1 +f(N\}ce

whcro(C)-TB'l't ‘

By Theorea T29 ( C ) is positive sexidefinite.

rit= N} IO ey .

Now { )‘ )'1 is a positive diagonsl matrix and therefore positive
definite while ( C ) is positive semidefinite.

g |
Honco({)\ ] .+ (C ) )is positive definite by Theorem T30 and
hence nonsingular, Honed T 3‘ '?‘t is nonsingular and therefore ?

is noansingular.



Thus wve are justified in writing

For this case equations (3) and (13) would have the following

foras,
"
— r!c
HCA1
Ya
Ik 1‘
r -
- gg
"0,
- \sniJ

¢

Cll

oS

.r '1,
&

¥c
. J

¢
?.»’(;'-1 _
= E[-
v
-Al |
. ’
r N
!E = 'E”. o
g
(701

r(-al.,")‘\’

4L o J

r“u' o

¥ ¥
ﬂo ("317')t
0 0

o | L]

[

(3*)

(1)

(30)

(91)



/ N\
¢ 3 L
Ve _ . (917 o) -1
= (HCKI ) Uy '7] Lé] (22)
Y LO 0
§ 1’ y
\ J.
[ r ; 1
U, 0 (-Eil.?')t
— -l by -y -1 -
= (Gﬁﬂl) “. - [J} P (93)
u 0 G -
Y
] L J

. /
Equations (22) and (33 involve the inversioa of bﬁm and
‘639 o Note that F also contains the iaverses of these
1 .
matrices. Now inverting these matrices essentiilly means

application of Case I and Case 1' to the generalised networks

Ny = (M X8 , VX8 O, » & )
and

Ng’(uvusgovosglos?isg‘.)-

Hence these matrices can agiin be ianverted indirectly by using
equations (25) and (26'), after echoosing suitable sets

corresponding to B and F, |

]

Finally we note that as in Cage 1l determination of the veotor

4 N
¥c
!‘1 is equivalent to the deteraination of the solution
dp (9 ¥ )
]
L-DIJ




The advantage of this method is that full yse of Xishi
and Kajitani's principal partition c:in be made. We however pay
the penalty of having to iavert an extra unsymmetrical matrix
E?] o However cases can easlly be conceived where the

advantages of this procedure far outweigh the di sadvantages,

E_x_ample £ r?{:’i‘y) L r ('{J) ’ “ {'q: and §f "1' S,, 15 a
[V R — B o 4

partition of S corresnoniing to
R (M Y, r (M X5 3w w8,

but |E U Z| reasonably szall. See Txample l.7.
In this example both Case I aad Case II wiil ba relatively

inefficient while Case III would de very efficient,

( We may note that when G has aon-diagonal terms s partition
corresponiing to r, (M /) may not be effective, for, our analysis
vill work only when the block diagonal condition holds for G

1.,8. we must be able express G as

"
G
81

In a network there might be a number of partitions of
8 into 8; and s.1 such that

T My X B )+r (Mo ) =g (M)

For such partitions the number ‘s U c| might vary to some

extent, We would like to chonse one of such partitions which



hul }1! U C[ ainimum, It would, therefore, be useful to have
a method for generating the set of all partitions corresponding
to rg(M,). Such a method has been ob*ained by T. Ohtsuki et al
L oht, 1 _/ for graphs. In the next chapter we show that
this method i3 a special case of our general m~thod for

partitioning molecular matroids.

Computational time for cagl II1 3

Let i = ( My 9 Vy Gy 8 ) be the network to be solved
by Case 11I.

Let § be decomposed into -s1 and Gg « 'We assume G to
have the suitable block diagonal form. WYWe now analyse
Hll(ﬂvxsl, VXBI.GSI.SL)IWC!!!I. L.tﬂlgsl
such that 81 is a subget of szome cobase of My X 81. Let
M, X (s1 - Bl) have the elenentary separators 81, 8? cee & *

andlet r(WXs' dar (12 {1,2..0} ).

Let E and C be defined as in the theory and [EU C| = &k,

Next we analyse N, = £ (My « 850", (v, 8,07, Hg_ 1 8 ) 7 b7
Case I (1.0, Ny' = L-(Hv.sa), Ve.Sgo Gse . 82-‘) J by c.uo I').

Let Ba S 8 such that Bn is a subget of gome cobage of

“‘V . B,)‘ L n,' X 8, +» Let K" X ( Sq = Bg} han_clcmtary

separator R, R® ooo RY and let

r(llv'XB:l)-ﬂi (18 {1'20001})

Then the time required for solution of N is



P 9 b 3 3
t= 7 (r,) + T () +k .
i1 =1

/{ Note 1~ (For Cage I) ¢ In equation (268) we have expressed
( )L tn teras of (fi‘al)"l and (5;)"1 . If the order of J is
large (when the network considered is very large) it might be
worthwhile to carry this procedure out in a series of steps
instead of in 2 single stes as in eyuation (258), 1Instead of
removing all the elements of B at once, we might choose to
remve a se,uence of sets of elements By B, ..o 3 ; such that
k-1 |
(1) 4] Bi = B »
i=l
J
(?) My X (s=( U B ) / has § + 1 elementary separators.
i=1

We may then express

Al -1 Hl -1 L 01
({ H) 4n terms of ( H&I Y * and a certain matrix ( JBl )

( ‘1/1} )-1 in terms of ( ;:' )-1 and & certain matrix (?B ).1
1 1 2
- X e | 2 Rl vl | o5 31 r' -1
(H in terms of ( H Y* s (H, )" and (J )
A ) ° M A By.

(order of ?31 = \31‘ e This of course would inerease the
‘clerical’ ladour _/. |



Ega@gle 1.2 For the illustration of Case I we use the

network Hb {n Fig. 1.,6. Let = be the set of edges of the graph,
’ 3
(of ﬁoao

it

e
]
i

va put U i ’

g
o
121

v ¥

V¥ = 1l-eycle space of the graph of Eo

Polygon
v -Lpatroid of the graph

M
R® 1{s the fundamental cutset matrix
R 18 the fundamental circult matrix.
is the branch impedance matrix

G
H i the branch admittance matrix,

1 2 9 4 10 11 12 13 14
( )
1
ls 1/ 2s
1

e W o+

10 1

11 b §

12 1

19 1/ % is
14 \ 1

/

We will obtain our results in the frequency domain, We notice
that deletion of the «iu 10 leaves the network in two
nonseparable parts. 8Since this is a convenient division ve put
B = {10} . Note that in the matroid My ve are performing the
contraction My X ( &8 = }10{ )



FiG. 17,

GRAPH  OF No




11

+1

+1

13 14
ﬂ]

+1 - |

=1 el

We will use the notation used ia Sectioa 2 of the theory.

The above matrix would then have the following form :

"1 B

[0

10

r Y

' |
+1
0

-1

’

11

4

13

+1

]3 RM(Ay T Ay ) = [U

na."]




The branch admittance matrix H= @

[ ]
®

& O 0 ¢

10
11
12
13
14

2 3

4/ 3s
b

-4/ 6s

-1

4 10 - 11 12 13 14

-4/ §s
1
1
1
1
4/3s
1
ru ~
=
w.p
o
0
[+
’J‘
“
9!5.*55 s + 2 0

9 0 1 |
0 /3 -V !
el «9/3s :/;'_[
o o0 0
\

(

R
).1' ﬂ’l’a,

a'#'i""
0




- Tho‘ source vectors are

2 3

|
‘.i‘-[o o o

a3t e [0 o ¢

1<y

( We have tiken

Wa now evaluate the source terms 1:'4.. and

From eyuation (7) and (8) we have when

[ H
1
i x
H
A
! a4
.
=
=iy R ] 1l
[ 26 4/3s
b §
%38
Therefors | F

+1/8

vy

o

H
A1

+1/s

in egquation (22),
]

N /.

+
+

Yo " ¥ * 0,t<0; Vo= Tg=1t20)

- K-

e

QO O




sinéo the ‘edn 10 has no
associated with 1t,

voltage source or curreat source

;'-Oo

Hence from ejuation (18),

| I—

'[-1 +41 0 .1]1§+ - —_— 0
2(39¢2) 2(%% ¢+ 2 ) g+?
2(3m 2) 2(39+2) 38 + 2
ST We— . —— 8 0
3¢ 2 9 ¢+ 2 9 + 9
v 9 0 o 1
()
X
0
4
4 0 b
» [-1 +1 0 -1] 0
‘ 0 - .w’. .
¥3s)




We vill aext evaluate ?3 .

i

- t
X § *l o =

f ‘
= 1+ [=1 41 0 -ﬂ é*m) ET‘!_-!!T'

- 1 4-[-1 *10"1] P

boed

9s "e Os
- r*r R




From ejuation (22) we have

)-1

¥y, " “&1)- [7‘1 [

- -l
= (B0

u el
()
P

-

|

o
0
0
8/

%)

-8

r]]

it 5

( D
+ &/ 8(22¢9s)

- 8/3(22+03)
0

3s(22 + 9g}

h* Bls(ﬁﬁwsll

-

- 8/8(2349s)
+ 8/g(22+08)
o .

’

s(2 s

i

s(22¢98)



T

1
= 2 &/ (2a+9s)
3 0
Y
4 8(22 + 9s
\
z.t
= (R)
!;1
;
111
4 ) §
3 1
™ 4 1
10 |e1 +1 0O <1
11 | 0 0 0 <l
12| 0 0 0 <l
13 (0 «1 -1 O
14 |1 ©0 -1 O

("Va(zafm) )

. / *
= |3+ sthm TEET Tas  ©
2L anes) Sar ©

2

i e O

‘

-4/ s(29+9s)
6/ 22¢9s




Hence the branch voltage vector y =

~

1
VW=V~ g
9
4 +1/s
10 2
11 +1/s
12
13
14 .
y-38
1 ’-4/:(22*9')
a 4/ (22+9s)s
3 | o |
4 «(10+38 )/ s(R8*9s)
10 -8/p(20¢9s )
11 «(10+3s Vs(22v0s)
12 (6+13Y s(22¢9s)
19 4/ (29498 )s
14 L*Vl(ﬂﬂ*ﬂﬂ)

-sinoo the source vntei- 'l'. is Vnu‘n.

-

-

b W o -

10

19
13
14

=

2

& D

10
11
12
13
14

(ea/8(229s) K
&/ 2% 9s

0

=(10+3s )V s(29+9s)
- 8/9(22¢9s)
«{10¢ 38 )/ 8(2% 98}
(Gs+12Y/ u(22¢98)
4/8(22+9s)
| =4/8(22+9s)

~ R

-4/3(22+9s)

6/ 2% 98

0

(83+12)/ s(22+9s)
-8/g(2*9s)
(1248s8)/ (224 98)
(6a+12 V8 (2% 098)
4/ 8(2™ s}

_L-Ua(?@ﬂas)

«H(we-w) This can be seen to be




§ggg§10 1.3, For the illustration of Case II we use the

network N, in Figure 1.8, We consiier ¥, under the following

% 4
substitution
U=41, =i, ysy , § =¥ 4
1 being the curreat vector,
vV being the voltage vector and - 1 , v the corresponding

pource vectors,
It follows that R* 1s a fundameatal cutset matrix 4

R 1s the fundamental circuit matrix

V = veotor space Zenerated by the rows of R
V"= vector space generated by the rows of R™
My = Polygon matroid of the graph of N4

G = Branch impedance matrix

B = Branch adwittance matrix

Let 8 be the set of edges of the graph of Q‘ "

We take G to be I9 « 8Since G'l ®= Hy it follows that H = 19 .
Let 31 = {1'2.3.4|6'7,8 } 9 52 = {5'9 }o

We will analyse H@ X 31 by 'nodal analysis' and Hv . 81 by
tmegh analysis’. Also, we shill make use of the disconnectedness
of Ny X 8 « We have

ca{1,93) . 8 -0 . x ={o}. ={a}. n?-{o,v,a}
FPed . Dy ={8}. D = ¢ .



FIG 15
DIAGRAM  OF N.

My

FIG-19.

'GRAPH OF N.




c Al Dg AQ
1 2 3 4 8 | 6 7 8 @
4 N
+1 +1 +1
+1 l +1 +1
x +1 +1 +1l
= __}
. s -1 |
L +}1 +1
j ' i J

In the notation of the theory of Section 2 of this chapter

ve then have

6 7 8 9
+1 0 0 +1

L ¢ 4 4
Rig =¢. Rg = |0 <1 O By = |41

0 0 <+l +1

x Xz :
Rog™ = G« FBgg = [0 = +1]

[ 1 K x R
Rap ®"Rgg “Reg =0 « By = L’l] .

The source vectors are

*

| 1 2 3 4 8 6 7 8 9
t.i* = [o o o o o o o o o]

t

"-[1"oo‘oooooo].

e
42

Ve nov evaluate the source terss il. ‘and 9& in equations
(26) and (97), using the defining equations (7) and (12).



¢§1 whon § = 0 and G 1s positive diagonal 1is given by

?c then find

Yo

g

the matrices HCAl and GEDI »

S

Cll

&® N\
0 Rg

4
U Rgg |
0 0 0)
2 0 -1
0 2 <1
-1 41 9

can be seen to be O for this example.

Ve now esvaluate

(Notice the block diagonal form)



Hence
X

(/2 0 0 0
(Fy YF = |o &/8 -1/8 V4
-1/8 §&/8 «1/4
(o /4 -1/4 1/2}

o

For the present case equation (13) reads as follows :

- =

(oo [m] <% - [ 0] |

We have from equation (78)
Oy, 0 9 = & - [0t ot [

o :‘\ “A t o o 317"
. Mow Oml - Gml * [(817‘ ) 0] (Hc‘l) . [0 o

TN B



= 1/2
Hence up * % X % = ;?- .
( 7 [ A
‘ o & Y7
=C % el - 17 . 1
| m ey [qh] - e -1/14
Al Lo J -1/14
: o )
Prom eyvation (8} we have
r a
r v 3\ u 0 v
0 v
¥) ¥
1 . ‘“15‘3t (R%‘)t 1
s Xyt o &t
s 6“16 ) 26 ) 3
e ]

We can therefore evaluate yg_ (6,9} and find this to be

) § 2 3 4 6 ?

t ]
(¥p {gop" = [¥7 VM e 0 wr s, /14 |

From equation (10) we have (for this problem).

“Rep" = B,
v | Uy



We can therefore evaluate {35} and find this to be

Yo

1 ? 3 4 5 6 7 8 . 9

v -‘[ ¥? -/14 -Vi4 0 -7 7 -l/l4 -Vl4 1/7]

AR -{-vv /14 -/14 0 -V7 V7T <l -1/14 1/7]

= g -3, since @s[Ul




We a0ow give =~ series of three examples whlch together serve
to 1llustrate Tase III,

Example 1.4. ror the illustration of Case I we use the

network Nl in Fig., 1.10. For convenience we retain the original
labels for the edzes(in conformity With Fug. 145 )

Let S be the set of edges of the network,
= ]

L1}

We put Eﬂ.j‘ »

(1 4]
(L1

w=vY

i bpeing the current vector
the voltage vector

v
I,v the corresponiiang gource vectors.

It follows that

¥ 122 fundamental cutset matrix of the oriented graph

of Nl

R is the fundamental ecircuit matrix

R

V 1s the vector space defined dby the rows of R

V™ = gpace defined by the rows of R®

Hv =Polygon matroid of graph

G = Branch impedance matrix

H = Branch admittance matrix | ,

¢
i 1
3 |
- | 1
1‘ ' 1l
0
G = n 1




| 2
g

FiG-110.
‘DIAGRAM  OF N;

FIG.- 111

‘GRAPH" OF N,



we notiece that deletion of the edge 10 leaves the
aetwork in two nonseparable parts. Since this is a convenient
division we put B = {10] . Note that in the matroid ¥, we
are performing the contraction Hv X(8 -~ }10} b 9

1 2 9% 4 10 1 12 13 14

4 ™
+1 -1 +
L
R™ = +1 .l +1
1 1 .1
11 -1 1 41
§ _ /

We will use the notation used in Sectlon 2 of the theory.
The above matrix would then have the following form 8

M Lo | ag

: l x x £ o= x

[" | Ras | Mee ]} Ra i,y = [U Roe
with (g 11 12 13 14

0 ) +
RS = ol n® - 0 0 1
" 0 0+l 0
-1 Q -1 .1
M 1 +1 o0 © ’

k‘. * /s

The dranch admittance matrix H = -l .

oo E = I ®
|24}



0

= 0 2 =] 0

«1 «i s o

[0 o };x&-—
(&/8 /8 e o
() . |W8 w8 e
1 V4 W4 V2 0
0 0 0 /3

/

The source vectors are

- 1 2 3 4 10 1 12 13 1e
t.;‘.[o O 0 0 © 0 0 0 o]

<

'-i‘-[o © 0o°1 o0 1 o o o]

We now evaluate the source terms ‘in and p 4n equation (22),
From equation (7), (8) ve have (vhea § = 0 )

- x g | 1 - i o
% = [Il _n.‘ il nil - A1 - 0
| \ l"., | a‘ﬁ z




Since the edge 10 has no voltage or current source sssociated

with 1t (see e uation (18)).

5= 0

Hence from equation N{\
t

= R%‘ (HA]_ )-1L@|]

= -3 s
3

(-1

We will next evaluate J .
Tam £ it Ryt (Hy Y Ryt J
=/ 1+ % J -.-g ”
Heace (?B y~3 -;- .

gy = ( Jg L B (equation A1')

Hence, 33"9‘ . =g_ ..9 .

From equation (22), ve have

LN P i - w -1 o
N, "R T Lhong () F 2.
lr*!',_'\
= - V7 -
Iy ¥y 0 -
L V7))




¥ = (R") !‘1
;
1 1l
2 1l
g 1
4
10j-1 +1 ©
* 1} 0 o o
12| 0 0 o
13 0 +1 -]
14 :1 0 -1
1 | -w7)
2 /7
3 0
weo u & 7
- 10 -7
11 V7
12 V7
13 v?
14 \ "'1/7 J
g8 =H(wey)

1
1
1
13
14

80 ™ O d W O M

-7
7

"

OO0 0 KMHOMMOOO

,'

/7

J

LN

1
1

19

14

However aince for this example j = O .

u=BEL y-y.J7

Therefore,

t

s-.[_

1

yo-4

10

}

11

L

}

~ O & W a9 M

- O & @0 9 -

1
1

13
14

14

4]

-7
/7

V7

| -~

/7
&7
v?

«1/7
v?

-¥7
-7
-7
V7
V7
-1/7

| =1/7




Let us now evaluite the laverse of the noie pair
admittance matrix as in (26). We have

CHy = Ekl hlo)e Rag® €3y 7 Ry () 3-1]

{ oo/56 19€6 1/4  -1/14
. | 1wse 29/56 14 114
1/4 1/4 /2 0
k-l/u 1/14 0 /7

From ejuation (25 a) after deleting the current source terms

N
V4
e 4
> 4

H v
Y, = (R (T Rog n,,:). 2 fy ;;1
l. H&""J L ¥4a |
o)
= (8t o
0
2
(-1/7 ]
® V7
0
[ ¥/7)

Reample 1.8, We now give an example to0 illustrate Case I

under dual subsgtitutions.




(we consider the network N9 in Figure l.ng’i.e. we put

g=y 3y B =y sy ¥v=13 ¥=1.
where i1 1is the curreat vector
i 1s the current source vector
v 1s voltage vector
vV 1 the voltage source vector.
Heace R 1is the fundamental circuit matrix ol the oriented

graph of N2
R 4s the fundamental cutset matrix
¥V 1s the space defined by the rows of R
v® 41s the space defined by the rows of R™
G 4s the branch admittance mitrix
H is the branch impedance matrix
"7 is the Polygon matroid of the graph

Let & be the set of edges of the graph, We have

¢ = I

9

We notice that the contraction (short eircuiting) of edge 5
leaves the network in two nonseparable parts. Sinece this 1}
& convenient division wve put B = 15'{ . (Mote that in the

matroid uv ve are performing the contraction My X(8- f.s‘i



FIG-1-12.
DIAGRAM™ OF Naj.

FIG-113.

‘GRAPH OF Ngp.




15 16 17 18 & 6 7 8 9

/ h

1 -1 =1

+1 -1 +1

R® = 1 4] o1 el
\ +1 4] | +]1 +1 J

In the notation of the thecry the above matrix would have the

following form,

We have
(o) (i1 <1 0 0]
-} 0 +«1 0 ©
Roys ® +l Rog = |=1 <1 0o o
+1 (o} 0 <1 <)
\ J | \ J
1

The branch impedance matrix H = 0

B o=[0]

o [row ] [ ] [



S ! 2 0
bl |
HE = |-1 2 -1 0
A

2 -1 9 0

Lo 0 o 3
Hence

5/8 1/8 «-%/8
! = |vs w8 /8
./8 /8 &8 °

The source vectiore are

15 16 17 18 6 6 7 8 9
gtgg",[o 0o o oooooo}

1<
]
|

t--s[‘o o 0 oooo+1+1]

We now evaluate the source terms <y, and P 1n the equation (22),

From equations (7), (8) we have when 3 = O,

- ! [ ) B -
Y- J:" Res | [Py i,

f
-
p
o
® ©o O 0O



Since edge & has no voltage or current source associated

with 4t
0

Hence from equation!|s

= t“" «] o
P o= R (Fy VTR .

3

We will next evaluate 5; .

t o
L R X

e ®
jp = Jp* Ry C By o
(o)

= 1+(0 <1 +1 *1)(‘5"‘) -1

1

+1

u.*li
- %3 .

Hence (Jy Y1 = w7

lon-u = (?3).1 E
- §x3-4
From equation (28) ve have

L/ inl t ['i:."z‘ (?3),1 P ] .



15 .

= 16

17
18

v = (R" ) !Al = 16

13

ié
17
i8

© 0 9 60 o

16
V7

V7

18

V7

V7

% ;

+1

1

¥? 0

V7

(177 )

7 8 9

V7 W7 w]

v? w1 w7]-
0 +1 +1]

H

V7 -7 -a/'r]



Let us now evaluate the inverse of the node-pair admittance

matrix as in (26). VWe have

t LN "'1
L .1 ey -1 o o bt ¢1 X

15 ( 29/86 1/66  <18/66  1/4 )
16 1/56 W66 1VE6 1/14
= 17 | -18/86 1¥56  29/856 -1/14

13 | V4 /14 -1/14 ¥7 ]
Example 1.6,

For the 1llustration of Case 111 ve use the network
in Fig., 1l.14.

Let S be the zet of edges of the graph.

Weput u=413 §=1 4 wey

1€e
L

1«4
®

Hence R™ 1s the fundamental cutset matrix
R 4s the fundamental circuit matrix
'V 4is the space defined by the rows of R
V™ 1is the space defined by the rows of R
N, 1s the bond matroid of the graph
is the branch impedance matrix - »
is the branch admittance matrix,

We have from the Fljuro leld,

¢ = Iie
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We notice if we choose {l 23456678 9} a8 & tree of the

n.twork 9 and

31 = {1.?'3'4. 10, 11, 19, 13, 14}
S, = { 5/6,7,8,9, 15, 16, 17, 18§

C ={11[ and E = {15} . The sets 8 wnd r are avsent, Ve
now form the fundamental cutset matrix RT with respect to the

tree {1,2,3,4,5,6,7,8,9.}( "ee next page ).

A, = %2,3.4} Dy ={16, 17, m}

AQ ‘{10,11'19'13’1‘} 02 = {5.6'7'8’9}
The source terms sre

1224667 8 9 10 11 12 13 14 16 16 17 18

§'=1*= [00000004 41 0 0 0 0 00 ooo]

g"-g"s[OOOﬂooo 05 041 0 O 0 © ooo]

Denote
4 - r -
=
U 0 Bg Ho U 0
. H wr 3
0 U BRyg* | Y K v w Yen,
\, t t
L g P LRIQ‘ Ra“




16

+1

+1

+1

+1
+1




Notice thit the inverse of the above mitrix has been evalusted

in example 1.4 but is denoted there by ( B,

Hence

(o -1
(K., )= =
C&l

Froa equation (7), when

~

=

29/ 66
1Y56
1/4
/14

Ve

13/86 1/4 -1/14
29/66 1/4 1/14
/4 Ve 0
/14 O 2/ 7
f- b
e -9 ,
a
=4y
5 -
(The
-
n"l.
R
Aoy
2
> \
a
Dy
0, .
L )

-

gl

) Rl

"
g

s
>
3




Noté that the inverse of this matrix has already been evaluated

o -
in example 1.5 but is denoted there by ( F.A ) 1.

Hence

L

rrom equation (12) when

ve have

[ 29/66 1/66
/66 29486
ED, -18/66 13/56
/14 /14

¥

Sy

-1&/56 1/14
1y/66 1/14
B/E6 -1/14
-1/14 %7 )
" B
= f 7
;|
2 e
Gy Up
a B,
Dl/ N 1)
e .
0 (ncgl) 1
WA
0 Oy,




(]

L

We next evaluate J .
By eyuation (29)
¢l Ao B | D
G 0 lv:» 0 0 I1 lo 0 0
JI[U}} ' | l
1 0 0 01i0 10 0 0O
- 1 29/88
d =
29/ 58 1l
v\_l 56!“
Hence ( J ) =
3877

From equations (32) and (33)

“ -] -
= mcal ) " -

1

-

-29/ &

°]

\
=3
-

~ N

d

O 00 o O 0o O

(¥y?

t

~
OOO._FOOOO

=3 A

(B

(32)

/

L g
(o 4




Dy

Ve can thea obtain

N, - [(Rl: X (Rgg"™ )t]

(ag)™ .
|

-1
1 %
L
\
(-.0844 | 1
— L1898 2
0488 | 3
" .mo ) ‘
( )
A7l | 18
.48 | 16
.188 | 17
| .576 | 18

= -1 | - *

(33)



2 2 2 2
i Y - )
¥p bg %z " Y
=
W G a -« u
~ \ i) R TR

We can thus evaluate the current and voltage vectors and obtain

the following result 3

Currents 3 ( in Amperes )
ul = "005‘4 ﬂ-’ = 0130 Ilm = 01‘0
lla = .1328 uB .= .576 014 w ".09?8
Uy = .0428 ug = « 8576 u15 = o171
II‘ = =,440 ulO = .34 "16 = -1‘3
06 = 0375 uu = .04‘0 u17 = -.168
us = -.013 “la = .m uls = .676

Voltages @ ( in Volts)
w; = -.0544 vy = 130 e * +140
Vo= ,1828 vg = -.49¢ Wig = =.0972
wq = .0428 vg = =4 "'13 = 17
" = L5660 '10 = -oaﬂ '1‘ = .1“
'6 = ."5 - vu = .5‘0 '17 = -.1“

IVG = =-,019 '18 = .BQ vla = Qm



Exagplo 1.7. In Figure 1.16 we have the graph of a network

that is best analysed by Case III, Let Mv be the polygon -
matroid of the graph and V the l-cycle space of the gravh,
Let N= ( M,y V, G, 5 ), (Let us assume G to be dlagonal).
If one solves the network by Case I or Case II the time ¢

required for solution can be seen to be (at best)

ts«,‘" 53443+ 53+53+ 33_7"0(.466.

This corresponds ts the decomposition shown fa Figure 1,17
with Sq = ¢, S1 = Sand B = {26, 3, 32:} « (The reader my

note that this corresponds to nodal analysis by tearing).

Now let us use Case III and the decomposition shown in Fig. 1.18

we obtain

s;= {1,200, 96},  s5,={26, 2, .... 37}

E = {a} , ¢ = {=;a}

( E and C can of course be chosen in a number of ways )

We obtain

"[“v"31-7 - 9
bl My .87 = 2
lEvc|] = 3

U.iﬂKCISQIOQN].'(Wxsl’VXSI’ Gal ’81 )Iﬂd
taking B = {85} ve obtain the decomposition in Figure 1.19.
(This corresponds to nodal analysis by waring).



31

26

37

28

35

FIG - 1416.

3



\3,

B={25, 31,32}

FIG- 117

“BEST DECOMPOSITION’ FOR CASE [ OR CASE I




34

n 35

E = {31] C':{Qa}

F1G-118. DECOMPOSITION FOR CASE T




g={25}

FIG- 1-19.
DECOMPOSITION FOR CASE I ON MvXSiy.

B={32}
FIG-120.
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Usiag Case I on N, = L-(l(v . Sg)', (7.32)" Hsg vy Sq 7

(i.e. Case I' on H,' = (M, « 850y Vo 5, G5y v Ba Z)

s

and taking B = {32{ we obtain the decomposition in Figure
1.20. (This corresponds to loop analysis by ‘'shorting').

We then obtain ¢ =
« v 2@ 017 N
F o 201.

It 18 thus seen that Case III is superior to Cage II

or Case I for the solution of this network,




CRAPTER 2

A PARTITION FOR MATROIDS

In this Chapter we consider a method of partitioning
the underlying set of a2 matroid into gubsets invariant under
the automorphisms of the matroid, This partition is an
éxtension of the 'Principal partition of a2 graph' due to Kishi
and Kajitani, and is, in a certain sense, the finest possible,
Such studies seem to have originated with the papers of Tutte
and Nash williams 7/~ Tu 7 /L Na 1_7. In the context of
Matroid theory Edmonds /" Ed 1 _/, £ Bd 6 _/ and Nashwilliams
("Na 3 _7 have dealt with some of the basic problems,
Independently of these workers (though a bit later) and
approaching from a different point of view Kishi and Kajitani
[/~ K{ 2 _] arrived at esseatially the same concepts while
tackling a fundamental problem in electrical engineering vis,
the determination of the topological degree of freedom of a
network. Bruno and Weinberg in / Br 2 _/ have extended
Kishi-Kajitani's ideas in the context of Matroid Theory. They
have hovever not related their results to the Matroid union’

theoream, Our contributiéhl here are ag follows

(1) We have refined the partition of Bruno and Weinberg. Our
refinement is in a certain sense the finest possidle. We have

also given efficient algorithms for this partition.



(2)' We hqv; made n detailed study of thias partition and
investigated the chansed that occur in this partition vhen

we consider certain functions (termed admissible functions)

of the original matroid, Ve have also studied the partition

of a series or parallel connection of the original matroids(SeeChi)

and single element extension of the original matroid.

(3) We have, in addition, obtained our preliminary partition
(which we tera a P=sequence) in terms of coloops of admissible
functions of the original matroid, Admissible functions are
obtained by the use of the unary dualization operator (x) and
~ the binary matroid union operator (V).

Matroids which cannot be partitioned by our methods wve
have termed as ‘atomic'. These matroids are shown to hav; a
certain interesting property with respect to the matroid union
operation. A study of such matroids sbonld be of help in
determining 'heuristic’ algorithms for the isomorphism problem
of graphs., Also we note that, all the ‘forbidden minors'
that occur 'naturally’ in matroid theory seem to be atomic,
Finally, one of the algorithms that are described here is of
use in a suitable decomposition of electrical networks for
mixed analysis.



S

Section 1 s Matroid Unions

Unless otherwvise stated all the matroids considered
in the subseguent pages are finite matroids (i,e, thc. gset of
definition is finite)., The proof of Theorem 1.1 is however
valid even when the mtroids are infinite. The theorem is
due originally to Fdmonds and Nashwillisms /. B4 6/ ,

/" v 3 /. Our proof here, though longer than the other
known proofs, is based on an efficient algorithm foi' the
construction of a2 base of the union of matroida, Also; the .
methods described in this proof are used to a considerable
extent in this chapter. We make a reasonably detailed ctud:

of the matroid union operation in this section,

Definition 1,1, Let ll1 and *8 be two given matroids on a

get 3. We define “3 = "1 v ua as follows

M, 1s the pair (8,1), vhere I is the class of all
subsets P such that
(1) P = U l:8 vhere b, is a base of K, b, is & base of

Mge

Theorem 1.1.  Let M, snd M, be matroids on S, .Then

ll --llliflla is a matreid on 8,

—

gr_gg_t., We need to d:ov that My nthﬂu eohditionl (a)
and (b) of Axiom lnton 1 for a matroid,



That condition (a) 1s satisfied, 1s obvious.

To show that condition (b) is satisfied, we proceed

as follows

Let A =5, Let P=Db) Ub, where b, is a base of
M; XA, and b, 13 1 bise of M, X A. Let F be the class of
all such subsets P, e will show that maximal subsets of A
satisfying (1) in Definition 1.1 above have the same number
of elewents. If R < A and R satisfies (1) above, R S b, g4 U b, 3

? &

where bl,i is a base of bil X A aad bg,j is a basge of Hg X A,
Hence we need only show that maximal members of F have the
same number of elements.

Frompnbltlbz ¥ hl. abaseofulxs, bza bage of

M, X A, we attempt to construct 3 larger set

Pl = bl,k ) bg,p ’ bl,k a bDase of I-il XA

b nhascofnéxa,

2p

as follows, Let 3 = A - ( b, Ub, ). Let e 2 Q. Then

e, U by contains a circuit say C1 of ¥, by Theorem T1, Let
©p 8 C;N B . If @y § by y 8,y U b, contains a cireuit C,
of M,. We pick any ey fron Cqg N Dby and 1f oqk by consider
the Cq in e, U bi‘ We proceed thus until wve encounter an
element o such that ¢, 2 by N by In the sequence

®19 see @ 5 @ 1 9 ses 8y it 18 clear that

(a) e, § b, Ub,

(db) 1f e, 2 bl (bg), then ®rel e Cr("\.hg ( cr N bl ) and
CpC o, Ub, (oo 'U b;),C, being a eircuit of My ().



From this sequence it is alwvays possible to obtain
(as explained later) a sequence with the same first and last
elements which satisfies (a), (b) above, and further the
conditions (¢) there are no repetitions in the sequence

(d) e. % CJ wvhen J < r-l,

We shall call a se,uence satisfying conditions (a), (b),
(¢) and (d), an alternating sequence with respect to (bl,bgj.
If one can construct an alternating sej uence €19 €5 ooo €
with respect to (bl' ba) starting from e,, ve say that e,

is accessible from ¢ with respect to (bl,bq).

Let the alternating sequence obtained from the sequence
€11 @5 oo O be €1 €3 cco &, . Ve now use the alternating

sequence o1, 8, ... ¢, to chanze (b), b,) to (by 4y by ) as

follows ¢
/2 > <agls
bl,,k‘(bl'(rfl {'m-}n“(,fo {‘ml})"

dlsl. » <n/2> |

ST A N S I

vhere < n/2 > is the highest integer < /2,

It follows from Theorea T1 that bl,k and bg,p are bases
of Hl X A and ng X A respectively. Also since

ByeUbg, =(D  Uby)U e , 1t follovs that

b .x U Bap 'l’bl‘l!bal +1 .



tet  q = 3= {e}-

Now we take any element of Y and proceed as before,
Ultimately we coastruct a Q. such that if (bl,f ’ bg,r ) be
the bagses of Ml X A and My, X A respectively at that stage of
construction, no element of hl,f N b?,f is accessible from
an element of g, with resnect to (bl,f ’ l:n,‘.‘,’f Je If, however,
no element of b N\ b, 1is accessible fror an element of J with

_Tespect to (by, by)s we take (by ¢ s By ¢ ) to be CIPLIOE

Let us tike each element of i to be accesgsible from
{tself. Let Sl be the set of 11l elewents which are accessible
from the elements of Qe with respect to (bl,f ’ b.,‘,',f e Then

8) (1 Pr,e N Dgp = @

Let us eall hl,t N 81 as b1 and bg,t '@ S1 ag ba.

If & be an element of Qes @ U bl,f contains a circuit
of "1' gince each slement of this circuit is accessible from

ey» this circuit is a subset of e U bl. similarly e, U b2

Let ¢,eb'. Then “e,Ub, ¢+ Contains a Civcuil of M
contains a cirocuit of Hg.ﬁ‘ncvuvcr ey 18 accessidle from some =
element e, of Q. Hence every element of this circuit is
accessible from e, with respect to (bl.f ’ bg'f Jo Therefore,
this cirouit 1s contained in cg'ﬂ ba. Similarly, if L be any

element of ba, L U’hl contains a eircult of “2? Thus bl is

a base of Hi XAXS8 = "t X 8.



and baicabascorn.axlxslsuexsl

From Theorem T3 we have

(2} Hlxa.(A-Sl)haubl’f(\(h-al)llabau.
My XA, (A-5 )hasby o1 (A= 8 ) as a base.

Further since Qr 81

D0 ¥ By 2 A~

We will now show that bl,f 1} "a.t is 2 maximal

element of F,
Let bl,i ’ bg,g be bages of Nl X Ay My X A respectively,

From Theorem T2 it is clear that bl.i N 81. bz,j N 8, are
independent sets of ul XAX 31 = "1 X 51 and Hg X Sl respectively.
Hence \bl,i U bg,j‘ s |a-8)+ry x8) 4 Mg X 5).

Therefore lbl,i U b":l < lbl.tu "a.rl .

Thus “1,: U ba,f is a msximal element of F, Now let
bl,i' ?’3.3 be bases of lll XA Ng X A respectively such that
“’1,1 U ba..‘l j 1 a maximal element of F. By the proof of the
maximality of “’1.1‘ | H bg.‘ } it 13 easy to see that

|b1'1. " h’dl s lblgtu "s.rl‘

Let sl' be the set of all slements accessible from A -
"(bl. A 11 bgj ) with respect to (% A “a: Yo . Tnon 1t is
cloar_ that



(1) A -8'C b (T by,
(2) bl,iﬂ Sl' is a base of M, X (Sl'), b?ai Ne ' 1s a
base of Mg, X (sl')

(9} bl.’i n b".,J ﬂ Sl. = (!i »

Hence we can show that

|by,e U by gl S [by,q Uby ]

Thus it follows that
| 01,40 bag] =]b ¢0 by ]

/" 1t may be noted that the only way the above ejuation can
hold is to have

!.-81'¢A-81 .
Hence siﬁco 81', S C A

5" =5 ./

Thus coandition (b) of axiom system 1 for a matroid is

satisfied by "3' Hence I(s is a matroid,
Q.E.D;

From the method of proof of Theorem l.l, it is clear
that there exists a set K C S such that "‘1 ¥ Ny ) X K contains
disjoint bases by ba of H1 X K and M, X K such that K contains
all the elements in the complement of 2iny base of "1 v ¥, and
every element of byy b, 18 accessible from some element in



K=-(bU I:2 } through an alternating sejuence with respect
to (bl, b, Je This sejuence can be uged to find bases b, 1:4
of H1 X K, H.,J X X respectively such that for =a particular
element e, e% b, Ub,. Also M, VMy. ( 5=K )1s the

matroid Mu on S = X, Hence
K=&(H1VM2)UC(MIVM2)

S-KGB(H1VH2)-

The following is an obvioug Corcllary of Theorem 1.1,

Corollary 1. MO VM = M and Hu VM= Mu ’ all the

matroids being on S.

be two matroids on S. Define

Corollary 2. Let M1 and Mg

M, = M, A M, as the pair (s, 1 ), vhere I is the class of
all P, P & b, N tn:| where b, is a base of M, and bJ is a
base of M, such that if b, b, are any bases of My, Kg
respectively, |by O by| < b A dy[ . Then My 1s a matroid,

Preof, It 13 easy to see that

e (TR

Qo E. D._

Corellary 3. M, A M = M and )
o "o AN = "o s all the np,troidl being on 8.

Corollary 4_._ Let lll and Hz be matroids defined on 8. Let

A C_:.': Se ,h.n



(a) (H.lll)?(lall) -(HlVHg)XA.

(b) Any set independent in ( My « AV N, . A ) is also
independent in ( Hl v lla Yas A,

Hence, - -
rL(nlvuz).AJ > LM AV, AT,
Progf. (a) 1s obvious from the method of proof of Theore= 1.l.
(b) Let C De a base 1nl'l1 . mvua. A, 'I‘henC-ClUCq
vhere Cl is a base of H1 o Ay 02 is a bage of H, e Ao

. Then by Theorem T3 there exist bages Bl of My and B, of W,
such that

vhere D, uabauorulx(s-l).

Dg hahanofllzX(S-A).

Let D, U D, = D, then D is iadependent in ( M, V Mg) X ( 8-0 ).
Letnbeabanor(lllvua)x(s-h)-uchthatDEB.
Then ( E U BlﬂBa)ismindopcndent set 1n M, V N, by
Theorem T3, lluo(lUBlUBz)(\(S»L)ilabluof
(nlvuz)x(s-l.). Hence ( B U B, U By ) N A is indepondent
1n(ll1 Vﬁa).lbyl‘hCOr.l‘l'ﬁ. But (!-Ullﬂla)nl = G,
Hence C is independent in ( M, V M, Y o Ao

Q. B.D,



Let Hi. Hé ;.. “n be matroids on S, Then we can
define a mtroid 31 v Hév see ¥V “h.' Hh’l ags a pair ( 8,I )
wvhere I 1s a famlly of subsets of S, each of which 1s a union
of independent subsets of Hl’ Ha cse "n e« It is clear that
this notion is well defined., In constructing larger independent
sets from 21 gziven independent set of Hh+1’ the alternating
sequence is defined similar to the case of "1 v Hg, the
condition being that successive elements in the sequence should

belong to bages of different matroids,

Defjpition 1.3, Let By «oc b, Do bages of M,y ooo M,
respectively. Let a € 5 = b, Ueee Ub, Je

Then an alternating sequence starting from a is defined

as follows

Let a,r &) e 1k be a sequence of elementa of 8 such
that _
s =y G Ea, Ubyy s 8 8CyCaCSay UDy o1 298 Copeen

sevace ck!-:—ak-],Ublgk "kcck’ .kebi'knbtgr

bi'r v- bi'k ¢

where (a) b’.'.1 is any one of 51. see bn .

(d) by , ibi.p are not necessarily distinct, |
(e) t'.'J 13 a cirguit in the matroid ll’ vhose base i
bi;: P ¢ {1.’ ese ﬂ} )



(d) There are no repetitions in the sejuence.

(e) ar‘ﬁ CJ when jJ < r - 1.

(Ngte :~ From a seguence which does nol satisfy conditions
(d) and (e) it is possible to comstruct an alternating sejuence
with the same first 1ad last element as follows.

(1) Let the element 4 occur for the first time as ay and the
last time as a, 3 then we have a new seyuence with less

repetitions -
3, see aj-l y d = aJ = ap, ap+1 cos B o

This process is continued until there are no repetitions.

(2) Let the sequence satisfy (4). Let C, be the first
circuit containing more than one elemeant of the sequence

819 coe By and let %y ap be tho first and the lagt elements
respectively, of the sequence, belonging to CJ. We then have
a new sequence, fewer elements of which do not satisfy

condition (e), namely,

as .'0’ es o 31_1’ Qp » ‘p*l ses ‘k .

The process is applied to each circuit containing more than:
one elements of the sequence s0 that all the elements of the

reduced sequence satisfy condition (e) _7.

Let b1,k be & base of Hp'. ( for some p € - {1.9 see n} Y

Now we start from the last term of the alternating sequence, and



’ |
change b, , to by , where by , = (8,4, 0 By )-8 .

From Theorem Tl we know that b'i,k is a base oi Il(p. Suppose
bi,k occurs earlier in the seyuence as sgay bi..‘] s with

8 8Cyr G a5, Ubyy o

Since a2, % f.'t:| " CJ C 8.1 0 bi:k .

Ve now replace bi,: by b'i,k and call this new bage bl,J‘
This ig done for each occurr~nce of by K It 13 clear that
the sequence which results is again an alternating sequence
which has A .y 28 its lagt term, The process is repeated now
with bi, k-1 and so on backwards until the number of terms
in the se uence reduces t zero. Let the bagses a2t this stage
be b2,1 ess be,n « Then ba,l Ueee Thy, =al (bl T eeo bn)
and this 1s 2 larger independent set of Mn+1' The process is
r.paated until we have a set of bLasges b1 1 *° b1 a such that

le b:l. o5 cannot be increased in size by our algorithm.
=

We now restate the above procedure in the fora of an

efficient algorithm,

Algorithm 1,1, [/  Determination of a base of My V M, V ... VM /.

n -
Let K be . matroid on 5, and let b = 121 b, { where b is @
n

banof Let D=sSse« U b,y and
“i'-7 oy

B = {e | a2 5ande belongs to at least two of the bases

b].’ b2 ®oe bn]'o



Step 1. If D=¢ or B=¢, b is a base of Hi v Mg...v “n'

Step 2. Pick gsome e 2 D, o U b, contains a circult Cqy of M,
W g
for { = 1’ see N o

Let A4 denote the union of all these circuits. Fach member
of Al is not a member of some of the bages bl’ bg... bn' and
thus formﬁ 1 uniyue circuit in the corresponding matroids with
these bages. Let g denote the union or all such eirecuits
formed by each of the members of A) with the bases b,y b,...b .
In a siailar manner Anel is obtained from A\, for o= 2,3 ... .

There are two possible cases.

Cagse 1. There is a least positive integer s such that
A, %A,y 204 A NB=d, Update D by D - {e}and

return to step 1.

Case 2, There i3 2 least positive integer p such that

Y A\ B s ¢, Hence there exists an alternating sequence
starting from ¢ 2 D and ending with some 4 & &p(\ B

.s.ﬁ’ Clgloﬂbl’l. ngclau .keck ’ %'d
®k € Cre1 U Py
% €9 xN b,

bi,r e bl,k ¢

(Alternating sejuence being as defined earlier),
We update b to (e,_.UD - ey ) starting with
o 1k.p+1 % P ‘k-p*l % p+l



p=1 .nd proceeding upto p = k to obtain the updated version

of b= U by . Set D= /" S =0b_/ and
1=1

4

B = {j/ e 2 S and e belongs to at least two of the bases

in by, b ’...b}

Go to step 1.
Algorithm ends.

B!!ﬂple 2.1.1. Let "1 3 Mz’ Ma be matroids on{1'9,3’4’5'6'7’8’
9,10,11,12,13,14 }

The required eircuits and bases for the matrold are described

as we proceed.

We start with bases bl’ ba,ba of matroids “1’ Hg. uﬂ
respectively. (For convenience we have taken r(Hl) = r(Hg)lr(Hq)c
The procedure is equally valid even when this is not so).
b= bl U ba ] ba is independent in Hi v Hg VH, . We vwill now
construct an independent set of this matroid that properly

contains b,
L= {1:23,4,8} , by = {6,6,2,8,97, {9.10.11.1@,13 5.

{u} {1,2,3,408} 2 ¢, = {14.1,2} C, 1s a eirouit of W
by = b

{1} v {6,6,7,8,9} 2 co = {1847} + Cg 16 « otreutt of My

b, = b
1. ]



{7} U {9,10,11,1?,13} 2 (:3 = i?,lo,n} ’ 03 1; a cirecuit of

b, = b, . Ny
3

{10} v {5,6,?,8,9 fE= Cy = {10,?,8}) C, 1s a circuit of M,

b, = b,

14

{8} v{9,10,11,12,19 } 2 = {8,10,13} C; 15 a circult of N,

b = b,
15

f1a} v {1,%,74,6}2 ¢ = {19,5,2],C¢ 18 2 ctreutt of ¥

6 ¢ bln b2
The alternating se,uence is (14, 1,7, 10, 8, 13 )} .

We coavert by to {13} v b*e‘ - {6] ={1424344,13]

= the updated b1 .
The updated se uence of bases at this stage therefore is
by ={1,2,3,4,13} , by = $646,748,9} , by = {9410,11,12,13}
by, - {61647,8,9} by §9,10,11,12,13}.

The updated by sbyyby are b, = {1,2,3,4,13)
by = {6,6,7,8,0F , by = {9,10,11,12,18 .

Next we convert b15 to '{_B} v b"s . {_13} -{3,9,10,11,19.}

= the updated ‘8 .



{7} U {9,10,11,1'2,13} 2 Ca - i?,lo,n} ’ Ca 1; a circuit of

b, =b, . Ny
3

{10} U {5,6,?,8,9 fE= Cy = {10,?,8}) C, 1s a circult of M,

b

1.% Do

4

{8} v{e.10,11,12,19 } o¢g = {8,10,137, C; 15 a circult of ¥,

b, = b.‘i'

ig

f1a} v {1,2,74,6} 2 ¢ = {19,5,2],C¢ 18 2 ctreutt of ¥

6 ¢ bln b8
The alternating se,uence is (14, 1,7, 10, 8, 13 )} .

We c¢oavert bi
6

to {13} © by, - {6 ={1424344,13]
= the updated bl .

The updated se uence of bases at this stage therefore is

by ={1,2,3,4,13} , by = $646,748,9} , by = {9410,11,19,13}

b“ = {6,6,7,8,9} by = §9510,11,12,13].

The updated bysbyyby are b, = {1,2,3,4,13)
ba = {5’6’?'3'9} L ] bs = {?.10'11'12’13} ®

Next we convert l:u15 to {_8} i b"s . {13} -{0,9,10,11.19.}

= the updated ‘8 .



The vpdated sequence of bases at this stage therefore 1s

by . {1,9,3,4,13} y By ={76,7,3,97 , by = {8,9,10,11,107 ,
by 1616,7+8,97 .

The updated bl,bg,b3 are b1 ';{1,?,3,4,13} ’

by = {516:748,90 s b, ={8,0,10,11,12 ] .

Next we convert b, to {1§}U b14 -‘£8} B‘{E,G;?.Q,lo‘}

= the updated bq a

4

The updated sequeince of bases at this stage is

b11 '{1’2’3.4’13} » b12 ’{ 5.6,7.9’10}’ bia .{8,9’10’11’IQJ
The updated hl’ bg, b3 are
by ={1,%3,4,13} , b, ={£,6,7,9,00} , by = [849,10,11,12] .

Next we convert b, to {7} U by, {10} = {7,8,9,11,12 }

3 :
= the updated b

2

The updated sejuence of bases at this stage is

by, = {1:2,3,4,19f , by, ={6,6,7,9,10 ]

The updated bl'bs’bs are

by -{1.9,5.4.13} » by = {56,7,8,10], by = {1,3,9,11.12} .

- {7} - {1 .5.6 ,9,10}
= the updated b

Next we coavert b, to{13U®
19 1

a [ ]



The updated sejuence of bages at this stage is

b, = {1,2,3,4,137.

H
The updated h1 ’ bg. ha are

={1,2,3,4,135, b, ={1,5609,10}, b, = {7,8,0,11,12),
L ® 14} © by, - {1}

= {2,3"’13’14} = the upd!tOd bl e

Next we convert b1

The updated b]_.ba.b3 are
by = §2,9,4,19,14} , by {1.5,6.9.10} ' by = {7.3,9.11,12f.

by U by Uby ={1,2,9,4,616,7,8,9,10,11,12,13,14 |

Thus we have an independent set of "1 L 4 H, v "3 whose
cardinality is one more than the independent set we started with,

Let b, , Dy «se b, Dbe the bases of Mir oo M,
respectively such that b = bl Ueee U bn is a2 base of
M, Veee ¥ N = um-l « Lot K Dbe the set of all elements
agcessible from elements of D= 8 = b through alternating
sequences with respect to (B;s «co b, Yo If e @ bys @ 1s
accessidble from some element say d e s - b with respect to |
(®ys oce b ) throuh an sltornntiu uquneo. This can be used
to obtain s nev base b' of M, such that 4 ¢ b' but ¢ § b',
Also, proceeding as in Theoresm 1.l one can show that 8 - X CbH
for any base b® of '50-1 « UWe e¢an now iumrin the above
discussion in the fora of the follewing Theorem.



Theorem 1.2, Let Hi, H, see Hn be matroids on S, Let

Ml, M2 ces Hn respectively such that bl j¢) bq U eee U bn = b
is a base of M ,,. Then if XK = &(Mh+1) Uuc (Hnrl)' it will
have the following properties i

(1) by N Kis a base of ¥ XK (1 = 1,2, ... 0)
(2) by N K, bpgN K e0oe y b, N K are pairwise disjoint

(3) No element of S = K 18 accessible from any elerent of
K - b with respect to (b;y by eee b J.

(4) Every elemsnt of b K i3 accessible from some element of
K Db with respect to (blj ba eee bn ).

(6) s-K &b ,

Corollary 1, Let Hi, Ha oo Hn be matroids on 8, 1If

A € 8 such that ( Hlv ..Q v N, ) XA has no coloops, and b
18 2 base of ( nlv ese V Hh JX A, then b = b1 g bg...‘B bn
vhere bl' b2 s bn are some bases of Hl X A, H2 X ll“‘“h XA

respectively.

Theorem 1,3 Let !1' Hé'bo matroids on S. Then if
P0G VM) X (8-R) T = r M) X (Seh) T 4 r My X (s-4) T
then (M, VM) o A = (M o & ) V(Mg . A)., |

Proof, Let b be a base of ¥, ¥ My such that b N A 1s a base

of .(ul v “z) « 4, Hence by !hcoroul!'_s, PN (8-A) 15 a base of
(H1 v "9) X (8-A)., Let b = b, 1] bgs b, a base of My, b,
a bage of H.a.



8ince r L'(Hl v Mg‘) X(8=-a)_/= r['Hl X (s-a')_b rL'ng X (s-1)7,
b, 1 (8=A) and b, 1 (s-A) are disjoint bases of M, X (8-1),

M, X ( S - A ) respectively, Hence b, N1 Ay b, N A are bases

of M . A, M, . A respectively. Hence ( BN A )T (by,n v)

is independent in (Ml e A )V ( My o A Je Hence every base of

(M VHy, ) . A 1is indepeadent in (4, « &)V (H,a « A). But by
corollary 4 of Theorem 1.1, every base of (Hl « L)V (M2 . A)

is independent in (M, V M, ) . A,

Hencc(Mlvuq). &8(141. &)V(M?.A).
Q.E.DC
Corollary 1. Let H1. M, be matroids on 8, Let A & 8,

If (M VM, ) X (5=-1)1s coloop=free, then
(ﬁvnz).s.-:(-ul'.A)V(ng.a).

a; 'n\c,o'rg.m 1.2
Proof. ByCoronarylLrL(HlVllz)K(8-1)_7'

-r[ulx(s-g)_?-r rL-Hzl(S-\)J. The result
now follows from Theorem 1.3 above,

Q.B. D,

cﬂmllaL 2o ( Of Theorem 1,3 Yo Let nl' “a ese Kn be

matroids on 8. Let A < 8, Then if,
r(L-‘HlVHQ-..VInJ'X(B-A))
-r['ulxtB-A)J*...*r-[lln!('s-&)J. then

MV MV eee VH 7 o A= (M o A)V oo VON LA



We next describe a circuit in a union of matroids,

Theorem 1.4. Let M; ... Hn be matroids na S, and let

M gHIVQQQV'Hno

n+l

Let b]. 3 seey bn be bases of Ml’ see Hb respectivaly
such that b = b1 T ... 0 bn 1s a1 base of le « Let C be the
set of all elements accessivle froma ( a € S = b ) with respect
to (blo ees b Jo (We take 31 to be accessible from itself),
Then C is the fundamental circuit of the base bl Ueee U bn

with regpect to a in the matroid Hn*-l'

Proof. Let K = A ( Hmrl yUuc (Kml ) .

Then, by Theorem 1.2, By N Ky eae. bn(\ K are disjoint
bases of Hl XK g0 Mn XK respectively,. and a € Ky, and C C K,
It is clear that bl. N Cy ees b, 1 C are pairwise disjoint bases
of H1 XC eoe Hn X C respectively since C does not contain
coloops of M .4 ¥ Ce Therefore C cannot be contained in any base
of M, 4. Again 1f d 2 C and d 9k a, d 13 accessible from a with
respect to ( Byy see by ). Hence L.(bl UeeUb)-4d J Ua
is a bage in uml y 1,e. C=d4 1g independent 1in LY Hence C
1s winimally dependent 1n M,y « Also C = (b U.., UD, ) ={a}
Thus C is the fundamental circuit of a with respect to
bl U oo Ub, in the matrold M ., .

Q.n. D.



From the above theoream it follows that vhen bl' p— bn
are bases of matroids lll, PPN l(n respectively such that
bl U eee U bn is a base of anl s then 4 is accessible from
a with respect to (bl’ eve bn) 1ff 4 is accessible from a with
r..pcct to ( ba'l ave ba’n ).Vh.r. b?.,l U ses U b?"n = bl 141 ee U bn-
Hence in this case we can say that 4 is accessible from a with

respect to ( bl Ueea Ub, ) without ambiguity,

We next prove an important theorem originally due to
Nashwilliams / Sa 3 _/.

Theorem 1.5, (Nashwilliams Rank Formula), Let "1'“?"‘ "n

be matroids on 8, Let M = H1 Y H, Veeo V “n and let

ql, 12 — Qn y ¢ denote the rank functions °f."1’"9 - Mn

respectively., Then for each F & 8 we have

s M

«F) = min QX+ QLX)+ oo + QX+ [F=x| 7,
X< F

Proof, From Corollary 4 of Theorem 1,1 we have,

MXF= (M XFIV(MXF).

LetK=A /S MXF _JUC/Z MXF_. Then by Theorem 1.2,
if b is any base of X X F,
(1) b2r-kK |
(i11) b = bl-ll b' Uoea U 'n vhere bl’ l:9 coe bn are bases of
"1 X P eoe “n X F respeatively, and b].n K, I:2 N K....bn nK
 are pairvige disjoint.



(111) b N Ky byN K 4us B N K are bases of ¥, XK ... M, XK

respectively.
Hence €(F) = ¢ (K) + ¢,(K) + ... ¢ (K} + [F-Kx]| .,
Let X< F, Then B
(FY=r " MYX_ 7 +rl MXF7(FeX)_] by Theorems T3,77.
But «(X)=r/ MXX_/ ¢ QXY+ (X) *+ 2o + (XD,
ﬁonce *(F) < '1(1) + 12(1)~¢ sees ¥ Qn(x) + [r- x| .
Hence ®(F) = ¢ (K) + &, (K) + .., + Q (K} + |F-X]

= min (5 (X)+ ¢,(X) + cea + (X)) + |F - x| )

XCF
Q.E. D.

Theorem 1.6. Let Hl.’ Hg esee Hn be mtmilda ot 8, Let

M= “1 v Ma Veeeo ¥V "n have no celoops. Then 81 is a separator
for M iff 81 iz a separator for each of the matrolds "1’“2"‘"::'

Proof.  Suppose 8, 1s a separator for M By Theoren T8,
ve have, M X8 = N, 8  MX(38)=¥, (3-5,)
and hence r £’ W X8, J=r/ M,.8 ] and

L NX(8-8)) ] mrlH. (8-8) ] .
Clearly M .'(3-81) has no eolbopc since M has no coloops.

Hence M X (8-81) has no coloops. By Corollary 1 of Theorem 1.2,

we then have,



P MX(8-8)) T mr L My X (88)) 7+ eus BLH X (3-8,)7

Using Corollary 2 of Theorem 1.3, we have,

./_"ulvugv...vnn_].sl-[nl. 8y J ¥ ues v[“n°81-7-

However, since M , 5; has no coloops ( M has no coloops)
rL.M.S]_J-r(_-Hl.31_7“‘...4'1'[.!“.81_7
M X s1 = M. 81 has no coloops. Hence

r[uxsl_?-r[ulxsl_7+...+r[unxsl_7.

But by Theorem T2,
r[_-Mixlez r[-ni.slj fﬂri-lqsooon
n.ne.'r[uixal_]-r[ni.al_] for 1 = 1,2 .. n .

Hence by Theorem T8, 91 i3 a separator for "1 for all

12 {1,2 coe n}.

Suppose each N, ( 12 { 1,2 ...n} ) has S, as one of
its separators. Then clearly (S - 81) is a separator for each
M, , 108 {1.8 ees B}, 8ince M has no coloops

rcu-rcnl.]nu,.?n--rt My 7

'1?. r W . 31_]+ 1: anix(a...sl)J

by Theorem T3.

BntrLui 81_]an "1181-7 torulltt{lﬁ... u}



Hence
s T X 8 + 7 X - ¥
rl ix;lri My X 8 131’4“1 (8 - 8;) 7
Hence
r(_"u_?-r[uxsqurrz'ux(s-'sl)_?
But
r[M = Mo I+ MX(5=-8)

by Theorem T’ .
Hence r / M., 8y J=rl MX 5, z .

Hence 8, is a separator for M,

QoEo Dc



Section © 1 Peseguences

In this section we partition the set of definition of
s matroid through a seyuence of sﬁbsets which we term a
P-ge,uence. The resulting partition is a refinement of the
partition resulting from Zruno and Weinberg's Principal-r-minors
and augmented principal-r-minors. It is shown that a Prsejueonce

is uniyue. Certiln »roperties of the P-sejuence are 1180 studied.

| Definition 2.1. Let M be a matrold on S. We denote

| 8|
r{M)

by d(id). We call d(M) the density of M in S.

Theorem 2.1. Let M be a matroid on S, Let T,, T, be subsets

of 5 such that

d(nx'rl)sd(ux'r?)s mx d (M XR)
R &S

Then d(M X 7)) = AMM X (1, UT,) = aLMX (0 Ty)J

Proof. Let ¢ be the rank function of M.

&)

d(M X R) =

¢(R)

Hoﬁco

(R) «(r,)

. [

R z'ﬁh-_ for any R € 8 e (1)
and

T, ) T

bl Lo ) e ()

17y | |79 |



(T, )
Heace Q(Tg) = IT2| . —lTh- and from (1)

; e (3)
|7, 0T,0 = |7y
AT, N T «1,
L gﬁ ) (Ty) es  (4)
ENGEN 17y
T] UT
Therefore *(T; U Tg) 2 Wt I IT].)’]
Suppose
p
[Ty T 19| [Ty
thpn

| T, UT
T, U Ty) >UTy) - ]-"I-T;-l-al

. W)L T W) [Ty 0Ty ,
? T + - —— e

Ut TTRT YIS ’
Bence from (2), (4) and (5)

U™y U Tg) > UTy) ¢ ATy . «T N Ty )
By !bcoron-!9 this is impessible.

K T, U T T, )
n.nc. __5_1._..3-)— = ——L
|7y U Ty |71 |



" T T, W1, ) |
5 — > i
“uppose 1 ya) E‘zl > ITI | .o (6)
We have
T T = 135N T
Ty U Ty ) 2 Ty) - ﬂ+’fr}) )40 al
1
«T,). |T WT). | TyN T
> ¢(1,)+ M) Mol 21110 %) (7)

|7y 174]
Then by (2), (6) and (7)

UT, U Ty ) > UMY+ AT, - AT, ATy

This 1s impossible by Theorem T9.

Hence
*(1'1 0 22) 1(‘1‘1)
\T]_ N Tg | '-Tl )
Thus

A XTI =a Ll NX(T,UT) 7 =dLMX(TyNT, ) ]
Q.E.D.

Corollary 1. The maxinal set T such that

4 (MXT)= max d(X X R) 1s unique. °
RCS

Proof., Let Rl and Ry be two such maximal sets. Then by

Theorem 2,1,



d(MXR3 = a[mc(ﬁlua?)_?

Hence Rl = Rl 1] Rg 1.0, Rl = R2 .
K. De

[Notg t- If T, T, are disjolnt, tten T, N T,= ¢ . Hence

the minimal set T such that

d /. MXT_J = mx dL-M:{hJ
RC S

18 voild., Clearly in this case the uinimal non-void sets with
this property will oot be un:l.;uel"_] We now give a partial list

of definitions of concepts used in the rest of the section,

Definition 2.9, i matroid on S is s3id to be molecular iff

for every R C s

Definition 2.4, 4 matrold Mon S 1s said to be atonic iff

for every R C §, d (M X R) < &(M) .

Example 2,71, Molecular matroid, Let M,y M, be the

polygon matroids of the graphs shown in Fig. 2.2.1(a), (b)
respectively, M, can be shown to be molecular but not atomie.

K2 can be shown to be atomie,

Definition 2.4, - Let N be a matroid on 8. Let PI.P' vee én

be a seyuence of pairwvise disjoint subsets of ﬁ such that

F | @ -
™ o P >A /L MX p "
(1) dénx(tt-’xpi) s ol L (121 g ) P,/

wvhenever m > r .
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r ]
(11) M x ( 121 P . P, 1s molecular for 1 =1, ... n).
(Note - If Pl is a set of léops we take 4(M X Pl) = % ),

Example of P=sequeilce 3

Exarple °.2.%2, Let M be the polygon matroid of the graph

gshown in Fig. 2.2.2(a). Then M can be shown to have the

following P-seyuence ¢

P, = {1.9,9,4,5,5,7,3.9.10}

P, =111,12,13,14,15,16

P, = {17,18,19,%,21,22,23,24,7% |

M XP, s MX(Py UPy) . Pyand ¥, P, are polygon matroids

of graphs shown in Fig. 2.2.2 (b);{c) and (d) respectively.

Further it can be shown that these matroids are molecular and
d(M X Pl) = 21/2
d(KXP]_UPg.Pg)"a

a(M . Pg) = 9/6

Definition 2.5. Let M be a matroid on S, Let a,b € 5. We
say that a,b are in parallel 1iff either

(1) {a,b) is a cireuit of M

or
(11) {a} , {b} are cirecuits of M

We say that a;, 3,5 «oe 2, are in parallel 1ff every pair of them

are in parallel.



Definition 2.6, Let M be a matroid on S. Let "1 be a matroid

on U {a}, e 5, such that
(1) 3 is parallel in M, to some element 4 2 S .
(11) M= M, X8,

Then we say that Ml is a parallel extension of M or that Hl is
obtained by adding a parallel to d in M, Similarly if M, is a
matroid on 5 B3 {&1 g see an} % S n{ali sse an } = d) with

(1) dy 2y eeey 2, parallel 1a M, , 4 2 S,
(11) M, X 8= M ,

then we say that nl is obtai_ned by adding 839 ees 3, parallel to
d in M.

The following theorem on parallel extensions is easy to see.

Theorem 2.2, Let M be a amatroid on 8 and let "1 be a parallel

extension of Mon 8§ U {n}}a Q 8, such that a 1s parallel to
some 4d € 8., Then

(1) Aoy base of M ig a base of Itl1 .

(11) Ifa g K< 80U {af and 42 K then M, XK 1s a parallel
extension of M X ( K - {a}) and

M, « K 1s a parallel extension of M. (K - fa} )

Definition 2.7. Let M be s matroid defined on 8 and < be 2

natural number.

Let 8 = %a]_l, 112,... ﬁn}.



1 .1 1 a o o
Let Sd = {al 9 32 see H ] 31 ] ag eece aﬂ 9 oo lln' a,ln..

i k

vith a, = a, 4ff 1=k and §=m,

Let M, Dbe the matroid obtained from M by adding

aglj ee e adl parallel to 311 .

2 2 2
8y 9 oo By parallel to 2y »
33 3 eece adn parallel to aln .

Then M 1s sald to be a parallel «-copy of M,

Definition 2.8. Let T be the map from S to P (8,) P (s,)

being the class of all subgets of 8, _7 such that if a € 8

T (a) ={o I e=a orec 8, = 8 and e is an element added
parallel to a in M, } .

This map induces the following map from P(8) to P(8,) which ve
still denote by T .
If R & 8

T(RY = U  7(a)

Clearly this map from P(8) to P(8,) 1s one to one into. Henoce
MT(3=T) = T(8) » T(T) = 8, = ’TJ(‘I'_). Hence the map ’?“-‘fro-
’]’(P(B)) onto P(8) is one to one onto, Since N, ocan be
obtained from M Dby a sejuence of parallel extensions, we obtain
from Theoreaz 2.2 the following simlo_ resul t s

Theorem 2.3, Let M be a matroid on 8, Let M be & parallel-o-

copy of Mon 8, . Then

!
g



(1) Any base of M is a base of M . -

(11) M X T(T) 1is a parallel «-copy of M X T for any T < 8,
(111) M . T°(T) 1s a parallel extension of M, T for any T C 8.

(1v) M X ‘7’('1‘1) o ( “f('ra)) is a parallel extension of

e
MX ‘1‘1 . Tg for any T]_ and T2 such that Tg - ‘l‘l & 8.

Corollary 1. Let M be a matroid on S and M, be its parallel
«=-copy on 8_ .
Then d(M )=« ,d (M) .
Proof,  r(M,) = r(M)
s, = «. [8].
Q.E.D,

Example 2.2.3. Let “1' l(z be the polygon matroids of the

graphs shown in Fig, 2.2.3(a), (b) respectively.

“2 can be seen to be the parallele?-copy of “1
1 - a 6 6
‘T’{Bl ’ '12o & 514r & 0 8 }
2 § &6 _ 6 -
= {aytragtvny Ping i Tragtsmy agtiny Crag iy 0

The following theorem relates the P-sequences of M and N, .

Theorem 2.4. Let M be a matroid on 5. Let M De its parallel-

o«-copy on 8, .

Let Pl' !’2 voe Pn be a Pesequence in M,
Then 'T’(Pl),' T(Pg) sov T(P,) is a P-sequence in ¥, .



( b)
FlG.2-2-3.

A GRAPH AND ITS _PARALLEL —2=COPY_




Proof. Suppose M X ‘T(Pl) is not molecular. Then there

exists a set T, © T(Py) such that (M, X T,) > 4(M, X P, ).

Let T,= T(T;N 8) Clearly HN 58 C Py and Ty 2 Ty .
By Theorem 2.3, M X T, is a parallel-x=copy of M X (T, N 8),
Also Hx X Tl ig obtained by adding parallel elements to elements
of M X (Tl N 8). Hence by repeated use of Theorem 2.2

r (u“x'rl)-r(nx('rlﬂs))

=r (M X T, ) by Theorem 2,3.

Hence,

d(udxrg)3d(n‘xrl)>d(uﬁxq’(91) ) ey L)
Now by Corollary 1 of Theorem 2.3,

d(H‘XTQ)-«.d['MI(TI('}S)J

and d[lqufr(pi)_? o ,d (HXP ).
By (1) this means that

AL WX (T N8)J >d(KXP) ) vhich is a contradiction.

Hence, M X 7(P;) is molecular,

]

Now by Theorem 2.3, M . ( 8, - T(Py)) is a parallel-x-copy of
' L]

M . (B—Pl) . Hence one can repeat the previous argument to show

that

M . (8 = TP NX T(Pg)
=M X(7T()U T(Pg)) o T (Pg) L By Theorem 77 .



Also since by Theorem 2.3, M X a 'T'(P]_) i ’7’(1’2) Iy CT(PQ)
‘18 3 parallel-«-copy of M X (P4 U Py )« Py by Corollary l

of Theorem 2.3 we have
AL M XL TDU TR 7. Ty 7

=« d/l MX (P UP, )P, 7.

it

Hence,

AL M XT(PLOPL TR 7 <al K X T(p) 7.

Repeating the above argument one sees that

- r
L M X :I.Ul '7/(P1) . q/(Pr) / is molecular for all
re £1’ eew ﬁ}

r
4L KX T TR TR) T
. .
>alK x U TryY o TRY) 7
whenever m > r ,
Hence ’7/(!’1 ) ff(pe) — ?/(Pn) is a P=gsequence of M, .

Coronarz le Let M be o matroid on B and let lld be its »

parallel-c~copy on 8‘.

Then (1) M is molecular iff H‘ is nol.ecular
(1_1) M is atomic 1ff M is aton;c.



Proof. (1) 1is obvious from Theorem 2.4.

e e ST

(11) We proceed as in the first part of the proof of Theorem 2.4,

Let M be atomic. Suppose M, i1s not atomic. Then there exists a
set T, C 5, such that d (M X T,0 24 (M),

Let T

PSS

o= T (T, N 8. Clearly T, 2 T;.

By Theorem 2.3, 4 X Ty is. a parallel-x-copy of M X ('I‘1 n 8).

;u..so l-!q X 'J.'l is obtained by adding parallel elements to elements of
M X (T; N 8). Hence by repeated use of Theorem 2.2,

r(M XT )= (MX(T) N8))
= r (H‘ X T, ) by Theorem 2.3.
Hence d(M, X T,) > 40 X Ty) 2 4 (K) | e (13
Now by Corollary 1 of Theorem 2,3
aM, XTH =« . & (MX (NS 1)

and

d(Hd) s X , d(H) .
By (1) this means that

a(M X (T, N 8) ) 2 (M) .

Hence
Tl NnNE = 8 .«

But then if Tl ko 8, o

’S«, 4 lTll



while r (M)=r (M X T; )

Hence 4 (M ) > d(M, X T; ) which is a coatradiction.

Hence M is aomic.

Suppose M is not atomic, Then there exlsts T — 8 such that
a(M X T) > 4(M)

But then d(M, X TT) Ymeat ¢ A (MXT)

and 4 (M“) =o , d (M) by Theorem 2,3 and its Corollary.
Rence d £” M, X T(T) 7 2a (M ).
Also T(T) < §, o Hence M is not atomic.

Q.E. D.

We need the following Lemma for the proof of Theorem 25

(the unlqueness thecorem). We denote the matroid

MVYMV.o. VM Xk times) by M-

Leama 2.1. Let M be a2 molecular matroid on 8. -Then if

AL

d(M) = k, wvhere k 1s an integer, there exists a set of k pairwise
disjoint bases bl' h2 cow bk of M such that

x
B bi = s L ]
is=1
proof. suppose 8 s not the base of N, Then ,

R= A (Ilk uc (H“ ) 1is non-void, Hence by

Theorea l.ﬂ_thero oxisi‘: bases by by e b, of M such that



bl N Ry eee ht 1 R are palrwigse disjoint bases of M Y R.

k
Also R 101 b, . Hence d (M XR ) > d(M) which iz a

contradiction. Hence, 8= B ( 'lk ) .
But [s] = k. r (M),

Hence there exists a set of k palrwise disjoint bases
"1"‘3 . bk of M such that

k
U b = §,

i=m} i
Q.E.D.

Notation 31 We will henceforth use p.d. to denote 'pairwise

disjoint?,
Theorem 2.6,  Let M be a matroid on 8, Let PyYy Pl ... P!
and Pla, P:‘! seo l"2 be two Pe-gegquences of M, Then,

(1) n=nm
) § 2

(11) Pi - Pi for (1 = 1, eee 0 ).
Proof. Let r(M) = k . Construct a parallel-««copy of M on

8qvit_h-t-k3 €

Then by Theorem 2.4,

Tl TR) wer TR L)

rT(Pln)o (r(l’a') eoo '7/(?“.) are Fesequences of M, .

t :
Also by Theorem 2.3, M X ( U 7R 1) ). TRl ) 15



t

1 1
parallel<t-copy of ¥ X U Pyl . Pyl for all ¢t fle...nl.
t 1 .1 1
Now sincer ( MX U Py™ o Py ) is a factor of « = k¥ ,
i=]

by Corollary 1 of Theorem 2,3,
t
- 1 ' 1
ALK XU TR ) TR) T

has integral values for all ¢t 2 {1.2 oo n} &

Suppose
AL M X fT’(Pll).] = py

' ¢
AL XCT TN ) TR T = by

aLr M T 7 = p,
the Py being iategral.

By Corollary 1 of Theorem 2.4

t
N X ( 12'1 T (Pi) ) ‘f(?t) is molecular and hence by

X t t
Lemsa 1 has peds bases Dy eae B such that
Pe ¢ hi L | . Py
Pe .
i=]

1

Using Theorem T3 repeatedly ve have b, U bf ... U b}

p § 2 n
is independent in M, . Henee it is possible to find p.d.

&
AT



independent sets Ly v L, e I.p such that

1l
P
U L, = §
1-11 o

Also, T(P;) cannot be covered with less than P, indevendent sets.
Hence Py 1s the minimum number of independent sets required to

cover Sq .

Hence 4/ M, X 7(P,') 7 = max 4 (M XR).
R S8,

By the same argument d( M X r (Pla) ) is the minimum member of

independeat sets re,uired to cover Sye

Hence'd L"H_‘ X ’I’(Pla) J=a/l MoX T(Pll)_? "

Next suppose ’T’(Pla) s ‘T(l’l:l ) .
Then by Theorem 2,1 and Leama 2,1

H‘ X ("r(i’l8 )u 'T'(Pll ) ) has P P.d. bases hl’bz ene bp

1
such that
Pl -
b | 1
U b = TJ(P," YU T(P," )
A 1 T )
and

lt( X L. P((Pls )0 rﬁpll )J ) Z- ’T'(Plg) " ‘T’(Pll )...7

has pP; P.d. bases by the use of Theorem T3,



But by Theorem T7
WXL Ve 2w Tt )7 L Ty et 3
=M ./L58 - ﬁpll)J XL Ty - Tty 7.

Hence N . L 5, = 7’(?11 Yy 7 x 7’(?19 ) - 7(911 Yy 7
has Py p.d. bases whose ualon is T’(Pla ) - T(Pll Yo
Hence M‘ " L" 8, ‘7’(?11 ) _7 cannot be covered by less than Py

p.d. independent sets of ¥ . ya 5, ° ’T’(Pll )7 .

But using the argument in the first part of the proof § - ‘Y(Pll)

can be covered by

A X (TR T PR TR 7 =, <ny
1ndopotidcnt sets. This 13- a contradiection,

Henae "f(Pll) = ‘7’(!’1g ) I

 We can next coasider M - L 8¢ * ’T(Pll } J and repeat the

sanme argument.

Hence T( P2 ) = T(pg ).
Repeated application of thfs argument then yields

Tipt )= T(P) oo T 3= T®,? )4 mbetng equal to n,

But the map ']/t P(8) - P(8,) 1s one to cne inte,

Hence Pll - Plg ese Pnl = Pna e

Q. %. D,

»



Corollary 1. Let M be a matroid on 8, Let PI,P2 coe Pn be

its P-sequence. Then Py for all 1 ¢ -{1,2 vee n:} is lavariant
under the sutomorphisms of M,

Proof. Let 0~ be any avtomorphism of M, Then,

o-(Pl) s (Py ) oee a-(Pn) is a P~sequence of M, But then by

Theorem 2.8, :
G‘(Pl) - Pl ,1 e {1'2 e n% e

Hence Pi are invariant uander the automorphisms of M,
Q+FeDos

The next theorem gives a characteristic of P=sa uences.,

Theorem 2.6.  Let M be a matroid on 5. Let P,Y, .l ... P!

be a sequence of p,d. subgets such that qu is the maximal set
satisfying,

- B n
alm. ¢ v ptyxel 7= max a(M. v plxq).
fmq q 1

Then Pll, Pal sse Pnl is the P-sequence of M,

Theorem 2.6 follows easily from the following Lemma :-

»

Lemma 2,2, Lot M be a matroid on'S, Let P be the maximal subset
of 8 such that

Q(MXP)= max d(MXR).
RC 8

If Q 1s the maximal set sveh that 3



(1) 3 &£8-P

(1) 4L M, (s=PY X 3/ = max d/ M, (8=P)XR_7,
R € g=P

then

da (MXPY>Aa( M, (8P} X3 }o

Proof,  Suppose d L M. (8-P)X Q.7 24 (M XP ), then,

__l1al R Pl
r /"M (s-PYXQ/ T r (M XP)

Hence

Q[ « [p] | 2

——————— 2

r/ M, (8-P) X Q7 ¢+ (M XP) r(MXP)

But by Theorea T3
P HX(PEQ) sl MXP 2+l MX(PBQ).Qq_l.

But MX(PUQ)eQ = K, (8=P) X Q by Theorem 77.
Hence

r(_'ux(paq)_?-r(uxr)-rrc'l;. (8-p) XQ_7 .

Hence i
LAKY Ld *

Z-_ S

rlHNX(PUQ) r(uxr')

vhich contradiats the definition of P,
Q. 2. D.



Using Theorem 2,8 and 2,8 we obtain the following

Corollary 1 s~ Let M be a matroid on 5, Let Pys Py eee P

k

be the P-seyuence of M. Let (= U Py (1ér§k§n).

{=r

Then Py P 4 . b P, 1s the P-sejuence of

k
i=]
}_‘hwrem 2e70 Let M be a matroid on S. Let Pll, le P Pnl 3
p.2 p 2 2 M=
12 Fg eee Pn be the P=gejuences of M, respectively., Then,
(1) n=nm
1 .2 1l 3 1 2
(11) Pn = Pl s e pr = Pn“r""l en ® Pl = Pn ®

Theorem 2.7 followe easily from the following Lemmas @

Lemma 2,3. Let M be a mstroid on 8, Then

a(MXP)>d(N) 1ff a (M, (8-P) ) <A (M),
' »

Proof, We have,

P s | [P] + [8 =P
r(HXP)> r(M) - r (MXP)+ L M. (8P) 7

by Theorem T3.

Now it is easy to ses that if & > T XYsa,0 positive real

. numbers
X<Y,agshd,
Then il <cz Hence ’8-:-” (_13]
' be-a "B° 7 r LM, (8-P)) r(¥)

"~ The Converse rs’ proved S'm.rla.v!.y, Q.B.D,



Lemma %.4. Let M be a molecular matroid on S, Then M" ig

molecular,

Proof. If possible, let 4 (M X P ) > a (M%), for some P C 5

1.e. a2 (M.P )Y _7>a (f) since by Theorem T7
(M*xpy=(u, )",

Now it is easy to see that for any two matroids "1 and Hg ’

1£d (M ) >d (i, )y atg™ ) <da () )

Hence & (M., P) <d (M), Hence d / M X (5-P) _7 > 4 (M) by
Lemma 2.% which 1s a contradiction,

QIE.D.

Proof of Theorem 2,7, Let I"l:L see Pnl be the P-sejuence of M.

Then by the use of Lemm 2,3,

1 - QU | 1
(K, P YAl (P TP )XP 7 e

n
1 1 1
<4a(M, U P, XP ) s & (MXP ) .
1_11 1 | 1

Hence

a xpy>al W x e ltur,, xRl 7.,

n
>a x o pt.pt),
i=]
O T | a3 1 =
Algo, * X U P,- . P "= (M, U P XpP*) =
’ {up i b o i.r‘i r
r x
= ({MX U Pil\. Prl) by the use of Theoream 77,
im]



roo1 .1
Since ( HX U P,~ . P, 3} is molecular,

i=}

by Lenma 2.4,

1

- Y is molecular,

n_
(M x UP, P
i=pr
Thus, Pnl, Ptrl see Pl1 is the P-sequence of o,

3. %D,



Section 3 : P-sejuences and Matroid Unions

In this section we study the P-sequence of the union
of two matroids relative to the P~sequences of these matroids
when they are related in a certain fashion, We are'then able
to deteralne the Pesegquence of the images, under certain
functions (admissible functions), of a matroid wholly in terms
of its P-seqyuence in a very simple manner. In additicn we
show that the P-sejuence of any matroid is determined complately
by the sets of coloops of the images of M under certain

adaissible functions.
The following iz the centrel theorem of this section.

Theorem 3.1, Let !1 and na be two matroids on a set S,

If max d(M1 XQ)=4 (Hi XP) fori=1,2, then

1 &8

max d/ (M VM )YXQJ=4d/s( ' Yxp 7
-y _"1 2 M VY,

Proof, Suppose M, V M, ) XP has ( P-T ) as its set of
colocns, Let b be = base of (HIVHQ)XT. Lotb-blUba
vhere bl' b2 are bases of "1 X Py Ha X P respectively.

Thpa blﬂrillballofuitf' | '
ba N T 41s a dase of Hg‘! T,

and bl N be A Ts @ by Corellary 1 of Theorem 1.2.

Let a-]hlf‘l‘l'l » £= Jpgnrtl
e=]T - (B Ud)NT
d= b 0 (P ],s & = [bg(](P-1)



Let ¢, Ql’ Qz be the rank fvactions of Hl v Mz, Hl’ H2
respectively.
°. (P} q, (T)
Since b s e we have
| P| |T|
¢, (P) a +d a
| F| “"a+ fre+deoe a+s feec

Hence d (a + f+ ¢ )< a(d+e)

l,e. d ( £+ c) < ne . (1)

Now since

BE M

Il = 7l

ve get siﬁllarly

e (P f+e 9
a( ) ¢ <
[ p| a+f+c+dsr oo a+ T +¢

l.e. e (a+tf+c¢c) < £(d+ aq)
1.0, e(atec) < £d (2)

But by (1) above,
| d(f+vc)s se

Hence e ¢ = 0 and de = O

i.e. {c u 0 or e=ds=s0 ,



Case 1I. d=eun 0, cwk 0,

Let X € 8 such that

c

.
‘ —

AL (M, VM )XK 7= max d/ (4 V X
L Cny VN g = ] LGy vMy) xq 7
15 (nl v "2) XK has ( K=L ) as its set of coloops, then

AL (M VM, )XL 7 >al (¥ VH, )X ]
if L, X = L are¢ not void,

This is a contradiection.

Hencey, L=¢ or K~-L = ¢. Ifnow L=¢ since c 3= 0

and
L Iy Ubgl e
[y U By |

AL (M VH IXK 7 <afL (K VM )XP 2,

which is a contradiction,
Bence L 9* ¢ and K==L = ¢,

Hence, by Corollary 1 of Theorea 1.2,

«K) ; 1; (K) + Qz (x) .
X1 x|
S *1 (P) + !n (P)
. | P

slnce Y (k) 4 (P) |
TR

B!



Qa(K) '.3 (P)
X % |pl

Hence & £ (M VM, ) XP 2 af (M VM)XK _].
Case II, c =0
©(r)+ &, (P) > P
lieo AL( M VM )XP ) = 1 ,
Let X € & be such that

(lll1 v Hg) XK has no 0010091;

Then, (K .(K
3‘15-1 = —T;—l)- + -:lalTl by the use of Cerollary 1
K\ |

of Theorem 4.2.

Hence

. WK
(K) R 4 (p) . :acp)
) 4| = IP| R

Hence X = ¢ and

QL VNI XP T 24L0 VM) XK ] (K g 8) .

Q.EB.D,

Corollary 1. Let M, and My Dbe two matroids on a set 8, If

q-::xs QLM XQ) 7 =al (¥ XP) 7 fori=1,2 and

£CW VH)XP ] = My on P



'Th.n HIVHQ'H]I ou.S.

Corollary 2, 1r “1’ Ha are molecular matroids on S then

“1 Vv H? is molecular,

)

Corollary 3. ir Hl’ lla are atomic matroids on S, then

M, VM, is atomic 1f M, V My 9 M, on S,

Proof, We ueed conslder only Case I of the proof of Theorem
3,10)

since M, V M, ot M, oa S,

Firstly by the first part of the proof of Theorem 3.1,

M, 7 M, has no cdloops.

Hence for X € 8, we have

(M IV (M)  r(M) + r(My)  r(M XK) + r(M, X K)

= <
|8l |5 x|

Hence,
A LMY 7 >a(m VM)XK (K E s).

< E.D,

Corollary 4. Let ¥ be a molecular matrocid on 8, Let o

r (M) = «¢, and let l!k represent the matroid
MVYMV ... VH (k times;

Then r M 7 = minl ke, |8]_J.



Proof. Let Hk have no coloops. Then by Corollary 1l of

Theorem 1.2,

rl NF J = k.,

Suppose Hk has coloops. Since Mk is molecular, by Corollary ®
above 1t follows that Mk iz the matroid Hg oa S,

Fence k . « er-Mkjg isl .

Thusr[bbk] = min / ke , [.?l]
Q.R-D.

Definition 2,1, Let Hl. H2 be two matroids on S, Let "1

have the P-sejuence

1 1 1
Pl 3 Pg es e Pn

and Ky have the P-sequence

912. sz 3 see P.a « Then the ordered pair (“1' "2) has

overlapping P-structure if{ one of the following condition holds 3

1 2 1 2 2 1
(1) Pl Pl ’ Pe = P? P eee Pﬂ " Pm ?

n beling ejual to m,

. 2
(3) Pyt =Py Pl m Py e Ppy =Pay b

2 2 1 2 2
..1Enpi and HE.PH'HuuonP. .

P



k
1 2 2
(9 1U1 Pil “ PZI.8 v Peep " Po v eee pi*-—l =Py
=

and HQIP12-H° on Pla .

k n
1 2 1 2 1 o
(4) U P, =P P = p eee U P = P
=1 * 1 7 kel 27 jskem-1 1 m
o
and H,‘ X Plg = MO on Pla ’ H? ® sz = Mu on Pﬂ. .
k . m
1l 2 1l b b | 2
(5) U P = p ? P = P [ X ] p .= U p
=1 1 1 k+f 2 D yepekel i

2 2 ' 1 1
and ngpl'ﬂo on Pl’ Ml.Pn=MuonPn.

We say the matroids “1 and Hg are !'augned' irf ("1’ “9,)
or (M, M ) have overlapping P-structure. /" See Figure 2.3.1 7

Example 2.3.1. In the Figures 2.3.1 (1) to 2.3.1 (8)

examples of various cases in Definition 3.1 are represented
schematically. The strips into wvhich the rectangles are divided
represent the sets of the pP-sequences, strips in the 'same line’

in the twvo rectangles denote the same set.

Definition 3.%. A P-sequence defines a partition of the set

of definition of the metroid. Let My, My be aligned matroids

on 8 vith the P-sequences

1 ® 1 1 1,
{Pi } =1 = Pl ? Pa ses Pn

[
2 2 e
= \Pl t ] pg oo P- . °

is}l B o

{’1’}



F’: —— -4——-—--—P12
1 2 ——
Pr—f- I LS S 2
1 — — e —
P; ———t -4—'——-P§ P} - ...‘_._.__.pf
R T | p?2 1 - 2
P, —> ~1—P, P - S i
PS —T _ ~~g— PS PG ———— P2
P! —— ~——p? p! it §
6 6 7
My Mo My M, COLOOPS
F16-2.3.1, (1) FIG-2.31.(2).
1 2 2
d LOOPS i —P P — 1 LOOPS —P.
1 | 1 _ ]
Pz —— L lE P, - L
P; - —— ——1:322 P; —_— -l Pzz
1 2 1 .
P‘; +_P3 I:)4 R ———— 32
P; - -l————Pf P51 —— — 42
! o e 2 1 7
PB — —PS Pe —— % 2
M, P P; COLOOPS 5
FIG-2:31,(3).
FIG-2-3:1, (4)
1
Py — 1> LOOPS +
— p2
1 1
R =T |
P; — +_P22
P, —t ~——p?
o —
/, BB 2
1 / Ps
Pe
, -4———-—-—[3(;"




we then say {Pil} i{s coarser (finer) than { Pig }
i=l n i=1
iff the partition defined by Pil} Sl is coarser (finer)
" =
than the partition defined by {Pig}- . For aligned
i=]1

m
matroids My, My 0n § with P- sequences {P 1} {P 212
i=} i=1

we would say Hl i§s coarser (finer) thin M iff {P 1}1 " is
=

' a
coarser (finer) than {Piz} . Again, we c:n talk of the
is]

infimum and supremum of P-sequences {Pi { }
1=1 i=]
of aligned matroids, by considering the corresponding infimum
and supremum of the partitions defined by thea,
The following theorem is now easy to verify.

Theorea 3.2. Let ng Ma. lls be matroids on S,

(1) 1If My» M, and My, My are aligned with M, coarser than M,
and "3 coarser than ’Hl, then II2 and "3 are aligned with Ha

coarser than Mge
(2) 1r ll’ 1; coarser than N, and M, is coarser than M;, then
Mas “3. are n.ii:ncd.

| We next show that certain special kinds of reductions

of matroids can be carried oﬁr to their union.

Theorem 3.3.  Let My Mg be two matroids on 8, Let ¥y bave

the P-sequence Pll. Pal ece P snd let lla have the



0y U p,l=p a1 withuy X P,% =y on P>
q=1 & 1 \ 2 1 o 1

or
2

(M, VM) o (5=T) = M o (5=T) V My (s-T)

Proof, (a) Clearly M, X T and Hg X T have disjoint bases

since M, X T has ¢ as the base. The conditions of Theorem 1.3

are therefore satisfied. Hence,

(M V 142-) e (5=T) = ¥ o (5=T)V M, . (5-T) .
(b) Case 1. Let ( Hl v “z) XT hﬁve no coloops. Then using
Corollary 1 of Theorem 1.3, we have

(M V Mg) o (5-T) = (M) o (5=T)) V (My o (S-T)).

Case 2, Let ( "1 v Mz ) X T have coloops. Then by Corollary 2
of Theorea 3.1,

(Hl v HQ) XT is the matroid I(|l on T, Hence,

r(MmXT)rr(MXxT) 2 |71,
Let us suppose |

(M, . (S=T)) V (M, » (s-T)) 4s not M,.on (8-T). Hence there
exists Q < '(a-'r) such that



((g . (s~T)) V (M, . (8-T)) X 3 has no coloops, Hence,

r LM L (TN XQ 7+l My, (s=-1)Y g 7 < |7

But this implies either

rl(M . (s=TNX 3] r{ M XT 7

< or

R k4

rL (Mg (=T X7 vl MyXT 7
{ L

ER |7 |

By Theorem 2,6, this is impossible, Hence,
(M . (3=T)) V ( M, . (5-T)) 1s the matroid M_ on (8-T).

Since (M, v N, YXTAis M, on T, by Corollary 1 of Theorem 3.1,
(M, V M,) 43 M, on 5. Hence (M, VM) o (8-T) 18 M, on (5-T).

Hence,
(M) VMy) o (S-T) = M . (5-T) V My (8-T) .
Q-'-Do

By repeated appliecation of Theorem 3.3 we have the following

Corollary.

CorollaggL 1;’ Let ul. n’ be two matroids on s.' Let Ni havo.

'tpe P-seyuence Pl;. Pél-... Pnl and Ha have the P-ioqnoneo
£ J
2 2 2 . ) § 8
Pl ’ Pe ss e P- @ Th.n' lf 121 p’. . 121 Pl = 7 ’

(B . (5-1)) V(Mg o (8-T)) = (Mg V My) . (8-1) ,

vhent M) X T and MgX T are aligned,



The following simple Lemma is needed for the proof

of Theorem 3.4.
Lemma 3,1. Let "1’ Ha be two matroids on S. Let

T, C S (1=1,2) be the maximal set such that

d[nixrijsqn;xs ALl M X7, (1s1,2),

Then if
(1) 'I'1 = T2 = T and

(11) v L M xT 7+ MXT 7 < |1l

Then
d(_‘(ulvug)x'rj >aL (M VK, yxe 7
ITP=-Twe ¢ ,

Proof. Since P - T 5k ¢ , we have
rl M XT ] v/l N XP)

i a— M < i

dL."ier ‘Tl ‘Pl

By Corollary 2 of Theorea 3,1

for (is=1,2),

( M, v M, )Ix T is molecular,

Also r L % XT 2+l MyxT 7 < |7,

Hence ( Y 4 ll’ )XT h;s no eoloops.

Therefore, by Corellary 1  of Theovem 12,

r_L'MIXTJ*rL'HBXTJ-rlL-(lllvna)XTJ



and

1 1 1
+ .

dL'(MIVHQ)_X-;"dL'HIITJ d[ugx-r_?

It 1s now easy to see that

d[(_nlvug)x'rj:»a[(ulvng)xp_?
Q.E.D.

Theorem 3.4. Let M;» My De two matroid oa S, Then if My
M2 are aligned then "’J. v Hg. "1 and Ml \'§ Ha ’ H, are aligned,

-

Also the P-gequence of Hl v na is coarger than the infimum of
the P-sequences of M, and lle .

Proof, Let P11| Pal ese Pnl

2 2 2
p1 ] Pg L N N P.

be the P-gseyuences of bl]_. "2 rup.ctively.'
Suppose there exists a least nunbcr'k such that

1 = Pja for .0.. J e {1'2' cse -}

- k 1 4 1
(11) 4“1“‘9-71‘.131"1 e B, = M yonB" .

(1) P,

.

Then using Theorem(of Tutte) 27, Corollary 1 of Theorem 2.1
and Corollary 1 of Theorem 3,8 it is clear thct_

n .
1
U Pg"

a 1 .
(V- C oM 1% g



n
Hence B(Hlvna)sigki’il g

If there exists no such k

B(M VM, =B (¥ ) orB/LM, ]

depending on BL-HI_? = BL-H;!.]
or BL My 2BL M ] .

Case 1

1f P;* = P,° , using Lemma 3.1, Corollary 1 of Theorem

3.3 and Theorem 2.8, 1t ig easy to see that

: if B[ulvngj e ¢

Pll, P..&,1 eee 3 BL M VM, 7 1is the P-sequence of M, VMg,

snd iIfBL M VM, 7 =0,

Pll. Pgl cee Pn1 is the Pe-gequence of Hi V-Hs =
Case 2.
P
If 13 - 911
1:1

vith ulxpllsng on Pt ,

since "o VMM = M for any utroid l(, again using l'hoonl 8.0,
Corollary 1 of Theorem 3.3 and I.olln 1 \u have



n
Hence B(Hlvna)sigki’il g

If there exists no such k

B(M VM, =B (¥ ) orB/LM, ]

depending on BL-HI_? = BL-H;!.]
or BL My 2BL M ] .

Case 1

1f P;* = P,° , using Lemma 3.1, Corollary 1 of Theorem

3.3 and Theorem 2.8, 1t ig easy to see that

: if B[ulvngj e ¢

Pll, P..&,1 eee 3 BL M VM, 7 1is the P-sequence of M, VMg,

snd iIfBL M VM, 7 =0,

Pll. Pgl cee Pn1 is the Pe-gequence of Hi V-Hs =
Case 2.
P
If 13 - 911
1:1

vith ulxpllsng on Pt ,

since "o VMM = M for any utroid l(, again using l'hoonl 8.0,
Corollary 1 of Theorem 3.3 and I.olln 1 \u have



2 2

: 2 2 -
P17 2 Py ees Py .Pp,.,l vee B (L nlvugj

1f BL M, VM, 7 #= ¢

1nd
P 2 2 P 2 P? p o -
1 ] Po‘ oo e p w1 LIC N -

if B/ My VM, 7 =4

1s the P=-sequence of "1 v M2 N

In elither case we see that Ml tnd M, 1ire aligned and
the P-segquence of My VM, 1s coarser than the infimum of the

Pe-gse uences of Ml and M, .

Q.E.D,

Let ¢ be the class of all matroids. We would like to
consider certain special kinds of functions from ¢/ into e#f,
To overcome certain minor technicil difficulties we first

define 'expressions’.

Expressions are defined as follows i1~

(1) f, 1s an expression

(2) ‘If £ 1s an expression (£)* 1s an expression.

(3) If f; and f, are expressions f; VI, 1s an expression
(4) The only expressions are those given by the above.

We define positive expressions as ¢
(1) ro is a positive expression

(2) 1If £ 18 a negative expression (r)' is a positive
expression

(3) If f; and f, are positive expressions f; V £ 18 a positive
expression |



(4) The only positive expressions are those given by the above.

The order of a positive expression is the number of (V)

operation needed to define it in terms of fo.
Example

£tz (e, Ve v, V(g Vi )% are positive

expressions. to hag order (. f has order 4,
We define negative expressicns as :

(L) If £ is a positive expression (t)* is a negative
expression

(2) If £; and f, are aegative expressions f; V f, isa

negative expression

(3) _The only negative expressions are those given by the above.
The order of a negative expression is the number of
(V) operations needed to define it in terms of £, -

x ‘ - x x
Examle + (£ ), =t ve ve Wv(r ve )

are negative expressions., Order of (fo)‘ is 0, Order of

£' 1s 4.

We will denote the set of all expressions by &

Now expressions can be made to represeat functions from ¢4 {nto
U"{ as follows 1

(1) Let f, represeat the function such that f, («) = «
for all o« @ M .



(2) If £ =1 v f.‘l s £ represents the function defined by
() = ti'(et) v rJ(d) for all o« 8 o4

x
(3) If £ = [_'fi _7 f represents the function defined by
x
fla) = £ £, (=) J for all « £ o4,

An expression representing a function will be said to
be a representation of the function. The same function can
have several representations. ( f and ((fo ™ v £, v

represent the same function),

Definition 2.8. A function f mapping 247 into e is said to

be positive iff there is at least one positive expression that
is a representation of £, Order of a positive function £ 1is

equal to l:%'{ order of g , g 1s a3 representation of f and g
[ 4

i3 a positive expression } .

Definition 3.4. A funetion f mapping o/ into A7 is sald to
be negative iff there is at least one negative expression that
is a representation of f, Order of a negative fuaction f is
equal to =min £ordor of & J € 1s a representation of f and g

| g 85
is a negative é:prouiou}.

lﬂ.ﬂ.‘ t= There 11‘__|one room for confusion in the Definitions |
8.3 and 3.4. wo'b not at this stage know whether a function
can be represented both by a positive 3nd a negative expression,
Howvever the next theorem indicates that this 1s impossible. This
can also be seen directly by considering the effect of positive

and negative functions on a matrold M= M, on some set 3.



we will henceforth not attempt to distinguish between a function
and its representation, For iastance, instead of saylng 'let f
be a function with a representation ri v fj ' we will say

et £ = 1'1V1'.1 ' &

Definition 3,.65. Let F be the class of functions mapping 0/"1

into ?/‘f such that F = { 7 l f 4s a psotive or negative
function }. Then we call ¥ as the class of admissible functions,

Theorem 3.5, Let M be a matroid on S, If f is a positive

(negative) tunction f(M) 1ie aligned with M (H’) and is coarser
than M (M%),

Proof. Let f be a positive function.
(1) If £ = fo’ the theorem is trivially true,
(2) Let f=f, V£, , vhere £, fj are positive funections
wvhose orders are less than that of f. By induction on the
order of a positive function we can assume the theorem to hold
for f, and f, i.e. £,(M)y t‘(ll) are aligned to M and are
coarser than M, Hence the infimum of the P-sequenceSof f, (M),
(H) 1s coarser than the P-sequence of M, Now by Theorem 3.4,
'r(u) is aligned to titu), f (M) and the P-gequence of f(¥) is
coarser than the infimum of the P=-sequences of f’_(n) and rJ(u)
Hence f(M) is aligned to M and is coarser than K

The proof vhen f is a negative function and f = f, V £,
vhere ti' f, are negative fungtions ot: orders less than the
order of f, is identical.



Now suppose f is a positive function such that f = (ft)',
where f1 i{s a negative function and fi = fk v fj’ vhere fk' t‘1
are negative functions whose orders are less than that of fi’
fi(M) is then aligned to M* and 1s coarser than M'. By o
Theorem 2.7, £{M) 1s aligned to M and is coarser than M, The
proof of the -ase where ¥ is & negative function such that
£ e (£,)° where f; 1s a positive fuaction and f, = £ V £, ,

where fk' fj are positive functions, 1s similar,
J.E. D,

Corollary 1. Let M be a matrold on 8, Let PysPgece Py be
the P~sejuence of M, Let f be an admiesible function. Then,
itp & Bt /7, 1§k Py C BYL (M) 7 or
1§i Pi < B Lf r(n)ld7 according as f is positive or negative.
The following Corollary of Theorem 3.5 is also quite

easy to verify,

Gorol}igy ,EL 1t "1’ "8 are aligned mtroids on Sy, and ¢

is an admissible function, r(ul). f(Hz) are aligned matroids,

Theorem 3,6, Let £ be a positive function, Then if a matroid

M has the P-sequence Pys Pa eee P, with P, = T then
L. M, (8T) 7] = (M), (8-T)
£/ MxT /] = tM)XT

If £ 18 a negative function



£/ M. (8-T) 7 = £(M) X ( 8T )
£ uxT 7 s (). T

proof.  Let f be a positive function, If £ = f,, the theorem

is trivially true, Let £ = f1 v fj y where fi' fj are positive
functions whose orders are less than that of £, By induction
on the order of a positive function we may assume the theoren

to be true for fi and rj. Hence,
£, 0 M, (3T) 7 = (£,(0) . (5T)
£, U M. (5-T) 7 =« fj(!d)) o (8-T) .

Since fl(H), fj(M), M are aligned, by the uge of Theorem 3,3

ve have

(£(M)) o (5-T) = ((£,(M)) . (8-T)) V((£,(M)).(5-T)) .
= (£, (K (3-T))) V (£,(M (5-T)))
= £ (M (8-T)).

Again by the induction assumption

£L0MXT ) e £,(0) X1

f’( MXT )= fJ(H) X7
iy Corollary 4 of Theorem l.1,

£(M) X T = ((fi(ll)) xT) Vv (( rj(ll)) X T )
= (LMXTVLHEHMXT)) = KMXT) .



Now let f be a negative function, If f = ( fb ¥ the theorem
i1s true, by Theorem 2.7 and Theorem T7, Now let f = fi v fj,
where £, fj are negative functions whoge orders are lrss than
that of f. By induction, we can take the theorem to hold for

L9 4 We have, by Corollary 4 of Theorem 1.1,

3
(£(M)) X (8-T) = £ (£, (M)) X ($-T)) S A L.fJ(M} v (s=7) _/
=Lf,n, (s=T)).7 V L'fJ(M . (5=T)) 7

el M. (s=T) 7.

We know, by Theorem 3.5 that fi(ﬁ), rJ(M) are aligned
vith ¥ . If T contains any coloops of say ri(M), TS BL'fi(M)j
since £, (M) 1s aligned with M* . Ia this case it 1s trivially
true that

(M) o T=LC L (M) o T2 VLN o T 7
s tux) 2V (uxT) 7
= f ( MXT ) ®
If T coatains no coloops of ri(u) or fJ(H), by Corollary 1 of
Theorem 3.3
(£0) . T= (200 o T VL C£,00) 0 T 7
Lt (MXT VL 8 uxT) 7

=f(MXT) .



Next let f be a positive function with £ = ( £, )" where f,
1s a negative function which can be expressed as 1‘1 = f;] v fk’
where fj ’ fk are negative functions of order less than the

order of f,. BY the above proof the theorem holds for fi(H).
x
£(M) o (5=T) = £ (£,(M)) X (s=T) 7] by Theorem T7.

x
=L f,(M, (5-7)) 7 =¢€ (4. (s=T) )

1'(-14)x'r:ﬂ[t;‘i(m.‘1'_7"--=L'f1(M:t'f)_7‘lr
=f(MXT).

The proof for the case where f 1s 2 negatlva function
such that £ = (fi )‘ vhere f, is a positive function is similar
to the above.

Qe¥e D,

The following Corollary is obtained by repeated application

of Theorem 3.6,

Corollary 1, Let a matroid ¥ on S have the P-sequence
k
P.s P, ees P wvith g p, = T .
1' "9 n gm !

If£ £ is a positive function

L ML (8-T) = (M) . (8-T)

T S A ( (M)} X T

a

1f £ is a negative function
£ M. (8-%) 7= (£(M) X (8-T)
g/uxe 7 =) . T .



Theorems 2.5, 2.6 and their.corollaries are sufficient
for the complete determination of the P-sejuance of f(M) along
with the ranks of the various molecular matroids (f being
admlgsible; in terms of the P-geyuence of M, in a very simple

1-3-3
manner., ( See example,at the end of this section Jo

For convenience henceiorth we w!ll denote

MV MV oo VM (k times )by M and £ V £ V ous V £ (k times)

by fk.

We now show that it is possible to obtain the P-sequence
of a matroid by the use of {te admissible functions.

Definition 3.6, Let Py » Py oo Pa be the P-gequence of 2
k

matroid Mon S, Let S = U S. such that &, = U P
d B Y e i B

L

S = 1] P ®
K f=ke ) 1

wWe say an adwissible funection f distinguishes between
31 and 83 ire

(a) 8,=3B l” f(M) J  or

(d) s =BL ) 7 .

By Theorem 3.5, Case (a) corresponds to a positive
function while Case (b) corresponds to a negative funetion,
The next theorem describes functions which distinguish between
any 8y and sa'whcn 8 and 8, are defined as above,

Theorem 3.7. Let M be a matroid on S, Let Py P' coe Py

be the P-sequence of M,



k n t
S.= U P < MN.
2 {nk+]l 1

Let Sy = P
1 §=1 i1°?

Then there exlsts an admissible function f which distinguishes

between Sl and 8§, .
Proof, Let us denote
k
M X 131 P1 Y. Py by ¥,

ke 1l
MX( O P, ;P

M
g= 1

k+ 1 by 2 °

By the definition of P-sequences we know H1 and M, to be
molecular, and d(Hl) >d (HB) .

we will now consider three cases.

Case 1. d(Mi) = m

d(My) < m where m is a natural number,
Consider the admissible function f such that
=, YT T
- - 1‘ L
WA VAL VA S aid

Let r(Hi) = a, Since H1 is molecular, Hi"l is molecular
by Corollary 2 of Theoream 3.1. Algo since 4 (H1)7- m clearly
ulnhl is not ¥, on Py o Hence by Corollary 4 of Theorem 3.1,

r(lll"]' )= (m=1) a



r LW ) e (L) ama
Again by the use of an argument similar to the above,
e (K™ e m
Hence d L f(M)_7 = 1.

Let r (M, = d, and let ex [P, |- (m-1) 4, 1F this
value 18 positive, 1nd e = 0 i_ff‘ithis value is negative or zero.

Then using an argunent similur *o that used for Hl we have,

M1

r(M, ) = min /2 (m-1) 4, ]Pki'l} 7

r(M;'l)"ci rLL(“m'l) IV 7 = me< [Pk,,ll

since ¢ < d because d(l(,) < m .. Hence f(ﬁg) is not the matroid
M, on Pey1e Since £(M) 1s cleﬁi‘ly negative and therefore
aligned wvith N%,

BL (M) ] = S

We may note here that another function that distingulshes
between sl and E‘.2 in the above case is the function g such that

gli) = ( % v

8ince ll1 is molecular g(ki.) is molecular,
If g(M) ok X, on P »

P Laty) J e o™ 7 e s Sy,

But it is easyto see that r [ (Mln'l) = r(l{l) since M, is
msplecular and 4(M) = n. e

el



Heace r £ &(M) A= ’Pk] .

We thus arrive at a contradiction. Hence we conclude that
‘(Ml) ® H“ on Pk .

Again, since H.; is molecular,

g (Mg ) is molecular.
Suppose g (Ha) = H“ on Pryy
Then | P, | = (8(My)) < r((M.;‘"1 YY)+ r (M%)

But since dA(M,) < m, r(( qu'l Y <r (M)

Hence T (§(M)) < r (M) + r (M ),

Hence g (My) wk N, on P, .

We thus arrive at a contradictiocn., Hence we conclude that

BLeg(M) /] = 8 .

Case 2, ag) > =
d(My) & ®
Consider ‘the adaissidle function f such that £ = (f, )” that is,
£(M) = M, Let r (lll) = g, ByCorollary 4 of Theorem 3.1,
wdhnnr(lll.)-ln< kal"'ﬁ | |
This means that l!l‘ has 0o coloops in Py -

However for Mg if r (My) = d, ‘clearly ma 2> [P...] -



Hence r (M,‘J.,"l ) = !Pk-rll by. Corollary 4 of Theorem 3.1l.
Hence M, = M on B, . .

Now f is positive and therefore f(M) is aligned with M
Hence B (M") = Sge

case 2. 4(N) =m+(xy /a), AM) =m+(s; / a)

Let [Pk{ = e (Pk+1| = ey ? ’ ;—l‘ being proper

fractions, m

r(k; )= a , r(My) = d . being an integer.

d B
Clearly -—.1— >—a-1- .

We now proceed to write Y and e, a8 follows 3

(1) o) = ma + «y (1) ep=md + 8,

(2) .1 = kldl + ‘z (2) .8 = pl Pl ¢ a’g

s 3

4 |

s ’ 4

(1) e =k %+ %y (1) 0= P Py * Py
3 8

3 &

i ¢

(@) & "¥g1 %g-1 (8) 09 Pguy Py -

Hc note that o; 4 «g «.e ‘1'1 forus s decreasing seguence of
positive integers and so does 01 ’ Fa e ﬁ..l o

Let J be the least number such that kJ-l 9 Pso1 °

We now define a sequence of adnlsniﬁlo functions fl'fa'"fj

recursively as followvs ¢



- m X
£, =L (£, ) 7

- k x
fo= " (5) 1 7
4

t - 8 _]*
where 6 = ma!rL- kj-l # pj-l _7 .
e note that 1'1 1s a positive function if 1 1s even,

f1 is a negative function if 1 is odd,

Since My M, are molecular, it is easy to see that, £y (M40

fi(ﬁg) are mlecular and

r ritnl)J = o rl £, (M) ] = By o
Suppo se '*3_1 > pj-l B
We hive (kg y ) (g, )< o

S;nce fj_l(ﬂl) ’ f1-1‘“9) are molecular, it follows from
Corollary 4 of Theoream 2.1, that fJ(Hg) = M,on P, ., 4 vhile
f,(!ﬁ') has no coloops.

Since fj is an admissible fumction, t:(u) is aligned with

M or M* .

Hence it follows that B/ t:(ﬁ) J = 8q o

(We note that this means that f, is positive and hence § 1s even).

Similarly if Pyl > kj-l' one can shov that B'L‘r‘,(u) J= 8 -



(In this case t’j will be s negative function and hence J
will be odd ),

Thus in all three cases we hive admissible functions

which distinguish between 81 and s.,.

Q.E. D.
¢
It 45 worth notinz that when 4 ( ¥ ¥ U P, ., P_ ) < 2,
Since by Theorem T7,
k x k
" MX U P, P ] = 4 M.0 p, xp, _7
= 1"k je1 17k

« /" K x 10* Py o P 7 >

- n
aL ¥ x o p.p 7 > 2.,
L=k

In some of the above cases we might bDe able to use
Case 1 and Case 2 of the above thooreni using admisgible functions
of M* in place of admissible functions of M. We ean now
construct a sejuence coarser than the P-sequence using only

Case 1 and Case 2 as follovws

TABLE 1

Let k be the minimum number such that
l(k = I(n on S - C (M),
m be the minfimum number such that

(lf). = M, on S=C (MY .



Then we dafine

G, g = B K™% 72 & >

0,0 = AL M 7B (R

Gy = BLANHYE Y Jo Wt Ju e w
Gy g = v 2B Y 70 (159,
Gs'as AL 52_7 - B/ bl )3_7
Goy = BL WV 2L W Jues v g
- - - 2 - 2
= B W J N ) ey M 7 7 =g,
€3, = AL 7 -3 0o ) 7
i
By 2 = A AUl S Wl (1 o Ul Y J 1>2
g0 = BLCOEYT Y 2o sofY Jue romd
E | - 1>2
Sa,g * AL O™ 7o n Siol™ =
8a,1 =3 L ((OE™ = 7,

Deleting the void sets from the se Uence
c(u), O,10 O g eooees ‘n;l » C(M* ) , wve obtain the seqUence



-{1' Q9 cee Qp .

Definition 2,7, The above se uence we shall call the

W~sequence of M, (We mway note here that the partition of S into

2 2 2 - 2
AWM ), BOM)® = 4 (M) 4, A L(® 7
corresponds to Kishi-Xajitani's Principal partition of a graph).

We state some of the obvious properties of I=seguences

in the form of a theorem which follows from Theorem 2.7.

Theorem 3,8, Let M be 2 matroid on 8. Let PI'P'«?""Pn be

the P-gequence and ? Qg eoe ’;p be the 3 sejuence of M.

(1) If P' n {Li * d" thl!l PSQ Qi - ] s n ’ 1 < P .

(2) If P, S Qg Pl_tg:_:__:g:| and § >4i , thenr > s.

r
3 Ifa({Mx U0 , . ) = k

or

P
ud(n"xiu Y ) = Kk
g 3

where k 1s any positive iateger, then there exists a set. P'

in the P-sequence of M such that Np ® Pg .

Assuming one has obtained the Q-sequence of M , condi tion 3
of the above theorem enablesg us to idcntif‘;:?i:::: members of the
Q-sequence which are also menbers of the P-sequence. It is
possible to _obtain the entire l?-uquonea by partitioning the

Temaining members of the J~sequence,



We now state the important -roperties of A(M') U ¢ (M') and
B £~ ((Hr-l)l yF ./ in the form of a theorem,

Theorem 3.9, Let M be a matroid on 3. Tlet bl’ b,...br be
- 4

r bases of M such that U b:l iz a2 bage of Mr.
i=}

Let T & S be such that

(1) biﬂ T is a base of % X T

(M o bNT = 0 1 1% 54,5 ¢ {205}, )

r
(3) T 2 3=- 10 bi'
i=]

Then T 2 A (M) U ¢ (45)

&nd TE B L-(( Hr-l)‘ )r J °

r
i=] i

Also T contains the set of all clements accessible from

r

any element of S - U b, with respect to D;91bpeeed, o Hence
i=] )

by Theorem 1.2, T =2 a(MT) uc (i ).

k
We know that B / (( w1 * ¥ 7= 131 Pe s

vhere P11 Py ees P, 15 the P-gequence of M, and k is the

largest number such that

X
d(MX U P P ) 21 .

_ sey 1 ° 7k
k L

Let us suppose T - U Pi G QJ. .
i=]



- k
Consider the matroid M X/ TU ( U P, ) J . b, N T 1is

i=1
indenendent in this matroid by Theorem 72, 3uild eacth bit\ T
- k
into a bage of by , Of MX L TU ( U P, ) _J. Then by
’ T
Theorem T3, ( bi,l N{ Te 1Ei Py J ) contains a base of
MXL TU( U P ) 7. (T 0 P ),
i=1 i=1

Hence it follows that

- { - J ) e B
4/ MX(TU U 2 s (T U » >
¢ Lial‘ 1=1 17/ T

This clearly contradicts The rem 2,86, since

k k
MXZ T0( U0 P, )7 . (T= U P, )
& 4=1 1 1=1 1
n k
=M, (U Pi JYXY(T- U P1 ) by Theorem T 7=93,
i=ks+ ] i=l

Q.E.Dl

We now give algorithms for dstermination of A (M)uoc (Mr)
and B " (C WL Y7,

Algorithm for A (M) U C (i ).

Algorithm 3.1. Let M be a mltroid on S, By algerithe 1.1
wo can construct a get of banel hl’bﬁ ... L of M sueh that

U b, is a base of M, Let D= 8 = U b1 Let 3, Dbe the
i=] in]

set of all elements accessible from a ¢ D with respect to
bl’ b2 ese B . (If a 2 Dy,ve take a to be accessidle from



Form U 3 ¢ Then AN )UC (N )= U Q.
agd agD

The above algoritha follows c¢learly from Theorem 1.2,

Algoritha for B £~ (¢ M1y 7,

Algorithm 3,7, Let M be a matroid on 5. Let by, b, ... b,

be a set of r bases of M such that

r
121 b, = b is a base of M .
Let slna(u")nc (Hr). LetQC{o{ e Ss3and e
belongs to at least two of the bases byy by .oo b, } .
I£b - (5 UQ)=d,8 =B (¥ ™)y 7.
Otherwise pick some ¢ 2 b, =~ (51 UQ ). The element e forms
a unique circuit in all but one of the bases bi'bz“'br' Let
al' be the union of all such eircuits formed by e with the
bases bl’ba ese br o Each member of &1° is not 2 member of
certain of the bases b, bs eee b, and accordingly forms a
unique circuit in each of these bases. Let An' denote the
union of all such circuits formed by each of the members of A,°
vith the bases plg ba'... br e In a similar manner ‘;+1 is

obtained from ln. for n g's.s eee o
There are two cases.

Cage 1. There is a least positive integer p such that
A"'n QA M ¢, o |



Case 2, There is a least positive integer s, such that

@ a
Let F = U s.: vhere
e2D @

(13 Ds-.bl-(slvq)

(2) 1§ -a'ﬂ and A N Q = ¢ Aff e@D
- e

Then FUSJ_SBL- 0 il 7.

In order to justify the lbbvo algorithm we note firstly
that F U 31 2 A (Nr) UC (llr ). Secondly by the method of
construction of F U &, 1t is clear that M X (FU 84 ) has
b, 0 (li‘!)'s1 ) (1 =12, eea I ) as & bage,

1,}
Also bin bj N (FO 61)1-0), 11",1 {1,2 v r} Hence

by Theorem 3.9, F U 5; £ B/ (( "r-1)¢) J-

To show that B £~ (( "))y 7 ¢ FUS, we need
merely prove the following lemma.

_gn_l;_a,._g_._ Let M be a ntroid on 8 Let by, b poee D, De

a ut of bases of H such that 101 bi = b is a base of I(' Loi;.
sa= B (1T 7,

Then by N 8, 1is a base of M h ¢ Sg and °

binbjnss.¢’ 1*3, 1,1‘{1'2 soe r}-



Proof, Let Py» Py eee P be the P-sequence of M, Then we
know from Theorem 3.7 that A(Nr) u C(M') = U Py where k

i=]
k
is the largest number such that d ( M X U P, . P, ) > r.
§=1 i k
k+l
Ifda(Mx U Py o Proq ) <r, we can gee from the proof of

1=1
Theorem 3.7 that A(K") U ¢ (%) =3 £7(( ¥ 1% s¥ 7. Hence

the Leama holds for this case.

“ ) 4 (M"
Suppose d(MX U P, . P = r, Firstly p C B Ye

Hence Pres1 c 121 l:o1 « Now b1 N S? is indepondcntkin
MXs,(1=1,2..07T71) Butby'rheor'eml.?bin(v Pl)
v Kk =]

(1 ¢ {1,2 eee T ') 18 & bage for M X ( U b, ). Hence by
1=]

applicati;nlof Theorem T2 we find that b 1-01 Pk+1 is indevnendent

4

1n(HIU P, « P ). Butd(MXUP.P )-r.
1,1 1 k‘l’l 1'1 ) | k“l

Hence b1 N Prel for ( & 0{1,2 ess r} ) 13 a bage for
k+l

H x 121 Pi @ pk"’l md bl n Pk"’l ’ bgﬂ Pk"'l P oo brn Pt“‘l

are pairwise disjoint.
Now by using Theorem T2 we find that

b:l. [ Sa 7( _ror p | c{1,a vos r} ) i3 a bage for M X 88 o Almo
veknow that by () by N L7 A(M) U C(H) T ey 1 w3,
1, 3e{1,2 e. r} .+ Henee BN BN 8g= G, for 1 9§,
1,0e {1,2... 1]

Q.!.D.



The sets A (M) 7 ¢ (') and B['((Hr'l)')r J are
called Prineipal - r - minor and Augmented - principal - r - minor
respectively by Bruno and Welaberg / Br 2 _/. Algo-ithms 2.1
and 2,2 are due essentially to them, However, their
~description of these sets 1s not in terms of the matroid uanion

trhecren,

We now need to partition the J-seyuence further t» obtain

the P-sequence.

Definition 3.8, Let M be a matroid on 3, with

91 » Qg ses § &8 its  Q-seyuence,

r
Let M= (MX U Qo) |
b ]
(eondition 1)

r
if 4d(Mx U i > 2

and
P
= H‘ X U ®
( o Qq « Qp ) |
v (condition 2)
ud(ﬂ‘xiu Y oY) >
. =p

4
1

satisfies condition 1 and let p".r v BN r," . 91" be the

Let P," , Py ... .Pk: be the P-sequence of M, 1f N,

sequence of M, 1f N, satisfies condition 2.
Then it follows from Corollary 1 of Theorem 2.6 that

) |  § 2 2

P]. p oo Pkl ] PI g see Pkg eee Plp $ eve Pk: is the

P-sequence of K



We also note that if d ("r ) i3 an integer, then by Theorenm

3.8’ kr = 1,

The next theorem helps us in obtaining the P-sequence

of the matroid lﬂr when d(Mr'} is 10t integral.

Theorem 3.10. Let M be a matroid on 3 such that 4(M) is not

an integer. Let r(M) = o, Let M Dbe the! piarallel-d-cOpy of M

on 8, . If M is not molecular, B ( M, YYo= 5, .

« o |8]
Proof, d(Md)ad.d(M)-'—-:—n\sl .

1£8 (M 5] y=8 , 1t follows that there exist |5/ p.d.
bases bl’ b2 cse 9 b\sl for M, such that their union is §,.
Let T & 8, o Then each t:u1 NT(1=1,2.,.. [8]) 1s elther
void or independent in M, X T by Theorem T2,

Hence we require atmost |S| p.d. independent sets of

ll« X T to cover 7.

Hence 4 (M, XT ) < || . Hence M, 1is moleculsr.
Hence M is molecular by Corollary 1 of Theorem “®.4. The result
follows by contraposition,

Qe ¥e Do

Let Pyy» Py «.c P, De the P-sequence of M, Then ‘T(Pl), ‘]’(Pg'} od
ees T(P.) is the P-seyuence of M, ( T as defined in
a 18]
Definition 8.8), Binc‘o&?& is aligned with “« s it i3 clear
n

that for somek, B ( W )= U YER D



kel
Let 31 = 121 F'1 and s,3 L S1 e« Then by Corollary 1

of Theorem 2,6, M X 81 has the P-ssjuence Pyy P, eoe Py 4

and M . 82 has the P-sequence P, 5 «.. Pu e By repeated
applications of Theorem T3 it 1s easy t0o see that

d (MXS§ )>d (M. S5 )e Wenote that 5, and S, can
clearly be obtained by using Algorithm 3.1 on M, s e novw
coastruct parallel - « - coples of M 4 S, and M, 8, wvith «
respectively e ual to r(M X 51) and r ( M. S?). Clearly
this procedure when continued in this manner will ultimately

leoad to the molecular matroids

3
p ose MX U Ri.BJ es e ".R‘ with

MXR
1 1=

j . r
d MX U ni.nj)>dcuxu Ri‘Rr) for {r>§ ).
i=] i=]

Hence by Theorem 2.5 it follows that m = n and

Py=Ry 9 Py® Ryeeo Py =R,
Thus by repeated use of Algorithm 3.1 we are able to obtain
the P-sequence of M.

We could use the above procedure to obtain the P-sequence
of M, 1in definition 3.8, As noted before this completes the
procedure for obtaining the P-sequence of the matroid M.

We outline this proeo'dure briefly below.



Procedure for obtaining the P-aeﬂuenco.of a matroid M

(1) Use algorithms 3.1 and 3.2 to obtain the j-sejuence of M,

(2) Let M. be defined ag in Definition 3.8, Proceed to find
the P-sequence of &r asg described by Theorem 3.10 and the.
discussion following 1t,

(3) Build up the P-sejquence of M through the P~sequences of M,
as described immediately after Deiinition 2.8.

We may note here that while the algorithms used for
determining the J}=seguence of M are very efficlient, the
procedure described by Theorem 3.10 and subsejuent to it are
not jyuite go efficient. The loss in efficiency is mainly due
to the fact that wéjare forced to work with parallelex-copies
instead of the original matroid. The procedure should, however,
be still classified as a ‘good' alsorithm by Edmond's definitien.
. Let 8 be the set of definition of the matroid, Then, we say
an algorithm is '‘good' 1ff the time required to compute the
algorithm has a finite pdlynolinl on |8 as an upper hound,~7.
Algorithms 3.1 and 9.2 as well as our procedure assume that
there i3 a simple method of detecting the fundamental ctrenit
formed when an element from the cobase is added to the base.

For graphs this i3 indeed very simple,



To illustrate our procedure for construction of the

P-geguence of a matroid we give the following example :

Example 2.3.2. Let M be a matroid on S. Let PI,P?....P9

be the P-ssjuence of M. Further let the following hold s

d(M X P1: = 4 r(s X Pl) = ], lpll = 4
2
3 .. .
d(mxiglpi.pg)-34 r(MxtplupQ).pg) 4
|Pgl =18
d(nxigl Pl.Pa)ﬂﬂs r(rﬁxhl Pi"’s)"’
| Pa| = 11
4 4
dmx121 91.94)-2-3 r(Hxit-Il Py o Pg)= 8
| Pg= 19
5 ( 5
d(M X U P, . P.)= 2 r(MX U P, . P.\= 3
1oy 18 g 1 5)
| Ps| = ¢
6 ) N
oy F1e Pe 4
9 9
a(M’x I Py e P ma2d  r0F X T P LR = o
[Pgl = 7
=z 5 w22 rofx U ;
& X U P, . P,)= @ 5 U P, P, )= 3
et et T 3 sty 1° 77 |
[Pyl = 8
| | .
dm‘xiu P, - Pgim 22 AL SRR "R

| Pgl = 11

aM* xpy) = 3 r(n'xlig) =3 [Pyl = 9.



We will describe the procedure for obtaining the
above P-luqueneo.
(1) For this matroid C (M) = (M) = ¢ .
We start by finding A(Hg), A using Algorithm 3.1.
We find that A (Mq') = ¢ so we do not proceed anymore,
3

We now have A (H‘q) = U Py
i=]

2 4
A(M)= TU pi
i=]

Next we use Algorithm 3.1 on M* and find A [(M‘)? J. We

2
find A L- (N‘)a _7 = ¢, We thus have “"1)2 = 126 P:l .

Next we use Algorithm 3.2 and find
B L2 7, By 7, Bl g
we know that B 2 (M )° 7 S aofty= ¢ .
Using the same Algorithm on M ve find
B2, B L(UMEEP 7 4 wve know that
B 7 Cal oY T = e
We thus have
- 2 8 = BEN\T 3
B L () _7-131 P, 3 B LX) )'J-121P1 .

o
BLCMS 7=k 4 B ()= U By



3L (W) ®) 7 = py .

We thus have the J-sequence

N3 =Py =P UP, s Q=P s Q, = Pg qsupsua?nl:-a,
g = Pg .

W@ gtart by construgting parillelex=copies of the matroids

3 4
MX U Q o MX U 3, 0 G =M
A e B L L R T

n‘xlu Qo = Mg » M X Qg = Mg, teking « equal
to their respective ranks i.e,

o« =1, 7y 6, 2, 104 3.

We find that

(( n.l))‘ = MoonQy » ((Mg) g " - M, on (Qq)g »

((My)iar )° = M, on (Qulg o ((Mg) g P = My on ( Qg )g -

We, therefore, conclude that My, My» Mg, Mg are molecular and
turn our.attention to My and Mg.

18§ x 7
Since d £ (Mgl nq X 7; (Pg) 7 = : = 28% and

11 x 7

8 L (Mgl X Tg (Pg U Ry ). 'q;(Ps) J=

:ug



( '7/2 having the usual meaning '7’ has for a parallel-x-copy).

- - 26
Hence B / ( L ngd..?) J = '7;(?3) C Qq

( ]3gl being 26 ).

We next similarly check M, X Py and Hg . P3 for molecularity
and find them to be so. Hence the P-sejuence of l(:g can be seen -

Ho.w we go through the same procedure with lls.
r (Hb ) = 10 , lqsl = 26

(We will use '7'5 for the ) function in eonsidering parsllel-10-
copy of "B Ye

" We have

4L (Mgdymyo X T (Pg) 7 = 4l x10 = 27 &
4L 0) o X Te (PpUPg) o Tp (U 3 x10= 96§

A L (Mg Yyuyo - TolPe) T = x10m 28
We obtain
B, L- (( Hs )«.10 )”J - P‘ .

We check for molecularity of Mg . Pgq and find it to

be so. We next turn our attention to



HIOSHBXP.?UPB.I'(HIO)S?,

\P, U Pyl = 10.

we form ( Mo dw e 7

8L M)y To BT = & x7=88 =19%.
Rence
. 19
BL (( Mg Ly ) 7 = V1o (Py )

The usual molecularity checks for HlO X Pg and Myg o Pa

indicates that they are molecular,

P-gejuence of Hio therefore is PB’ P7 ’ Pé .
Hence we get the P=geguence of M as

Plj Pg’ Pa' P" Ps’ p" P?' Pe' Po ®



3!&!1. 2.3.3

Let M be 2 matroid on s,

Let the P-loquene. of M be Pl' Pg) Pag P4, PB °

L.t HXPI.HI' MIP].UPQ.PQBHQ,

3

1x]
M. Pg = Mg,
Let r(n) = 2,
r(M,) = 3y

r(l'la} = 5,
r("4) o 6'

. F(“s) = 5,

l

|
l

4

1m1 1 °Fa =Y >
\"1 = 8 . W d(Ml) = 4
pz = 9 :- d(Mg) = 3
Py| =12 .- d(M4) = 2
Pg] =9 & d(Mg) = 9/

We would like to study the effect of the negative function
x « =

L= (f, VI VL "onM LetMg=o£(M)= ( MV M VM,

We note firstly that f(Hl). f(!a), f(s“ia).f(!(‘i), £(Mg) are

Bolecular,

1t £ L M J == M, on P,
*LE(M) 7 = or (M VNS 4 r (T )

uL. ,Pl! '3.?("1)_7"?(“?)

=L 8-4_7+6=10 uhich is impossible.

Hence f (M,) = M. Similarly f(llg) =M, .



Bince f(Ha) is molecular, if H, = M, on P, our calculation
of r /7 (M) J must yield a value greater than or equal to

|Pg] -

But r / r(Ma)JsrL'naVHSJ!-*r([HSJ’)

=/ 13-2x86_7] +8=11,

Since this value is less than \Pa‘,

P0G . aLTT) T = 4] .
Since £ 1s a negative function f(H“) and £(Mg) cannot have
coloops.

HoncerL.t(H‘)_?-L-la-2:6_74-6-6_

A/l ()] = 2
rt(Mg) 7 =07+ (9-8)
= 4

d L (M) 7 = 94 .
(Note that (f(Mg)) V (f(Mg)) = M, on Pg since

r L tMg) T e fMg) ] =64 B> [Pg|= 9 ),

_ 4
5
£(My) = Mg X Pg U Py U Py o Py t(#,)-n,xtigspi).Pq,

r(nl) = Mg « Py using Theorem 3,8 or its Corollary 1.



Since these matroilds are molecular and
Al M) 7 >al s 7 >al ta) 7
wve have |
Per Poy Ps » Pl L1} l’2 as the P-seyuence of f(M)

vhere Py UP, =8 L ey 7.
r o) 7 =[P UP| 4 r L tug) 7+ v LS04 T +

v/ tag) 7

=17+ 11+ 6+ 4 = 38,

It &5 clear from the above example that given any
admissible function we can earry out the calculations similar
to the above routinely. Also note that if r £ f£(M) _/ were
not required we do not need the values of r (M;) etc. The
values of 4 ("1) ie {1,2 P 5} would suffice.



Section 4 ¢ Set of ‘toms of a Molecular Matroid

In this section we describe a procedure for ‘'breaking up!
a molecular matroid into atomlc mitroilds, Further, we discugs

the effect of admissible functions ou this partition.

Definition 4.1l. A matrold on & 1s sa1d to be 32 matroid of

kind (n) 1ff there exlsts a set of n palrwise disjoint bases
n
bl’ bq ove bn of M such Fhat 131 bi =8 .

Definition 4.2, Let M be a matrotd on S which has a set of

n pairwise disjoint (n.p.d.) bases bl’ b, oo bn "

n
Let 2,1 811 3y eee B be a sequence with ay 4 Jgibj for all

12 {0,1’2 s e k} $ where

(1) 35 8by 50 03 S 8 Dy 1-o0- G S 2y Udyy

5,86 G €0 ¥
cr belng a cireuit of Mfor r=1,2 ,.. k.
(2) b1 ¥ is any one of the bases bl’ba"'bn for each

?
r?2 {0.1’2 T k}‘ ™
(3) bi,r ’ bi.p ( r = p ) are not necessarily distinct.
(4) There are no repetitions of elements in the sequence
‘o’ .1’ .3 eo0e .k ®
(6) a ¥c, (§<r1). :



Then the sequence a y 83y ecee a, is said to be an

a - sequence from a, to a with respect to (bltbg'°° bn).

Definition 4.3. Let M be a matroid on S, which has a set

of n.p.d. basas bl’ b, Y bn- Then 4 £ bi (1 2 {1’9 e e n} ')
i1s approachable from a 2 bJ (i¢ {1.2, voe n} ) 1ff thare
exists an a=sequence from a to d with respect to bl,b,... b,.
1t is easy to see that from any sequence satisfying
conditions (1), (2) and (3) of Definition 4.2 we can construct

an 3= sequence with the same first and last elements., We note

here the following properties of approachability,

(a) Approachability with respect to (by sDgees b,) is transitive.
(b) Approachability with respect to (By 4Dge s b,) is not
necessarily symmetric (See example 2,4.0 below).

(¢) We take approachability to be reflexive by definition

1.e. d is approachable from itself,

To see (a), suppose we have an a=-sequence from a to 4
with respect to (bl,bz..;bn) and another from d to e again
with respect to (bl’bﬂ"'bn)' Then we can construct a sequence
satisfying conditions (1), (2) and (3) of Definition 4.2 from
a to e. From this sequence ve can construct an a- sequence
tfol s to e,

Example 9.4.0. Let M bs the polygon matroid of the graph

o

shown in Fig. 30‘010

We may choose our 2 p.d. bases as '



FIG-2-4-1.
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by = {1,3,5,7,9,10.12.21,23,25.16,17,19,27.30.31,33,35}

bes{l,‘a 36} - b

The following is an a-sejuence from 28 to 1 with respect to
(bl, bq) 3 ‘.J!B, 9’ 2’ 1 e

But there exists no a~seyvence from 1 to 28,
We now prove that a matroid of kind (n) 1s molecular,

Theorem 4.1. Let M be 2 matroid of kind (n) on S. Then

M is molecular.

0of 1+ It 1s easy to see thatd (M)=n, Let T < §. Now
n
let by, b, «cc b be a set of n p.d. bases of M. Then U b, = 8,
1 k: n i{=]1 i
By Theorem T2, b, (Y T for each 1 ¢ {1.2. ces n} is
n
independent fn M X T. Algo 1‘01 ( b1 N T )= T, Hence
=

d(HXT)Sn. Hence for any T < s, d(nx'r)g_a (M),
Q.ECDO

The follovwing lemmas are needed in the proof of Theoren
4.2,

Lemma 4,1, Let H be a matroid of kdnd (n)on 8, IL M X P ’

(P =8 ), 15 a matroid of kind (o) and a ¢ Py then the set A
of all elements approachable from a with respect to any set of
R p.d, bases ‘(l'll.ha ~- bn) is contained in p,

Proof, - Let (bl.bg evs bn) be aqy set of n p.d. bases of M,

Then B, () Py oo by N P must obviewsly be n p.d. bases of
M XP. If an a=sequence w.r.t. ( by abg eseb,) from a to d



has Just two elements a and d, and £ 4 2 bi’ then since
a U (b N P) contains a eirecuit, we must have d 2 b, N P.
This s'ows that no element of S-P is approichable from a

W.T.t. (bl,bp vee bn) through in a=- seybence of two elements,

Next let us suppose that the le mas is true for an
a- sequence w.r.t, (D;, ..o b ) of (kel) elements, Consider
any a- seyuence werst. (byy eceb ) of k elements. Let e be

the (k-l)th element in this gequrnce and 4 be the kth element,

Then e 2 P by the induction assumption. Supnoge 4 2 bi‘ But
b, N P is a base for M X P, Hence e U (bir\ P) contains a
circuit. Hence d2(b, ™ P) and therefore d 2 P, Thus by the
induction hypothesis the lemma is true for all elements d
approichable from a with respect to (b;, b, ... bn).

Qe Eo D,

Lemma 4,2, Let M be a matroid of kind (n) on S. Let

b1.b2 cee by be n p.d., bases of M, Let P be the set of all
elements approachable from the elements of a given get )} < 8,

Then M X P is of kind (n).

Proof, Let a 2 P, Then a is approachadle from some element
d of Q. All elements approachable froﬁ a are also approachadle
from 4, Hence if nfg by and ¢, is the circuit contained in |
a U bi’ all the elements of c]_ are approachadle from d, It
follows that by NP for all 12 {1,2 vesp n_fls a bage for N X P,
Hence M X P is of kind (n).

Q.K.D,



Theorem 4.2, Let M be a matroid of kind (n) on &, Then

approachability is independent of the n p.d. bases chosen,

Proof, We will show that the set of all elements anproachable
from any element a € S is independent of the n p,d. bases chosen.
Let P be the set of all elements approichable from a with
respect to (b;, bg...hn).

Then from Lemma 4.2, M X P 18 of kind (n). Let (bﬁ,l’ bq,q"'bo’n}
be any other set of n p.d, bases of M. From Lemma 4.1 it is
clear that the set of all elements ) approachable from a with
respect to (ba,l""ba,n) 1s contained in P, By the same
argument interchanging roles of (bjsbge.. b ) and(ba'ls ose bq,n)
it follows that P £ Q. Hence P = Q.

Qs R D,

Lemms 4.3, Let M be a matroid of kind (n) on S. lLet P £ B8,
Then M X P is of kind (n) 4ff M , (S~P) 18 of kind (n).

Proof, Let b;; by oo b, De 2 set of n.ped, bases of M, Then

n
U b, =8, Nowif MXP (M, (5-P)) 1s of kind (n),
fm] 4

(B N Py euo By N P) ((by N (S=P)y weo bg(é-p))) is a set of
A p.d. bases of ¥ X P ( M.(5+P)). From Theorem T3, it follows
that (b N (8-P)y eee by 0 (8-P)) ((B, 0 Py cuu B, N P)) tna
set of n p.d, bases of M. (8P) ( M X P ), Hence M.(S-P)(M X P) 1s
of kind (n), “

Q.E.D,

Theorem 4,3, Let M be a matrold of kind (n) on 8. Let g ¢ 8




and let ( = {p f p approachable from g, but g not approachsble
from.p} « Then

(a} The matrold M, (S - Q) 18 of kind (n).

(b) 48 ( S=Q ) is approachable from a & (S - Q) in this
matroid 1ff 4 1s approachable from a in M,

Proof. From Lemma 4.2 we conclude that M X Q i1s of kind (n).
From Lemma 4,3 it follows that M , (S = Q) is of kind (n).

(B) Let by ybys eee By be a set of n p.d. bases for M, If 4
is approachable from a, there exists an a- se juence with respect
t°-(b1’ ba —_— bn) from a to d. Every slement of this sejuence
then belongs to S = Q, by the use of Lemma 4,1¢ Let ¢ be any
element in this sequence and f be the element next to it. Let
e2 b and 8 bJ. Then there exists a circuit C such that
CQ.Uh,mdfec. smeobjnq is a base of ¥ X Q, it
is clear that we will now have a e¢ircuit Cy of M, (8 - Q) such
that

cg=C 0 (b Ue)N (8 = Q)

=C N (8-4q) &

Hence ¢ f @ c1 « This proves that the original
a- sequence can still be used in M . (8 - Q) for going from
a to d. |

Conversely, let d be approachable from a ia M . (8 - Q).
Then there exists an a- sequence with respect to (b, N (8 - Q) ...
B N(8~Q)fromatodin M. (6-Q) Lete@ b N (5-Q)
be any element in this sequence and £ ¢ hv.1 N (8 = ) be the



element nevt to it, Then there exists a circuit C; in M, (s = Q)

such that ¢, < €U (b

1 b
exists a eircuit C in M gsuch that C =2 Cl and C S ¢ U bj.

N{(s8=2Q)) and £ & Cy. HNow there

Hence there exlste an a- seguence w:lth respect to ‘bl""hn)

from 1 to d in M,

Q.F. D,

Theorem 4.4. Let M be 32 matroid of kind (n) on 8, Let P, 72

be disjoint subsets of 5 such that

(a) PU =S and

(b) No element of P(J) 1s approachable from any element of
Q{P). Then P ind 3 are separators of M.

Proof, Since P(Q) is the union of elements approachable from

P(Q)y, we have from Lemma 4,2, that M X P ( M X Q ) is of kind
(n). Let by Dy ees b, be a set of n p.d, bases of M. Then
bln Py eoo bnn P and bln Qy see bn N Q are p.d. bases for
M XPand M X Q respectively, But then by Theorem T3 b N Q
is a base for M. Q. Hence r ( MXQ )= r ( M, Q ). Therefore
by Theorem T8 Q is a separator of M and hence P is a separator
of M,

Qe Ee Do

Definition 4,4, Let M be a matroid of kind (n) on 8, If d ¢'S8,

doﬁuo sd = {a { af s anti d and a sre mutually approachadble }
and s‘ = {54 I d ¢ 5}. we vill refer to the set 8! as the set
of atoms of M,



Ye can define 2 partial order L on oL 1g follows @

Sa > Sd ia L 1ff an element of Sd is anproichable from an
element of Sa but no element of Sa is aporoachable from an
element of Sd. We will re.er to this partisl orier a2s the

usual partial order on 3'.

“e may aote that Lemma 4.1 implies that when M 18 a moleeular
matroid of kind (n) on 4, d(i ¥ 7)) = d(H¥) (T € o only if T

i3 a union of some 2f the elesents of 8‘.

Definition 4.4'. From Lemma 4.1 one can see that an ejuivalent

way of defining the usuil partial order L on st 18 to taike
4 ;3 2 St & 4 Q8 e

bg > Sa (Sd. 59 2 S ) £t there exigtgs no T € g Sa euch
that 5, & T and 4 X T 18 of kind (n).

Ve sometimes use "sa < sd"(sa less than' sd) instead of
L Sﬁ > Sa" (Sd ‘greater than' ﬁa)’ " S‘ 2 Sdf'in place of
]
"&, >84o0r Sg = 53" » " 5 * 54'' for the negation of '8, > 8y

and " § 4 Sq" for the negation of " s, < S,".

The following theorem gives the structure of g sui tably defined

matroid on an element of S‘.

Theorem 4.6, Let M be a matroid of kind (n) on S, Let S

and the partial order L on 5! be defined as above. Let 8, ¢ 8!,

Let pl-{ap }spu;.}
q1 a‘{ab l Eb > 8:.} .
Ry={s, [s, } 8, and 8 {5 F

and let Tl E Rl s



Let A = 8

Pi}
3 ¥
Rl}
m

Let M =MX(PURURA ). A.

P =felees,

R = {OI e 2 Sd ’ Sd

-
©»
s

(] 0

Uy

T = {g l. 2 Sd 3 Sd

Then

(1) My is of kind (n)

(2) 4 =MX(PUTUA e A=MX(PUAL ), A

(3) M; has no proper contractions or reductions of kind (n)

i.e Hi is atomic and is of kind (n).

Proof. The subset P U R U A is the set of all elements

approachable from elements of P U R U A, Hence, M X (PUR U 1)
is a matroid of kind (n), by Lemma 4.2, 5Similarly
MX(PURUAL)XP=MNXP is a matroid of kind (n), Hence
MX(PURUA,., (RUA ) is a matroid of kind (n), from
Lemma 4.3. Also from Theorem 4.3, it follows that in this
matroid every element approachable from any 4 £ A belongs to A,
Hence

(MX(PURUA) o (RUA)) XA 1s a matroid of kind (n),

Nov, ia M X (PURUT A) , (R U L), by Thesrem 4.3, no element
of R(A) is approachadble from any element of A(R), Also R and A
are disjoint subsets of R U A, Hence R and A are separators of

MYX(PURUA). (RU'A) Dby Theorem 4.4. Therefore, we have,



using Theorem T8,

(MX(POURUAL) ., (ROUA))XA= (MX(PURUAY, (RUL)), A
e MX(PURUTA), A = M .

Hence M, is of kind (n), Let R- T=T',
Now by Theorem T7 -(2)

M, = (MX(PURUA) . (RUA)) o (T'T Q). A
= (MX(PURUA). (RUA)) « (T' U A) XA by Theorem T8,
= (MX(PURUA) ., (T* U A)) X A
= (M. (QUT'DA)X(T'UA)) XA Dby Theorem T?-(3).
=M, (QUT*UA) XA
s M X(PUTUA) ., A Dby Theorem T7-(4)

ThulHlnHI(PUTUA).A. If we put T = ¢, we get,
ﬁ'u!(PUl).A-

From Lemma 4,1 1if lll has a proper coantraction of kind (n),
there exist eclements d, ¢ € A such that d is not approachable
from e in the matroid M X (P U A) . A, Hence by Theorem 4.3
4 is not approachable from ein M XPUA and hence in M,

This is a contradiction of the dcfinitior?{h. Hence H]_
is of kind (n) and atomic,
QCEOD. '

Definition 4.5, A one to oae mapping « from 5! ento S' s

an automorphism with respect to the partial order L on s' 1ff
it preserves the partial order i,e, for 8., 8, ¢ si, «(8,) > «(s5,)
iftta>a,



Theorem 4.6, Let 4 be a matroid of kind (n) on S, Let o~

be an automorphism of M, Thea a ¢ S is approachable from

d 2 8, 1ff o~(a) 1is approachable from o~(d).

Proof. Let Byy Dyy eeo b, De 0 p.d. bases of M. We have an

a=gejuence from d to a,
d=ao ) Cl c aoUbi’l ) eese Ck c ‘k-].Ubi'k »

$h % ° G

&kll

s |

where the C, are circults of Mand by s (J @ {1,2 .. k} ) 18
one of the bases b, , by ¢+s B o Now from Theorem T32,
o (by 3y eco 0=(b,) are n psds bases of M and o~(C, ) are circuits

of M. Ve, therefore, have the a-sequeace from o~(4) to o (a)
o-(d) = o(a ) 3 o (Cy) = o-(ao) Uo-(bi’]_) —_—
Yo edscPOOCOETFRS % 9 r(%-l) U r(bi’k )
o-(a,) & o= (Cp)
o (a ) = o=(a)
Heace o~(a) is approachable from o~ ( d .

Now by Theores T32, o~"' is an automorphism of M. Mence 1f
o~(a) 1s approachable from o~(d), r'l'( o~ (a)) is approachadle
from o=t {(o~(d)) 1,e. & &3 spproachable from 4,

Q. !t D-



Corollary 1. Let M be a matroid of kind (n) on S. Let

a2 S Let s} be the set of atoms of M. If a ¢ S, , S, 2 s,
then for some automorphism o=, o~(a) 2 Sq 0 Sd e sl only if
there exists an automorphism < of the partial order L on 5! .
such that a((Sr) = 84 o

Corollary 2,  Let P, be a subset of ! invariant under the
automorphisms of the partial order L on s!, Let

P = {a [ a € 3,9 I 2 Pl} e Then P 48 invariant under the
automorphisms of the matroid M,

Theorem 4,7, Let M be & matroid of kind (n) on S, Let s!

be the set of 21toms of M., Let o Dbe an automorphism of M, If
a2 Spy S8 s} and o~(a) 2 8q 9 sde s! then o-(g) € sdfor
every £ 2 Sd, i.6. 0"'(5‘) = Sd.

Proof, Consider the set of all elements So e gt such that

«(sf) = 3, for some automorphism « of the partial order L

on s8', Let this set be Byo From Corollary 1 of Theorem 4.6

S3 € B. If8 4 S, €B; 4y 1t is clear that 5, ] §, and

8, 5. LetB={a[a@s, 4,5, 8B ] . Ten B is
invariant under the automorphisms of M by Corollary 2 of Theorem
4.6, Now let =, g € -Br’ 8p 8 ', We know that a(g) is
tpp_rouchabla from g(a). Hence by Theorem 4.6, o~(a) (o~(g)) 1'3
approachable from o-(g) (0~(a)). But o=(a), o~(g) ¢ B. Henae
if o-(a) 2 S4» S4 € By then o-(g) ¢ 84¢.

Qo ¥. Do



We next show that one obtains closed sets of M or M* by

considering suitable unions of elements of s‘.

Theoren 4.8, Let M be 3 matroid of kind (n) (n > 2} on €,

Let 5! be the set of atoms of M, Let Bl < e and

a ol o ~ . '
D, = {5, |5, 2 8, 5p 5 540 842 Byf. IfD= a)a g 5p 5p )
then D is closed in M and =D is closed in M=,
Proof. Let bl’ b2 vee bn be n p.d, bases of ¥, Then blrwn,,,_
bn'r\ D are n p.d. bases of M Y D, Let a 2 (S=D) and let if
possible a 2 Din M. Let a 2 bj' But then a depends on b3 0 o,
i.,0. a2 U (b:{\ D) containg a circuit of M, which is a

contradiction of the definition of a base.

Now 4 ( MXD }=M (n>2 ), We find then that M X D

has no coloops. Hence by Theorem T10, S-D is closed in T
Q. E! Dc

For convenience we describe our procedure for cbtalning s‘ and

the partial order L on s! 1n the form of two algorithms.

Algorithem 4.1, (Approachability algorithm).

Let M be a matroid of kind (n) on S, Let byyDge.. b, be
a set of n p.d. bases of M obtained by using Algorithm 1,1.
Lot.a @ b« Then a forms a circuit with each.of the bases
bg coe hn. Let A) represent the union of all these circuits.
Fach meamber of Ay forms a cireuit with (n-1) bases among
bl’ b2 ees b, « Let Ay represent the union of all these cireuits.:

In a similar manner A,,, 1s obtained from A . Let s be the



last number such that A_ = Aat1 ¢ Then P =Y is the set of

2ll elements approcachible from a,

Algorithm 4.2, (Algorithm for s'i and L)

e G —a . P T SRR - —

Let M be a matroid of kind (a) on S, Let Dy by eus by
be a gset of n p.d. bases of M, obtiined by using Algorithm 1,1,

For each a 2 bl form the set g of all elements approachable

from a, Form the family of sets

d

(]

gl ={p P=gQy=- U Q bl,DEblluchthat

aen"

Qe = U 5% ¢ but
d asDQ‘

- U = . & it T O D .
W g e

To form the partial order L proceed as follows. Let 84 ;S‘ e S‘.
Choose ¢ 2 by N &4 and £ 2 By N sg. Check if Q, & Q, or

@

If Q, 2 Qp put sd>8g .

If thtk_ Qe 2nd é’F Qg them 54y 5, are not comparable in L, (Ex
We next consider the case where M is a molecular matroid on 8

but d(l!) is not an integer. IOnr procedure here is simple, We
first consider a parallel ~ « = copy M, of M such that d(N,)

is an 1ntcur'. 1.0 M is a matroid of kind (n) for some positive
integer n. We can then use the theory flovolopod 80 far in this
section to construct the set ( ﬂ‘)' of atoms of ¥, and the

partial order I, on (B.()‘. We then use the mpp T to construct



the corresponding set s! and ihe partial order L for M.

We now proceed to justify this procedure.

Theorem 4,9, Let M be 2 molecular matroid on S5, Let M, be
its parullel - « = copy on S e Let TQ S Sxe Then

a(, ¥ 15 ) =d (3 4L T, = T(Ly, such that 7} = S and

a( M xT; ¥=4d(¥M),

Proof. Let T, € s such that d(M X '1'1) = 4(M), Then

d L M, X T(T) J =« ,d(MX T,) = « . d(N), usiag Theorem
2,3 and its Corollary l. But d(!tld) =« , d(M). Therefore,

d L- ",( X rr‘Tl) J= d(ld ). Fow conversely let T2 < 8

 D®

gsuch that

Suppose q’(rl) D 72. Hence [Q/(Tl)[ > ['rgl. Novw we
have r(M, X Tg) = p(M X 'rl) «r /l M, X 'Y(Tl)_?. Hence it
follows that
AL KX YD T >al M X1y, 7 =4 M),
But this is impossible since M, 1s molecular. Hence T(T,) = T,
Hence by Theorem 2,3, d(M X T, ) = a(M).
| Q-I.D.

Definition 4,6, Let M be a matroid on 8, Let M, be its
Parallel - « = copy on 8, If 07 1s a one to one mapping from

8, Onto B, » we denote by o ! the restriction of o= to 8. |



Theorea 4,10, Let M be a matroid on S. Let Hd be its

parallel - « - copy oa 85, . If # 18 an auntomorphism of M, then

there exists an automorphism o= of M, such that o' = ¢,

Proof 13 Let S = {;11

L

Then Md on S, is obtained by adding a.;', oo 1 parallel to nli...

L

ot s,,k, ese aqk parallel to al‘i, as in Definition 2,7, Let R be
an automorphiam of M, We may define an extension of " to an

automorphism o~ of )& as follows @

Let ali, all 7 S such that ﬁ(all ) = alj. Let 'f, be a permuta-
tion of (1,2, ... «) such that ©(1) = 1, 1,e.

(1|3, sesecvece ¥ )
.% 1' 5 (2). sewe § (‘)
i J
Then o-( a," ) = &
¢ % (%)
We then have o=' = § and it is not difficult to see that o 1is

an automorphism of M, .
Q.I.D-

Let o= be any automorphism of lld. We can then construct a

corresponding automorphism 6 of ¥ as follows @

% ¢ 0'(&11) = .n' 0(.11) = '..1. ™

We can therefore easily see the following corollary

using Theorem 4.10 snd the above remark,



Corollary 1, Let M be a matroid on § and let M be 1its
parallel - < - copy on S, Let T S 5. Then T(T) is invariant
under the automorphisms of M, iff T 1s invariant under the

antomorphisms of M,

Theorem 4,11, Let M be a matroid on S, and let M, be its

parallel = « = copy on Sys Let TS S Then T(T) 4s a cloced
set in M, Aff T 'is closed in M.

Proof.  If T(T) is closed in ¥, 1t is easy toc see that T
is closed in M, Suspose T (T) is not closed in M. M X T(T)
is the parallel=c~copy of M X T by Theoren 2.3. Let b be a base
of M XT. Then b is also a base of M X T(T), Since 7T(T) is
not closed in N there exists aa a,’ @ 5, - 7(T) such that

nj" ¢ f(T) . Hence there exists a circuit C such that
CN(s, - T(T) = {l:i} and (C - ajl) U 111 is s circuit

of M. But a.l‘ 2 S- T(T)= 8- 1T, Hence T is not closed in M.

Q. E.D,

Definition 4.7. Let M be a molecular matroid on S, and let

M, be its parallel-x=-copy on §, such that o« = r (M), Then M,
is s matrold of kind (n) wvhere n s o . d (M) = |8},

Let (8“)1 be the set of atoms of “ﬁ and let L  Dbe the partial

order on (sm)Jll (as in Definition 4.6), We now construct the
set si from elements of S by taking

A ow sy | sgm (7 V85 s s e (a0t

(This set is well defined by Theorem 4.9). We will call the



set Si the set of atoms of M, Next we define the partial
i i
order L on 8%, by taking 3.>Sd(sa’ Sq4 2 8 Yin L

iff T(s‘)z ’I’(sd) in L, .
L will be called the usual partial order on st for M. It is

easy to see that Ly is isomorphic to L,

We may note that Lemma 4.1 and Theorem 4.9 imply that
if M is a molecular matroid on Sy, A(M X T) = d(M) (T & 8)

only 1if T is a union of some of the elements of s‘-.

Definition 4.7'. From Theorem 4.9 and Definition 4.4' one

can see that an equivalent way of defining the partisl order L
on st 1s to take 8y > 5, (S, » 8, € S} ) 1£f there extsts no
T &8 - §, such that 5, S T and d(M X T ) = a(M).

Now by the use of Corollary 2 of Theorem 4.6 and
Corollary 1 of Theorem 4.10 the following Theorem is immediate.

Theorenm 4,12, Let M be a molecular matroid on 8, Let Sl be

the set of atoms of M, Let P, © sl ve 2 set invariant under
the automorphisms of the partial order L on s_i. Let

Ps= {. l ag 849 sd e Pl.} e Then P is invariant under the
automorphi sns -or M.

We nov rewrite Theorem 4.5 for any general molecular
matroid N, The result follows readily from Theoreas 2.3, 4.8

and 4.9,

Theorem 4.13. Let M be a molecular matroid on S, Let Si be

1ts set of atoms and let L be the partial order on Si defined

Astusual,



e ol
Let Sa- s °

Let P, = {sp/ sp<s.}

*:1-{spjspis and spksa}
and let '!‘1 < Rl .
th A = Sa

Q ={dfa'-.:se. 0% Y J
a:{a]dese 5 2 By }

T -{d |ae s, » 5,81 | .

LotHl"'HI(PURUA).A.

Then
(a) ulﬂnx(Pur'UA).A-nx(PtH.).A

(b) M, 1s atomic and d (Hl) s d(M),

Now by using Theoream 4.8, Theoream 4.11 and Theorem T10 we have,

Theorem 4.1&. . Let H-bc- a lolocul.u matroid on IS vith
am) > 1, L.t sk ve 1ts set of atoms, Let B, = 81 and

= {Sd \ 8, 8 st, Sq $ 8g 0 By ¢ 31}(1:110 partial order L
on a' being as in Definition 4.7)e =



It D= {alags, 5 8 ¢ Dl}thon

(a) D is closed in M, and
(b) S - D 18 closed in MY,

Proof of (b), We need merely prove that M X D has no coloops.

Now d/ M X 9(p) J =4 [_-H“ / by Lemma 4.2. Hence
d (MXD )=4a (M) by Theoren 4.9. Hence d(M Y D) > 1. Also

M XD 1s clearly molecular and therefore M X D has no coloops.

Hence S - N is cloged in H‘.

8D,

We now outline the procedure for obtaining the set si
of atoms and the partial order L on si for a molecular matroid
M, when d(M) 1s not an fanteger.

a

(1) Let r(M) = «, Coanstruct the parallel-«-gopy of M on Bye
Then 4(M,) = « , d (M), Hence M, 15 a matroid of kind (n)

vhere n = [ 8| ,

(2) Construct the set (S‘,‘)1 of atoms and the partial order Ly
on (sq)i by using Algorithmsg 4.1 and 4.2

(3) Use the function T from P(S) into P(S,) to construet
the set 51 of atoms and the partial order L on 8! for M, using
Definition 4.7.

8o far in this section ve have considered methods of
partitioning the set of definition of a molecular matroid into
subgets invariant under its automorphi ﬁm. We would nov like

to link these results with our results on P-sequences. 1In this



wanner we would obtain a partition finer than P-sejuences.

We first prove a simple Lenmg,

Lemma 4.6, Let M Dbe any matroid on S. Let J be a subset

of 8 iavariant under the automorphisms of 1. Then if o~ 1s
ah avtomorphisxm of M, the mapping o~ restricted to ¢ 1s an

automorphismof M X ¢ and M. Q.

Proof. Let b be any base of M X 4. Then b 1is independent
iz M. o~(b) < 3, since ¢ is invariant under the avtomorchisms
of M, Alsc o~(b) is independent ia M 2nd |o-(b)] = |b} .
Hence o-(b) 1s a base of ¥ X . Heace irom Theorem T32, the
mapping o~ restricted to J 1s an automorphism of M X Q. By
Theorem T22, o~ is an automerphisa of M*, Hence o~ restricted
to Q is an automorphism of ¥* X Q, that 1s of ( ¥, q )™ and
therefore of M , Q.

| Q. E.D.

Corollary l. Let M be a matroid on S, Let Py Q be subsets

of 8 invariant under the automorphisms of M, such that P = Q.
If R € P is invariant under the automorphisms of M X J . P or
M, Q XP then R 1s invariant under the automorphisms of M.

The next theoresm follows immediately from Corollary 1
of Theorem 2.5, Lemma 4.5 and its Corollary and Theorem 4.12.

Theorem 4.15. Let M be a matrodd on 3, ILet Py Pa""Pn

be its P-sequence. Let

_ i
M, =MX U P P
1 1_1.1'k



and let R} be 1ts set of atoms, and L be the partial order on ri
as in Definition 4.7. Let Q € RY ve invariant under the

automorphisms of L. Then @ = {l l ag Bq 0 y 84 g le is

iavariant uander the automorphisms of M,

Theorgl 4.16:' Let M be a matroid on 8, Let Pys» Py eee Py

k
be its P-sequence, Then ( 101 Py ) for all k @ {1,‘4‘! cos nJ’
. n i
is closed in M and ( 101 Pg ) forall J@ {142, «conf s
=

dosed 1n M%,

Proof, If uji; the matroid M, on 8y the theorem is trivial,
Othervise MX U Py forall je {2 een} has oo coloops.
=

n

Hence by Theorem T10 101 Pl is closed in N* ., By Theorenm
B

2.7, W has the P= gequence Pn ’ Pn.lg eve P]. o I M= "u on

n
§ the theorem is trivial, Othervise x U pP ( for all

S
J e {1,2 <. n)).has no eoloops. Hence, -
[ ™
121 Py is closed 1nLtor all J € {1,2. soe n} .

Qo E.D.

Lemma 4.6, Let M be a matroid on S. Let P < 8.

(a) If Q is closed in M,(8-P), then P U Q 1s closed in N,

(b) If Pisclosed in Mand ( 8- Q ) & P, then P N Q 1s
closed in M , Q.

Proof, Assume P U Q is not closed 1nﬁ M, Then there exists a

oircuit C in M guch that C~ (P U Q )= {a} say, Further, if



ponibl; let C, be a cireuit in M such that Cq= P = {a} 3
then clearly {a} is a circult of M, (5-P) and hence a 2 Q
by the definltion of closed sets. This is a contradiction and
hence trere exists no circuit C, in M such that Co - P={aj.
Hence C N Q w& ¢ for all such C. Hence there exists s
c'::lrt.'.ui.t.(:3 ia M. ( 8= P ) such that 03 < ¢, Canqq& ¢

and a 2 C This contradicts the faet that Q is closed in

3 L
M, (8«=P ), Hence PU J {s closed in N,

(b) Assume PN Q 1s not closed in M, Q. Then there exists

8 clrecuit Cof M, Q such that C = ( P N Q )-'{a} « Hence
there exists a circuit C; of M such that C,2 Cand C, - P = {a}.
But P 1s closed in M. Hence we have a contradiction and

therefore we conclude that PN Q is closed in M , Q.

Q.E- D.

Usiong Lemma 4,8, Theorem 4.18 and Theorem 4.14 we obtain the
following result,

Iheorem 4,17, Let M be a matroid on S. Let P1. l'-'2 eui P
K
be 1ts P-sequence. Let M= M X (101 Py) o Py (k € {1.9....:1})
[ 4
be such that i, %= M or M on P“_' Let ni b. its set of atoms
‘and let L be the partial order on R (as in Definition 4.7).
Let By < R and let D, = {8, ) 8, $818;¢ 31}-. Let
D= fajatsys8¢D3.,
k-1
(U Pi) U D 4s elosed in M and
i=]
n

( © 1)trs»k--l:buelcmamn"
i=k+]



Ve now describe the glrfect of admissible functlons on
the sets of atoms and the partial orders on them ror an
arbitrary matroid, through 3 series of Theoreus,

:

Theorem 4,18, Let S° represent the set of atoms for molecular

matrold Mi oa 3 anid let L1 represen' the usuial partial order on

s! (121,92, Let sl =5 and Ll = 1% una 1, V M, 9 ¥ on s,

Then Sl

on sl for the molecular matroid Ml '/ M,.

is the set of atoxs 4 L1 is the usual partial order

Proof, We note that M; V M, 1s mlecular when N, and M,

are molecular by Corollary ? of Theorem 3.1. By Definition
4,7'y, Theorem 4.9 and Lemma 4,1, to prove thig theorem wve need
oaly show that for any T < S, when the conditions of the

theorem are satisfied,

a 4‘(u1 VM) XT7 =a(y Vv My) A£f d(M;) = a(M X T)

and _
d(Mg) = a4 (M, X T).

1t d(Hl) = d(Hi X T) and d(Mg) = d(HQ X T)y by Theorem

3.1 we have
AL VM IXT Tmal M Vi 7

Conversely, suppose 4 Ly vH) XT P ma s My VMg /.

Nov since M, V K, is molecular and LY v Mg nk llu on 8,
(M, VMg ) X T is molecular on T and (M; V My) X T ok ¥, on 7.
Hence ve have by Corollary 1 of Theorem 1.2



r[l(lvu’_] r(M,y) r (M, )

*“

[8] |8] /8]

and

r[(nlvu?)x'r_? r(MXT) r{ M, XT)
= e S Y

LT | T i)

Since

r (¥4 VM) r (M VM, )XT T

18] | Tl

it follows that

rg)  r(y XM “ud rM) o r (M X T ’
181 I T\ |8 Tl

since M; and M, are molecular. ' -
Hence
d(Mj) = d(M; X T) and d(M,) = d (M, X T)
QeE. D,
In the next theorem we extend Theorem 4.18 to the case

wvhere N and M, are not molesular but aligned,

~ Theorem 4.19, Let M, and M, be aligned matroids on 8, Let

911, Pal. ces Pn]' be the P-sequence of "1 and let P]_’. Pga... PQ

[
be the P-sejuence of Mye Let “1 v l-la have the Pegeguence
Pl’ Pa ee e P-' Then '

(1) For all Py o5 B (M VM, Jor C ( M VM, )y ve have

P1 = PJ; = Pkai for some 11 ¢ {1”’ see n} and some

kg € {148y oo p) &



(2) Further if the molecular matroids

3 1 1 .8 k4 9 o
M, X ( in Py ) . P,i and M, X ( xgl P t Pk1

determined by Pjil and Pkig of (1) have the same set Rl of

atoms and the same partial order 1. on Rl, then the molecular

matroid (M; V M) X ( U P, ) « Py determined by P, of (1)

3=l
has R* as its set of atoms and L as the usual partial order
1
on R,

Proof . (1) follows directly from Theorem 3.4, and ()
follows by using Corollary 1 of Theorem 3.3, Corollary 4 of
Theores 1.1l and Theorem 4.18,

Q.E.D,

Theorem 4,20,  Let M be a molecular matrold on S, Let gt

be its set of atoms and L be the usual partiil order on sl for =

M. Then the molecular matroid HF cn S has Sl ag its set of

atoms and ﬁl( = the dual of L) as the usual partial order on sl.

Proof, We may note that M* 48 molecular by Theorem 2.5. Now
if for T <& S,
a( M X T )= d(M) 1t is clear that 4 [N . (s-T) 7 = a(M),

Henee d £ (M X %7 = a(f") and &7 (M.(2-T))T = a(¥")

1.0, A . T) = AW and @ UK X (8-1) 7 = a(u"> .

The theorem now follows easily by using Theorem 4.9, Lexma 4.1

and Definition 4.7'.
Q.E. D.



The next theorem is a simple consej uence of Theorems 4.18 and
4.20,

Theorem 4.2L.  Let M be a moleculsr matroid on 5. Let S' be

its set of atoms and L be the usual partial order on sl. Ir f

is an admigsible funetion such that f(M) =% M, or M on 3, then

gl is the set of atoms of £(M) and L 1s the usual partial order

on s.:l or L' ( = the dual of L ) iz the usuzl partial order on

1 L.

S for £(») according as f is positive or negative,

We next extend TheoTem 4.721 to the case where the

matroid 1s not molecular,

Theoren 4.22, Let X be a matroid on S. Let Pl' Py oo P
be the P-gequonce of M. Let f be an admigsible function and
let Py pg- coo Pp",bo the P-sequence of £{M).

(1) Then for every Pj‘ whk B /7 t(M) JorC L E(M) ] wve

" .
have PJ L] Pk for soume kj & a.

J
kj .
(2) PFurther it M X ( U Py ) o Py has R™ ag its set of
i=] 3

atomg and L as the usual partisl order on al, then

J
(£()) X ( T P;') . Py* has B as its set of atoms, and
i=}

has L ( L', the dual of L ) as the usual partial order oa al
if £ 1s positive (negative).

Proof. Under the conditions of P" w8/ £(M)_/ or
¢ /L oK) 7/, that pJ' = Pkl for soms kjj < 1, follovs from

Theorem 305._

(2) follows by using Corollary 1 of Theorem 3.8 and Theorem 4.71.

= QIB.D.



Example 2.4.4.  Consider the polygon matroid M of the graph
G shown in Figure 2.4.1.

It can be seen that M is a molecular matroid with
d(M) = 2, We now wish to coanstruct the set sl of atoms of M
and the usual partial order L on 91.

Choose disjoint bases hl, bg for M as follows

bl = {1,8,5,?.9,10,12,15,17,18,m,23.25,2?,29,30,33,34 }
ba = {2"’6’8’11’13’1"16’19.20'21 ’“,26’28,31'3?'35’36 }

For ¢ ¢ 8 = E(G) wve represent the set of all elements approachable

from e by Qe° Then

q = {12}

QG ®= P =P " {1’3v304t5|6t7t8 }

Q= Qo * Yo " {1,9.9.10.11,19.13,14 }

Q18 * Y37 = Y '{1,2,9,10,11.18,13.14.15.16,1?,18,19,20 }

= Qgp * {1.9.3.4.5,6,7,3,9,10,11,19,13.14.21,92,
23,%4,25,26 |

Qa7 = Qg U {_37,39} U

Q ™ Sm

Qgp = g0 = Qg3 = ¢ = ©s U {,30,31,32,33,34,36,36 }

The elements of 81 are therefore

a = {1.8}

b = {2,4,6,6,7,8}



P {9,10,11,1?,13,14}
d = {15,16,17,18,19,20 |
e = {71,22,23,%,26,36 |

f = {?7'28 }'
4 = {@]30,31,32,"1’34’35’36 }

The partial order L on s' 18 given by the diagram in

Figure 2.4.7.

There exists a Airected path fromk to § ( k,J © Sl)
iff k > ) in L,

Example 2.4.2, (Fxamples of atomic and molecular matroids)

(1) A simple example of an atomic matroid with 4(M) = p/q,
where p, q are positive integers with p/q > 1, is constructed

ag follows ¢
Let 8 be a set such that

P & 8 in independeat in M iff rp{ <€ q« Then M 1is
atomic and 4A(M) = p/q.

(2) Simple examples of graphic matroids which are atomie can
be constructed simply by considering totally edge symmetric
graphs - oonpicto grnphs. complete - bipartite graphs ete,
For these matroids the minimum numbet of independent sets
required to cover the underlying set of the matroid is simply
the smllest integer > 4(M), A simple non-plc of an atomic
matroid that is not totally symmetric is the vheel graph on



n nodes (% polygon on (n-1) nodes and on nth node that is

‘adjacent to each of these (n=1} nodes).



Section & : Applications To Network Analysis

In this section we will first deseribe Kishi-KaB‘if'mi 's
solution of the problem of determinition of the topological
degree of freedom of an electrical network, Next we des~ribe
how our partition of molecul~r mitroidis into thrir sets of
atoms hag some bearing on the proper utilization of ¥Xishi-
Kajitani's ro‘aults for solving networks by tearing., Indeed
our partition for matroids o ¥ind (?)} reduces effectively to

the results of T, Chtsuki et 3l for graphs / Oht 1 _/.

We need the following theorem for the proof of the
raln result,
Theorem 6,1. Let M be a matroid on S, Let S,=A(M”) U (M"Y
= 2 -
and 32= BL(H’) J. Let ‘1‘1 c 8 » ,Tg‘:sg' Then

— -

Proof. Let Pl, Py oo P be the P~sequence of M, Let

n
k ]
8, = U P and 8. = U P, . Then P ? Pa 0600 P is the
1%, 0P 8™ oJ: Td 1? Py eee By

P-sequence of M X 8 and Pys Py oo P, 1s the P-sequence of
MX 8q» by Corollary 1 of Theorem 2,86, By Theorem 2.7, ;
Py eeo Py Py is the P-sequence of ( M X 8y )' - N, 8y »
and Py ... Py Py is the P-sequence of ( M X S, Y= .8,
Now d&( M X 8 « P Yy > 2 by 'I'h.olfell 3.7. Henee

a( M¥ . 8y X B ) < 2. Therefore by Theorem 2,68, for any



o «
T, € 8 aM” . 8y X T, J< 21,0, ¢(M X 8y - 'rl) > 2,
Similarly, since d(M X 5,5 « Py } > 2 by Theorem 2,7, we conclude
that d(M X 55 « T,) 2 2,
L s
Corollary 1. Let M be a mtroid on S, Let
- 2 - 2 }
5, = AL Juc S 7, sy, B, Let Ty € 5y,
T.,‘ E_: S?o 'Ih.n’

aM* X8, . /) >2  and
x
d(M" X 85 « Ty) 2 2.

The following theorem is due to Kisghi and Kajitani
L ki 2 _7. It was originally stated for graphs. The result
vas extended to matroids by Bruno and Weinberg / Br 2 _/.
Here however we have used the notation followed so far in this

chapter,

Theorem 65,%2. Let M be a matroid on 8. Let

3, = AM®) U c(?). Thea 1f 3, € 8
r(MX8)+u (M, (8-8))sr (MXBy)e s /N, (5-38,) /.
The eguality holds only if 8y 2 8y

Proof. By Theoream T3

rMXs8J7 + 4N, “‘31)-7'
mr L NX (BN 8a) ]+ PLHXE o (8 - 8y) 7

LM (8 - 8))e(B(8) U Bg)) 7% 4 LM(8-8y) X (848,) 7 4



=r[_.MI(31(\ SQ)J'PI'L.H.XSI. (Sl‘sq).]

tu M. (5-(8 USBR)) J+u MX(5U s, . (5, - 8;) 7
by Theorem T7-(3) and T7-(4).

Similarly,

rl XS, Jeul M. (s-8y3 7

= r S MX(5NE) Ter L MXS,. (s, - 837

+uw l M.(S-(slusq))J+#L'MX(SIU Sy ) e (sl-sg)_?.
Clearly it is sufficient for us to show that

P L MXS,. (Sg-8 )72 4L MX(B UB, . (8g- 817

and

F ]

Now by using ixiom Systeam 1 and Theorem T3, we can see that

Pl MK Sy (S55) 7 28 L MX (8,USy) o (Bg = 8) ]

| eo  (A)
Hence, by Corollary 1 of Theorem 5.1 using Theorem T7 «(10)
r L M X (8 U Byl e (8578;) Z 28 LU (8, U By). (89°8,) 7
Hence,

r LMX S, . (8, - 8,) 7 24 L nx (83U 8y, (s, - 8,) /.



Next using the same argument as in (1) above,
pL'nx(slu.f:z).(SI-SQJJZM['M‘KSI.(Sl-s,,)_?

By Theores 5.1

n[’uxsl.(SI-S?)J>rL'MXSI.(31-Sq)_/.
and therefore

“LTM X (S) U Syl . (8) - 8,) 7 >r L KX S (8 -8,
.o (1)

Hence

BLMX ] v u M. (8-8)) D ST NR B, 4 BLM.(8-8,) 7

Also noting (1) we find that the equality clearly holds only ’
it § = Sy = & |

Q.E.D,
Working with M in place of M we obtain the following Corollary.

cbrollary 1, Let M be a aatroid on 8¢ Let

slané(u')_]uc (u‘\ J . Then if 8g S 8

rLths-sl)J-H‘/_ H.51J<rLHI(8-82)_]+“£H. of s

The equality holds only if 82 2 81

Definition 5.1, Let M be a matroid on' 8, The 'hybrid renk’

rH(H) of the matroid is defined by

rgM) = min Lruxs T esln (s-8) 0 ).
5, €8



Definition 6.2, Let N = ( My » Vy Gy 5 ) De a generalized

network. Then the 'topological degree of freedom' £y (N) ot N
is defined by fy (X)) = rp (M),

Let M be a matroid on S. From the discussion of Case III
of Section 2 of the previous chapter it is clear that a

partition of S into S; ani ¢ - Sl, such that
rntn)-rL’uxsl_]+nz_“M.(s-sl)_?,

reduces the computation rejuired to analyse the network. However,
in general, there might be a number of such partitions possible
for the matroid. As the number !E 1] C] (defined in the
previous chapter) might vary to some extent for different
partitions, it would be useful to have a method for generating
all such partitions. Our next theorem shows that we have
already developed such a method in this chapter.

Theoren 5.3. Let M be a matroid on S. Let PI,P,.;. Pn

be its P-sequence. Let k ( k < n ) be such that the matroid
k

My = M X ( 2 7 ). P, satisfies d (M} = 2 Let ' be the
1

set of atoms of ul and L be the usual partial order on S,

Now suppose
rg (M =r O MXY Jeuld Mo(s-TY ),
TCS S and qu-ﬁ A (Ha)t! CL. Hg _]). Then there evists ng:_ 31

such that for every eleme:t Sq 2 Rl all elements 8. < Sd in L

are also members of Bl, and



' 2 2
'r-ml)uc(u)uz’ul s.}.
S8R

Proeof., Let s, = A(H?) U Cl(Hg). Suppose T of the Theorem
is such that T wk Sye Thea by Theorem 6.2, T :750, and by its
Corollary 1,{( 8 = T ) 2 !.LL-(I‘I')2 Juc L-(H.)g J. We have

PCHXT 746l Mo(8T) /=l  MXS, J+r [ HNXT,
(T-8,) J+

+u M. (8-T) /.

P LMX S T 4 H L (B-8,) ] = LUXB T ts M, (8-T)]

+ b M, (8-8,) X (7-8,) e

=r[llxs°_7+u[l¢. (8=T) J + 6 L MXT, ('r-so)j;‘

Hence
rl KXT.(T-8). s XKXT,. (T-5,)_7

Now -k
‘"1‘1“191)°’t)’(f‘8o)

=MXT.(T-38, ) by wsing Theorem T7-(3) and T?-(4). Hence

_nlx(fr-s,)-uxr.(r-ao)mdthdntor.
dL'Hlx(t-IO)J" 2,

Henese,



T - S {9 ) d approachable in "1 from e, © §(T-8 )}
by lLenms 4.1l.
Clearly this implies the existence of R1 wvith the required

properties,

4eF.D,
The above theorem indicates that the construction of 51
for Ml suffices to determine the set of all partitions whieh
correspond to the hybrid rank of the matroid. Ve point out
héro that Algorithms 4.1 and 4.2, when applied to graphs vhose
polygon matroids are of kind (2), reduce essentially to the
algorithm due to T. Ohtsuki et al £ Oht 1 _/. Theorem 5.9
in the case of graphs should, therefore, be credited to them,
though of course they have not stated their results in our

notation.,

o %Y

w8 et Ya

Example 3.5.1. Let G be the graph of a network N, (See
Figure 2.5.1). The base tl (ttree) with respect to which we
construct the mitrices R and R* being the following

t; = {1,2,3,4,11,12,13,17, 18,19,23,94,25,26,97 |

We give different partitions of 8 corresponding to za(l) and
the corresponding values of |2 U Cl belov.

(1) 8 = {1,234 ... 10} 8g=8- 8

BUC= {14,16,3,4} [eUC| = &



FIG-2:51. THE GRAPH OF N




(%) 8" = {1,%,3,4 ... 16§ 5,/ =5- 5"

e = (W13} . [ROc|= 2.

n

{1:2.3,...'2"} S, = 5 - 5"

(3) sl"

B f28,29,18,19 } (702] = 4 .

In eich of the 1bove cases,

rL-MXf;lJ +""£-Ho(3"sl}]

~J
]|

=rfMXS T e N, (55"

=r(_'ux51"_7+#fu.(s-sl')_7 = 14

(M=pol LG 7 ] .



Section 6 ] Sinilo Element *xtension

In this section we stuly the relation brtueen the
P-sequence of a sinzle element extensi~: and the “-seyuence

of the original matroid.

The results obtained, however, are oaly partial, The
methods that we use seem incapavlie ol describing the situation
completely. However cuch results as we hive obtained seem to
be of some practical use 1: studying the invariint setg of the
new mitroid in the above case 1in terms of the invariant

sets of the o0ld matroid-,

Definition 6.1, A matroid H‘ on se is 81id to be 2 single

element extension ( s.e.e, ) of a matroid M on s 4ff

(1) s,=8U0e , o § 5.

(2) M X8 = N ,
Notation, (1) The letter 'e' will always be used in this
uoctioh for the ouly element in s, - 8,
(2) We use 5, for the admissible function such that
O WAE ol B
for every matroid M on 8 and for every positive integer n > 1.

We have chosen to work with ( “n-].)x VM 1n stead of ((Hn'l)')n.

This should however cause ao trouble slnbo by Theorem 2.7



B 2 = By & g,

We first prove a series of Lemmas which are needed for the

proof of the main theorea,

Lemma 6,1, Let M be a matroid on S, Let R & S, Then

(1) A[H!R)n_] c AL‘M“J where n is a positive
integer

(2) BL s, (MXR)YZ? =B 8, (037
wvhere n 1s & positive integer greater than one.
Proof, (1) 1s obvious since ( M X R )@ = M® X R,

(2) From Corollary 4 of Theorem 1,1 we know that any set
independent 1n £ (( M* 1Y , RYV (M . R )7 1s
independent in [' (M""':I')l vV " JZ + Ry and hence in

(M1 v ™y . But
(M R)V (M, Ry = (M xRV (xR ™)

(by Theorea T7-(8))

« S(CKXR VL ™y (uxr ™)
by Corollary 4 of Theore= 1,1 of Chapter 2, Hence

B(o, (MXR)) € B (8, (M),
Qe R.D.

Lemma 6,3, Let M be a matroid on S, Let T < 8 such that

MXThas k p.d. bases. Then T < B /L 8, (M) 7.



Proof. Using Theorem 3.9 we can see that

BL s, (MXT) ] = T
Since from Lemma 6.1 we have
Bl e (MxT) ] € 3 L7 5,(4) 7, 1t follows that

TeBL o, (M) .
Q.E.DO

Lemma 6.3, Let M be 2 matroid on S and let M_on S  be 1ts

s.e.e, Then

WA " WA Sl i § 2 e¥ AL M 7.

Proof. Let T=A M 7 . From Corollary 4 of Theorem

1.1 we know that
(M, xT)" = (M yxT .
n
Hence A L M X T/ :g[’(u.“)xrj = T

Nov 1f e & T, MJXT = MXT .
BonchL'(H‘IT)nJ Al (MXTY ] = T,
But by Lemma 6.1,

AL (uxT)Y 7 s Al KT
Hence TS ALK D7 .

But M= M, X 8, Hence, AL (M, X B 7 = AL N1 7



Thus A  M® 7 € T and it follows that
WA ol A WA S

The necessity of the eondition 1s obvious,

Qe e Do

Lemma 6.4, Lt 4 be a mtroild on & and let He be its s.0.¢,

on 5 .
‘e

Then (A(M,” ) = &) = B ( 6, (M) ).
Proof, let T=A(M")-e.
Then it is easy to see that

n. XT=MYXT has n p.de bases such that e does not
belong to any of them,
Hence TS B /L 8, (M) 7 by Lemma 6.2,

Qe E.De.

Note when ve write T we mean the closure of T in H. « This

convention we will follow until the end of Theorem 6.3.

Lemma 6.5, Let M be a matroid on S and K. be its 8.0.8, ON 8.-
Then e ¢ A (M) 1ff e8¢ B L 8,(0) 7 .

TR

Proof, If e @ A ( M,®) 1t 1s clear that ¢ € ( A (M)~ @ ) .
since there axists s base b of ( H. X ( A(H..n)))n such that e
does not belong to it.

Hence by Lemma 6.4,

e2B L 8, (M) 7 :



Next let e 2 B /= Gn(H) J .

Let (eUB(_'bn(a)J) = T,

Thea by Lexma 3.2y MX ( T = e ) has n p.d, basns by4b, ¢

n
Heace M X T has 0 p.d. bases bys by, .. b, such that

n
e U b1 . Conslder the set R o1 all elemeats accessible
i=1 n
from e with respect to 1U1 bi' Then 1t ‘s clear that
=

A My xR )P 7 = R, by using Theorem 3.9, Hence by Lemma
6.1, R S (M) and hence & 2 A( M, ).

'Q.E. 0‘

Lenmg 6,6, Let M be a matroid on S, and let H. be 1ts s.e.0.

on S, IfeeBYL 8, (M) 7,y then B L6 (M) J-e & B L6 (M) ]

L

Proof. By Lemma 6.5, if a @ B/ &.(M) 7 then e 2 & (M ™).

Let T =B Lf o, (Hb) /. Then (H. XT )n = Me“ X T by Corollary
4 of Theorem 1.1,

Now un"‘) - q(n.“ XT)

since by Theorem 3.7, B £ 6,(M.) 7 = M, ).
Hence A(Hén) =4 L (M X T » 7.

Hence there exists a base b of (M X T)” such that e k b. Using
Lemma 3.2 we, therefore, conclude that there exists n p.d. bases

n
by by eeo by for (M, X T ) such that e ¥ AR

It follows that M, X (T-¢) = M X (T-e¢) has n p.d. bases

hl' ha oPee bn L



Eence, B L- 5, (M) _] 2 Teg@ by Theorem 2.9.

o Fe Da

Lemma 6,7, Let M be 2 matroid on S and let He be its s.e.e.

i3

on se. If ¢ 2 A (Hn) sy then A(u.“}- e = A (Mn).

R

Proof. e 2 (M) 1in Mb and hence e 2 B / Bn(b‘:) _J . Hence
by Lemma 6.6, 3 £6,(4) 7 ~e = BL 5. (M) 7,
By Lemma 1.7 it is possible to choose n p.d. bases for

MX/B (6 (1)) J= M, ) A (6,(1)) i

Hence M_ X L B(dn(ﬂ.)) J has a p.d. bases By by oo b, such
that e does not belong to any of them. Now since e 2 A(M')

- n
811 the elements accessible from (B £76,(M ) _7 - 13 b, )
=

n .
with respect to 101 b1 ) are contained in A(M") U e .
=

Hence A(M®)U e 2 & £7(M, X (B(o (M I 7 = & (M)
Hence A(M')U @ 21 ( M) .

But A(H.n) 2 1(!“) by Lemma 6,1.

Hence A (H.n) -9 = |\ (f) .
:;-E.Do
Ve —nw prove our main theorem,

Theorem 6.1, Let M be a matroid on £, and let M, be its

8.0.,68, OO0 ﬁ.c



(1) Ife§ a( ™) buteBEZ' on(M)_} 3

then &%'Men*l) = A (Hnﬂ') and

S = 3L 6, (M) 7 =s8=-BL 8 (M) T .

——

(2) If a2 B/ 6 (M) butezn (M7l

2

then A ( He“) = A (M*) and

a=-1 1
54 = A ( M e s-A (M) .

Proof, (1) If ch:(ﬂn) s then .\; B/ LIeY M) _7 .

Hence by Lenma 6.5 e § A ( H.ml Yoo

Thus by Lemma 6,3, & ( u."’l) = A ( ol ) -

'/since ee B/ 3, (M) J g Lemma 6,6 we have

B/ 6 (M) 7 -eCBL 8, (M) ] end by Lemma 6.5 ve bave
e 2 &(Hen)i-'-_BL.Gn( My ) I
Hence by Leoma 6,1, it follows that
BL o (M) 7 -e=B L 0, (0) ] .

~-Therefore, 8, =B £ 8.(M)) ] = s8-8 Lo, 7.

(2) since e} B L 6, (M) 7 » by Lemma 6.8 ve have o X A(M,").

Hence by Lemma 6.3, A( ll.n ) = l_(’llll )



-1
cince e 24 ( M), by Lemma 6.7, we have,

a(ue“"l) ce = )y,

A1s0 by Lemma 6.5, e £ A ‘r HenPI e

Hence 5. - 1 ( ¥ %1 y=5. 1 (™1

@ ® .

tonoD-

We can aow describe the P-sejuence of Aq to some extent. We
collect the relevant information in the iorm of two theorems,

tirst, howvever we state a simple leuma,

Lemma 6.8, Let M be a3 mitroid on S5 and M. be its s.e.2, ON

Bg Then, if P € &

(1) M XP = MXP
and further {f S. « P ig closed in H'

(2) Ho s P = M,P.

Proof. The lemma follows directly from the definitions of

contraction, reduction and elosure.

ERD,

Theoreu €.2. Let M be a matroid on S and let M_ be its
s.e.e, on 8,. Let oh A (l-‘lH Ybut e 2 B/ 8, (M) 7.

. s
Let Pyy» Py oo P, Do the P=-seyuence of M and let \(HP'I) =T P
1 2 n : 1.1 i

n
sad 8-B /L 6, (M) 7 .:1111:91 .

1 b |

If P1 y Py ...,P‘ is the P-seyuence of H. ’



(1) when 1 ¢ {1.2 soe s}- then Pil = Py and

M & P ux(i 1 1
X(JEIPJ.Pis A AR I

(2) when 1 & &0’1' see n't} then

pt . =p

m-1 and

n=1

2 =
HX(JEI.J).Pn_i M, (JE1PJ s P

1
m=-1

Proof, The theorem follows from "hrorem 6,1, lLemma 6.8 and

and Corollary 1 of Theorem 2,6 using Theorem T7,

NeE D

We can similarly prove the following theorem t

Theorem 6.7. Let M be 1 matroid on S and let M, be 1its s.e.e.

on S.

Let e B/ 6, (M)_7 but e¢ v oLy

Let Pys» Py eee P, be the Pegeyuence of M and let

A (M) = 3 Py and 8-~ a1y = u Py
i=]l ist

It'Pll, Pa} ? ese P'1 is the P-sequence of H°

(1) wen1g {1,2... 8} then P =P ana

1 | | 1 1
nx(‘t-rlpj).r*i-n x(321pi ).P1 .



(2) wheni ¢ {0.1. cecan=t}] then

1

Pn-i = Poog and
nt-yi P, )o P = X ( mt':1 p.ly, pt
M X . e P ‘

The case where H. on S. is such that H.. S = M

is treated in terms of M® and H: .



CHAPTER 3

APPLICATICYNS OF THE MATROID UNION THEOREM

A large part of the materlial so far presented in this
thesis revolves around the matrcid union theorem., We would
now like to stress the prominent role it plays in other
branches of matroid theory (primarily in the theory of
gaﬁmoids, transversal ind base-orderable matroids), Sections 1
and 2 are concerned with transversil theory, Here we prove
gsome well known results in transversal theory by first proving
the corresponding results for the union of two matroids one
of which has rank cne. In Section 3 we prove some new results

on gammoids and base orderable matroids,

Convention We have defined matroid union and matroid

intersection only for matroids on the same set, If we wish to

consider matroids on different sets we proceed as follows t

In order to define consistently the union M, V M, of
matroids M, and M, in this case ve lock upon M, and M, as
matroids defined on 8, U S, but 8, - 8, as a set of loops of
M, and 8; - S, asa set of loops of M, However, to define ,
the intersection M, N\ Mg 1o this case wp treat 8, - 8, as a

set of coloops of ¥, nd 8§, = 85 as 8 eet of coloops of M,.



Section 1 1 A Special Case

In this section we co.sider the caise of the union
of two mitrolds one of whieh has rank one. Mostly we are
interested in the permissible gtruc'ural changes in the
mitroid of rank one in order that the matroid union might

be invariant,

Theorem 1.1. Let ¥ wnd M, be two matroids defined on

Sy with r (M,) = 1 and r(MIVM?)ﬂr(Ml)-rl ‘
Let C(My)= 8, and S =8 =5,.

Let Hg' be a matroid of rarnk one on S with C (l‘l,a )} = 91 "

(1) Let 5,'2 5 « Then M; V My = M, V M,' 1ff (5" - 8;)
is independent in Hl . 32 .

(11) Let 5' < Sy » Then M V uzsnlvuz' ire ( Sp = 84"
1s a set of coloops for (Ml v Ilg ) X 5 o

Proof. Let M, = M, VN,

(1) Let 5' = § be independent in Hl o Sy and let b be any
bage of L

Then b = b, v bg vhere b, is a2 base of M, snd b, 1s
a base of My, We know that b, 1s a singleton. If b,S(s,'-s,),
then b is obviously a bage of “1 v "2 ®ow let by = { } and
suppose a £ ( 51 - 5 ). Now lk b1 lineo r(ll )= r(H1)+ 1.
Hence a U b1 contains a circuit say C of H1 Suppose C 5’81 .
Then C N 8,=C nesy' - 81) is dependent in My . 85 . This



is a contradiction, Hence C ég Sl' aad € N (8 - Sl') & ¢ .
Let d€C N (8-58").,

Now b = £ (bl-d)Ua_]Ud.

By Theorem | 1 we know that £ ( b, - d) U a _J 1s a base of
M. since 4 2 ( 5= 5;') we hive d 18 1 base of M,' . Hence
b is a base of H’.l v Mg'. Thus every bace of My V 4, is 1 bage
for HI v H2'. That every base of “.1 V M,' 18 a3 base of M, is

2
clear since 31' 2 84.
Hence Ha = N1 v l'lg' "

Suppose sl' = 5, 1s not independent in My . S, o Then there
exists a circuit C of M; « 8, such that C c (8- sl).

Let a 2 C. Now (C - & ) is independent in M; ., 8, . Choose.
a base b1 of M; such that b]. N Sy iz a base of My « 5, and

by 2 (C=-4a ) Letb,s= {a} « Then b, 1s obviously a base
of M,. Hence b = bl U ba is a base of !{3 e Suppose b i3 a
base of M; v "9' e Then b = hl' ] ba', wvhere b,'_' = {d } ’

de (8-58") and b;' = ( b, =d ) Ua is a base of ¥;. But
if bl' is a base of My then & belom;s to the fundamental
circuit C; of a with respect to the bise b, of M;e But clearly
C, N 8g=C. Hence d g ( §' -~ § ) This is a contradiction.

Therefore b is not a base of M, 1 4 Hg' and M, v l(a' aa K, .

(11) 1f 8,' < S, We can reverse the roles of M,' and M, in
(1) above. We then have My = M V M,' 1£f (S, - 8,") is



independent in My o ( 8 = 8,'). Hence My = M) V M, 11f
'(8; = 5,') is independent in My o (8= 8;") X (5 - S5;') 1.e.
- §.° - b

ire ( S, = 8 ) 1s independent in ¥, X §; . (S1 ") [by the

vee of Theorem T7 - 4 J f.e. 1ff (:'.-:1 - 51') is a set of

coloops in M; X 8
Butugxs:I.'(Hlxsl)V(M?xsl)aulxsl,

by Corollaries 1,4 of Theoren 1,1 of Chanter 2., Hence

M, = M v Mq' irf ( 8y - Sl') ;g a set of coloope in ¥, X 84.
JeTaDe

Theorem 1.2, Let M,, M, be matroids on 3 with r(M,) = 1.

et N, = VN If s, =C (M,) 5 then 8, is closed in M,.
Proof. M, X8 = (M X8 )V (M X5 )

=¥ X5
(using Corollaries 1,4 of Theorem 1.1 of Chapter 2.
Let ( 8 - 8y )= Sy o Now let C be a eircuit of l-l.3 such that
cns,={a} « Thea C N 5 1s independent in Ma X 8; and
therefore in “1 X 8 and hence in Ml But a 2 Sq and hence {a}
is a base for N, . Hence (( C N 84 ) Ua ) 1is independent in

3

M,. Thus C is independent in M, - which is a contrad!ction,
Rence there exists no eireuit C of M, such that C N S, = Sat .

and therefors 81 is closed in lla.
.FDe

Theorem 1,3. Let M;» Hﬂ ’ "2' be matroids on 8 with




r(M,) = r (M,') =1 and'ulvn,a-ulvug'. Let C(M,) = 8§ ,
C (M,') = S4'e If M," 1s the matroid of rank one on § such
that ¢ (M," ) = (5, N Sy'?s then

My VM= My VM, = M) VM
Proof. It is easy to see that any base of My V M, is 1 base
of !!1 vV Mg" . Let b be any bage of Hl v M?" « Then
b=b Ub, whered 1s a bise of My and b, = {aty
a2l 5-05 08"V 7.
But this means a2 2 ( 8 = 8y Jora € ( 8- 8;"' )e Suppose

ag(sS=35, % 'l‘henclearlybisibaseofﬁlvH,_.,. if

1
ae(8-81')thonhuabuoof)ll\rl-l2'. nutulvag'-

-nlvua. Henceb:lsabauofﬂlvug. Thus every base

ole\ng" 1sabaseofH17H2lndH1V H?=H1VHQ"=H1'VHQ

QeFeDe
The following Corollary is obvious.

Corollary 1. Let "1' Hs be matroids cn S, with r(Hq) = 1,

Thare exists a unijue matroid "2' of rank one on S such that
(1) My VH, = M; V My

(2) If My," 1s any matroid of rank one on 8 such that

My VH," = My V iy then C (My') S C (X" ).

Definition 1l.1. Let Hl be & matroid on 8 and H2 be a matroid

of rank one on 8 such that if llg' is any matroid of rank one on S



such that if M,' is any matroid of rank one on S with MI'V M, =
= i v HQ' y then C (M,") i}‘: C(M, . Ue then say that M, is
maximal with respect to ;. /- Ve note that “orollary 1 of
Theorem 1.3 states that the miximal matroid M with respect'

to M, such that M; VM, = M V MK,' 1s uaijue _7

vefinition 1.7 Let ‘41 be a mitroid on S and M be a matroid

of rank one on S such that 1if M.,' is any matroid of rank one
on § with M, V M, =M, V H,' , then C(M,) ﬁ% C (M, ) s Ve
then say that M, 1s minimal with respect to Ml. But this

minimal matroid 4s not necessarily unigue.

Theoremn 1.4. Let Ml’ Mg be matroids on S with llg of rank one

such that M, 1s miniml with respect to M;. Then S - C(K,‘!) is
a bond of H1 v Mq N
Proof, By Theorem 1.9, C(Hz) is closed in M, VM. By

Theorem 1,1 and the minimality of M, it follows that C (llg)
contains a base of ¥, Thenr L'(Hl V M) X C (M) =

'rL-HIVHQ_]-I.
Since C (Hg) is closed in H1 Vv Kg. it now follows from Theorem
“Tlo thntB-C(Hg)lstbondoleVH.z.
Q.E.D.

Theorem 1.5. Let “1' a? H ! be matroids on 8 with
r(My )=r (M;') =1 and M, VM, =M VN1 Allolotll.a
and Mg' be minimal with respect to "1‘

Then ]S-C(Mz)l = [s=-C (M )|



Proof, Let H.a" be a matroid of rank cne such that
C(H.a"}-(c (H?)) N (c (HQ') Ve

Thea by Theorem 1,3, Hl v M2 = Hi v Hp" « Hence by Theorem 1.1

(CL Mg 7 -Cl M7 ) and (€ L7 n 7 -c " 7)),
are bases 1nH1vL- § = C (M," ) _7. PRence 1t follows that
v e c )] = s o]

3eE.D,

Theorem 1.6,  Let My, M, be mtrolds on 5 with r (4,) = 1.

Let Hq be maximal with respect to l(l e Let € be the rank
function of M, V M, . Suppose M,' is any matroid of rank one
on 8 such that Hl v Hgt H]. v H,' « Then

s - C(My') | = |s - C(My) | = £T(C(H,")) - @ (cmy)) 7.

Proof, By Theorem 1.1, C (H.?') = C(My) is a set of coloops .
for_ / (Hl v “2) X C(H,a') -/ « The theorem is now immediate.

Q.E.D,

Corollary 1. Let M, Hz be matroids on S, with M, a matroid
of rank one. Let My be maximal with respect to "1' Let € be
the rank funetion of "1 v M,e Nov if H,,' is any matroid of
raok one on 8 such that M. V Ma= M, V My'y then (58 - C(M,'))
has the maximum cardinality among 3ll subsets of (8 - c‘"a) )
vhose complements have rank § £ € (My') J in MTN,.

Breof, If A is any subset of S - C (M,) such that g/s-1) =
= Q [C(Hg') /s then clearly



-4 2 [c M)l + & AUs=n) = C LMy T D) T
Therefore,
A] ¢ (s-c)] ~L L ey 7 - e Lcu) 1S

The result is now immediate from Theorem 1,6.

Q-E oD

Theorem 1,7, Let "1’ M, be matroids on S with r(H.,} = 1,

Let M, be maximal with respect to M. Then C(M,) iz closed in
M, V M, and (M, V¥, yxX(cC L.Hg 7 ) has no coloops.

Proof, By Theorem 1.2 , C(My) 18 closed in M V M, . Suppose
54 18 a set of coloops for (M, V M, ) X L C(M,) /.« Then

My V My = M V M,' wvhere Ny' 1s a matroid of rank one on 8 and
C (Ha') = C(My) = S84 This contradicts the marimality of M,
with respect to l&. Hence the theorem holds.

JeFe Do

Theorem }:3' Let "1’ Hl', Mg Hz' ’ Mg“ be matroids on 8,

with "‘2' !lg', Ha" being matroids of rank one. Further let
“2 ’ "2' be maximal with respect to ¥, Hl' respectively and

AR U AN T s B

rﬁon H, = l(a' o
Proof, From Theorem 1.1 it is clear that both C(uq) and

C("g'3 are obtained from C(My" ) by removing the coloops of

(M, ¥ Hy) XL € ( Mg" ) Jo Hemeo M, = Myl
| QeTeDs



Theorem 1.9, Let M., Mg De @atroids on S with pr (n,,) = 1,

Let M, be maximal with respect to M,. Let M’_' be any matroid

of rank one on S.
Then "1 ' M2 = Hl v H?' iff

(1) C(My') 2 C(My) =nd
(2) Ml XL c(My") J has C(¥,') = C(M,) as 1ts set of

coloops.
Proof, Let us denote C(:,) by S, and C(M,') by 8,'.

By the definition of maximality of H., with respect to Hl aad
by Theorem l.l we have,

M, VM= M, VM iff (a) 5,' 2 8 and
(b) (Ml v Ha' ) X 81' has Bl' -8, as its f_ot of eoloops.
But (M, V My') X 8" = My X 5" VM, X 8" and My' X 8,' 1s
the matroid Ilo on 81'.

Hence (u1 v n,__,') . 31' = M X Sy' .
Thus the theorem follows.
Q.%.D,



Saction 2 s Transverasl Matroids

We will now prove some results on the structure of
transversal matroids using the theore~s of last section., Most
existing procfs of these results dn not make explicit use of
the matroid union theorem (a2l though 1implicit use is often
made), Qur air is toc show that oatroid union theorem makes
these results appear quite natural, We have, however, nct
sttempted to be exhcustive, TExcept for Theorem 2.6 all the
results stated in this section are juite well known, As

usual we consider only finite matroids,

The following definition serves to distinguish between
families and sets. The need for distinguishing between
families and sets is clear since the elements of a family

may 'repeat’.

Definition 2.0. Let B and I be sets, Let "L s I < E de a

Rapping, and writeM(1) = x, for all 1 ¢ I. We call¥ a
family of elements of B indexed by I, In what follows B will
usually be a collection of subsets of a set 5 and I a finite
subset of natural numbers, We will denote a family ‘U as

(4 1121 )or as ( 111. lis... Ain)vhmijlltor

all j @ {1,2 —_— n} e We say that an element x of E belomgs
to "W or is an element of “u iff x, = x for some 1 € I,

8ince usually the elements of ™1 are gubsets of some set 8

ve will spesk of A, as a subset of (or in)mw, Ifm=(y, ¢ £ ¢ 'I?
is a family and I' < I we will call the fanly-u'-(hi s 1e¢1I)
2 subfamily of "L.



Definition 2.1. Let M = (4, 112 {1,2...n} )

be a finite family of subsets of a finite set S, A subset T
of S is a transversal of ‘U 1ff there exists a bijection

y 1 T = {1,? P n} such that x @ &W(x) for 21l x ¢ 7,

We call a subset R of S a partial transversal of W Iiff R is

a transversal of a subfamily of U. A subset Rof © 18 a
maximal partial transversal of W iff R is a partial transversal
of W but K is not a proper subset of any partial transversal

of W

ﬁnless othervise stated all families and all sets

considered henceiorth in this section are finite.

In the next theorem we show that the collection of
transversals of a family of subgets of a set S gives rise to °

a matroid.,
The theorem is due to Edmonds and Fulkerson / Fd 2 _/.

Theorem 2,1. Let W be a family of subsets of a set 8, Let

I be the ecollection of all partial transversals of U, Then
. (SyI) 18 a matroid on S,

Breof, Let W= ( Ays Ay eee Ap ) 5 Ay Deing subsets of 8.
Let M (‘1) for all 1 ¢ {;.a eee q} denote the mtroid on 8
such that

(1) » L Wa) 7 =1,

() Ay =8-CL M) 7.



Consider the matroid M = H(Al) Veeo V u(&n). Any set R
independent in M is the union of bases

b, U b U.oo UD
11 12 o 1r

wvhere b:l. = i"q} is a baee of N (411 )

1

3
bir = tairi is 2 base of M ("11' ) .

Clearly R is a partial transversal of °“u,

Now consider any partial trangversal R of 4,

Let R = {-‘11 ’ ‘13 ceee “’k }

where '1 e

g A see 8 g A
S R

1 1y

Then n--{.11 v “'Ub&} :

Since {ai'lg is 2 base of M (111 )

.
{.ik} inahaootu(&kJ "

wve conclude that R is independeat in M,
| Q. E.D.

Definition 2.2. A matroid on 8 is a Frmsnrnl matroid iff

the class of its independent sets coineides with the clasgs of



partial transversals of some family "W of subsets of S,

Such a matroid, we will call the transversal matroid of ",

Note t- Our definition of a transversgal matroid permits the

presence of loops in the matroid. For instance, let

u = (4, &, see A, ) be a family of subsets of a set S such
that 8 - ( g L, )% ¢ . Then the transversal lqtro:ld of u
wvill be derf;id on & and therefore would have ( S = ( U Ay )

i=]1
as the set of all its loops.

The following Corollary is now obvious,

Corollary 1 of Theorem 2,1, (D.J.As Welsh)

A matroid is a transversal matroid i1ff it can be

expressed as the union of matroids of rank at most one.

We need the following Lemma for the proof of the next
theorem, We omit the obvious proof for the Lemma,

Lemma 2.1, Let Hl.’ MQ be matroids defined on S, Then
r(H]_ V M, ) = r(Hl) implies

(1) s-C(Hg) B(lnll)
() 4 Ty =
Theorem 2.2, Let “u = (11. "9 ) ln ) be & family of gubgets

of 8. Let M be its transversal matroid on 8. Thean if r(M)=k ¢ n,
there exists a subfamily W, of W which has M as its

transversal matroid and has k subsets.

Alsok < n only 4f M has coloops.



ggoof. M=M (&1) V eeo Y M (An ) ®

By the use of Lemma 2.1 we can see that there exists a subfamily

= (A A, oo % ) such that
! 1.2 M, 1,

This proves the first part of the theorem., Now let
k < n.

we know that there exists'Hl = (&11. vesn y such that

A
i
M= M (Ail) Veeeo VM (Aik )

Hence

= v o9 v H V e e V H
M= M (uil) V.H (Aik) (A1k+1 ) ( Aln )

Hence M= MV ( M (Ai Y Veee VM I( Ajn ) ).
4

kel

By Lemma 2,1 this is possible only if
n
U 44 1s a set of cecoloops for M.
i=ks 1l

Qolona

Notation s- 1, T represent the transversal matroid of the

family W= ( A;s Ay eee ln_) of subsets of s set &, ve may

write M (Ay9 Ag ese Ay Y or M ("M ) the matroid being defined
n

ons8 S- U Ai 1s the get of all loops of M (™ ).
is]




2« We will express the transversal matroid M repcatedly as
the union of matroids of rank at mjt one, The transversal
matroid M on 8 such that M= M (.&1, Ap ves ‘n 7 will often
be expressed as

H(AI)V...VM(Ani ’

where M (&1} for all 1 2 {1,2 sse nI— ig the matreoid of rank

at most one such that
cL MM T=5-1

The meaning of M (-\1) would, therefore, depend on the

set of defimnition of the transversal matroid M,

Theorem 2.3, Let W= ( 479 Ay oee A, ) be a family of

a

subgsets of a gset S, Let M be itg trancversal matroid., Let

r{M) = n, If = ( A, 3 s0e A, ) 13 a subfamily of ‘4
Yy 1 1,

such that

k
)JE1A‘JI TE o B

K

U Ry is a set of coloops for M,

=1 3

Proofs. Lot W, = (A; » eee Ay ) be a subfamily of U sueh
1 K

that ;

- X
U \ = @
lJ-l. i

L]

M = M(A V....Vlll VM A, ...VH .
(hy,) (hy D VMG ) (g )



Let ul = M(kil) Vese T M (l"k ) »

H’H(l )vooov"(ki )

2 1k+1 n

Now r (M) = n.
stnes r £” M(A, ) 7 =1 for all § 2 il,ﬂ! ceem} 1t follows
that T M(A, YV e VM(y Y7 = k.

a r"  § Hk -

1
n k
But | T 1 = k ., Then U A, = B(M,).
RS ‘:, =1 1 "1
k
Hence B(M) =2 U Ay .
=1 J
Je%eDs
Pefinition 2.9. Let M be a transversal matroid on &, Let

W= (Ayy 85 coe A, ) be & family of subsets of S. ThenU is
a presentation of M iff (1) r(M) = n and (2) M= M(w ).

Definition 2.4 A presentation M. = ( Ayr Ay eee A, ) of

the transgversal matroid ¥ is minimal iff there exisgts no
presentationW, = ( Byys By eee B ) of M such that

(1) By € &, forall i€ [1,2...1n]
(2) By C A, for somek¢ f1,2...0}.

Definition 8.8, A presentation.= ( Ays A, eee A ) of the:
trangversal matroid M is maximal iff there exists no presentation
‘\1 = ( Blt Bz see n ) of M such that

(1) B, 2 A, forall 18 {1,2... n}

(2) B, DA tornonkt{lp-o..n}.



Definition 2.6. Let M be a matroid on S, We say F < 8 is

a flat of M 1ff F is closed, We say F is a coloop free flat
{ff F is a flat and M X F has no coloops.,

Theorem 2.4, Let M be a transversal matroid on 8 of rank fa

Let F be a closed set of M such that X X F has no coloops and
r(MXF)=p, Letus= ( g2 Ay eee Ay ) be a presentation

of M, Then“m has 3 subfamily "hl = ( l v Ay b oees Ay )

1 lq n-p
such that
n-p
(1) U A =8~ F
=1 J
and

(2) Every set of the family“a -, intersects F.

Proof. Consider M X F,

By Corollary 4 of Theorem 1.1 of Chapter 2 ve have
MXF= (ML) XF)Vaee VMM XF)
.H(llnp)'G.l v"(lnnr)c

Hence M X F is the trunsnrnal matroid of the family of sets
‘h = ( A N Fy eee Ay NF ). But M X F has no coloops. Hence
n - p of the subsets Ay N F are void by Theorem 9.9. 1t the

void sets are “1 N Fy eoe a1 N F o, oconsider the

13 PErTY &1 ap ) ot; . Clesrly %,
a~p
satisfies condition 2 and ’21 A"j c . (8S=F).

subfaaily w, = “"1



n-p
Let, 1f possidble, a2 8« F = ( T A,
=1 -

) e
Let Fy = FUa., Consider MX ( FUa ). r(MX Fy Y2 p .
But M X Fy = M (AN 7 ) Voo V(A N F; J and

\OE O o all j e {1,2...n-p}.

Hence r ( MXF, ) S P &
Hence r (M X Fl) =pr ( MXF ).

This contradicts the fact that F 1s closed.

n-p
Thus U A, =(S=-F) ,

jm 1
Q.B. D,
Corollary 1, Letu = ( Al b Ry eve Ay ) be a family of

subsets of S and let M be its transversal matroid, Let B Dbe
the set of all coloops of M and let [B[ =k, Then there
exists a subfamily

v, = (“1 ._... llk) of \u such that

T A =B
=1y | .
Proaf. Let r (M) = p. |
By Theorem 2.2 thers exists a subfamily-w, _ot u  such that M(‘u,)
= Mandug = ( By 3 By ece B, ) HNov (6-B) is closed in M and



r/l MX(S-B)_J =p -k, Hence by Theorem 2.4, Uy ( and

therefore 1) has a subfamily ‘111 = (5.1 » oo iy ) such that
1 k
k
U Ai =3,
=1 4
Q.E.D.

Corollary 2. l” Brualdi-i#ason £ Brl 92 J7.

Let M be a transversal matroid on S with rank n. Let k
be any integer with 1 < k < n. Then M has at most ( : ) coloop

free flats.

Proof, Let 4 = ( Ay 9 ees A )} be a prescntation of B,
For any coloop free flat of rank k we have a subfamily Ny
of i such that

(1) “u;, has (n-k) apbuta

(2) © Ay, =(8-F).
A Sy

and
(3) IfA 8U=-W » A, N F 2% ¢ .

S8ince ‘hl can be chosen in atmost ( : ) ways the rnult follows.
Q.B.D,

Hall's Theorem can now be proved juite easily.

Theorem 2,8, (Philip Hall / PH 1_7 ).  The family

W = (Ll, Ag ? see An) of subsets of S possesses a .transurnl

iff 4 satisfies Hall's condition f,e, iff for each gubset



{11.12.... L} or {1,2...::} :

k
uoa |2 |7 .
i=1 J
Proof. The theorem is obviously true if n =1, Let us

assusie the theorem to be true for n < q . Let ‘= (Al"o’“'\q,\’ .
If Y has a transversal it s obvious that 4a satigfies FPall's
condition. Conversely let°u satisfy Hall's coiiition and let

oy, = (Al, Ag eee Ay ) » Then

M) = Mlw,) V u(aq) . Let B be the set of all coloops of
n(‘ul )e Then by Corollary 1 of Theorem 2.4, there exists a

subfamily ‘hn - ( ‘11 ’ Ai
P

m ‘.1

. A, ) such that |[B] = p and

From Lemma 2,1 it is clear that %1 has a transversal iff
rf M) _/ =q. Now Wy ¢learly satisfies Rall's condition
and therefore by the induction assumption, has a transversal,

Hence U has a transversal Aff
r L ll(‘u)_?-r[ll(‘hl)]-*l "
foe, A2 AL £ B/ H0w)) 7o But A€ A C B L Mwy) 7, then

P

/ (U A, )T li l < p + 1. But this contradicts the fact
b L S

that 4 satisfies Hall's eondition, Hence A ﬁ}‘FB L )(aal) J and

Y has a transversal.,
QeEB.De



Theorem 2,6, Let U= ( Rys Ay s ees A ) be a family of
subsets of S. Let “u be a presentation of the transversal
matroid Mon S. Let F S Ss If for every J & {1,‘2, ...n}

such that A, N (S=F) s ¢ for all 41 8 J we have

i
1 ¢ A N (8-F)) I > AR then M , ¥ 1s a transversal
igJ
matroid.
Proof. Let the subfamily of . corresponding to the subsets

vhich intergect ( s - F ) be =y * ( Bye By ene Bq Yo It is
clear thatu, = (8, N (8=F)y oee Bq('\ (s5-F) ) satisfies
Hall's condition and hence has a transversal. FNow by Corollary

4 of Theorem 1,1 of Chapter 2 wve have
MX(8=-F )= (M (1) X (8F )) Voo V(M) X ( 8-F)
= M (4, N (8-F)) V .eo V (MR, N (8-F))

= H(Blfl (S’F)) V esso V “(Bqn (S"F))v Hoo-.v "o
———
(n=q) times

the matroid M, being oa (s8«F )
But ‘h. has a transversal,

Hence r / M X (5-F) /= rL'll(Blﬂ (8=F) 7 * o0e0 *
+r S MBN(8-F) T

+ "“o)‘.“ sese ¥ P ("ﬂ )
e —a e

(n=q) times




By corollary 2 of Theoreml3 of Chapter 2 it rollows that

M., F’M(ﬁl)onooo VM(&Q).F'

Clearly :'-i(f\i) o I lor all 1 {1.2 ooe n} are matroids of

rank atmost one. Yence Y1 . F 18 a trangvergal matroid.
We Fe Do

Corollary 1. (Brualdi-Mason) / Brl 2 _/

Let M be a2 transversal matroid on S. Let F € 8§ and
guppose M X ( S = F ) is coloop free. Then M, F is a

transversal matroid,

Proof, Let u = ( Ay A "n ) be a presentation of M,

2 [ B N
Let‘ul = ( By 32 se e Bk) be the sudfamily of U composed of all

the sets in "1 which intersect ( S = F ), Now 'By the use of

Corollary 4 of Theorem 1.1 of Chapter 2 we can see that

M X (s-F) = X (B, N (3=F)) Veeo VM (B, N (s=F)),

Since M X (S-F) has no coloops, we conclude that

k .
rf MX(8-F)L7 = 1::11'4'!4(310(3-?‘))_7

= k

Thus the family U, = ( Byy Bg ece By ) has a transverssl, It
is nov easy to ses that Theorem 2.8 is applicable and hence

that M,F 1s a transversal matroid,
Q.E-D-



Theorem 2.7. (Brusldi-Dinolt) /  Bri 1 ./

Let M be the transversal matroid, M (%,) Y5 «-o %) ) on 8,
Then S - A, " 1s a flatof ¥, (1 <1 ¢ n ). '

Prmfc H(Al’ A? ) ose &n) = M(&l’ Ao’.il &1-1’ 11_"1' oooq-n) .

Vi-'-i('li )
The result nov follows from Theorem 1,2.

QOE.D.

The next two theorems are among the more important
results on the structure of transversal matroids., They follow

quite easily from Theoream l.l.

Theorem 2,8. / Bondy and Welsh [ Bo 1.7 7

Let M be the transversal matroid M (A, see A, ) of
rank r < non S, Let Y S(S-4,), for some fixed 1 (1 <1¢ ).
Then M = M (‘1! ssay Ai 7 ¥y ece An ) 4ff Y 43 a set of

coloops of

MX (8=A,) = M (4 = Ags g = & 4 eoe Ay = 44 ).
Proof. M =M ( Ays eeap Ag g0 A g9 eoo A) VM (1),
Hence by Theorem 1.1, we ____l,mvo.

Mom M (Ayy aoe Ry go Rhyogo eoe A IV M (A, TY)

1£f ¥ 1s a set of coloops for M X ( 58 = A, )« But by Corollary
4 of Theorem 1.1 of Chapter 2 it is easy to see that



M X (s—ai) = H(!Ll - Ai) Vees VM ("n -y )

'M(A,I-A.ijoon’&n-ki)

Thus the Theorem follows.

Loﬁ:.no

Corollary 1. Let = (49 A, cec A ) De 2 maximal

presentation of the transversal matroid Mon S, Then (&-4,)
is a coloop free flat of M for all 1 ¢ {1,2, seesy n} o

Proof, The result follows from Theorem 2,7 and Theorem 2.8,

It can also be seen directly from Theorem 1,7,

Q. E. D.

Theorem 2.9. (¢  Boady and Welsh / Bo 1 _7_ 7

Letu = ( Alp lgp eoe &n ) be fan:lly of subsets of S,
Let M be the transversal matroid of Ul and let r(M) = q, Let
Y S Ay for a fixed 18 {12, .o n}. Then,

M= HL- A‘l ) ecoy Ay = Yy oo An J Aff there exists
a maximum partial transversal D of n, ™ “1""“1-1"1-&1""““)
such that D N1 Ay has minimum cardinality and Y C D A Ry o

Eraof. We have,

"' H (‘1’ see Ai-l' "."1’ looln) v H (‘1) ®

By Theorem 1.1, we know that

Mo M (Rys eoo Agoge Agyqr eoo Rp) VM (R = Y ) £ Y s



independent in M(A;9 ccofy y9 Ry ooty o A lee. 1ff there
exists a base D of M(Ays seehy 10 Ag qvesedy) such that [D N Ay
is a minimum and Y S D NV A, /" This follows easily from
"heorett T2 _/. The result follows immediately.

<.F.De

The next theorem describes the characteristics of a

minimal presentation,

Theorem 2,10, £~ Bondy and Welsh £ Bo 1 _7 7

Let M be a transversal matroid on S and let
woE (A Agr eeo Ay ) be a presentation of M, If
Ry for some 1 (1 <1 <0 )y is oot a bond of M, then there
exists x @ A, such that M= M(A), schy g9 R7Xy Ay gechy Y.
Hence finally, if%, = (Clg Cos eee C,) is a minimal
presentation of M, then C, (1 <1 <a)are bonds of M and

are necessarily distinct,

Proof. = u(kli ...Ai-l’ A1¢1’ ee® An) VM (A’.) °

By Theorem 1.4, M(A,) is minimal with respect to
M (Agy eooly g9 Ageqeeeiy ) only if A, is & bond of M. Fence
if Ay is not a bond of M,there exists at least one element
x c ‘1 such that M = "(‘1' ...&1_11 Ai-xj li...l".co An)l This
proves the first part of the Theorem. By repeated applieation
of this result, it follows that = ( Cyy Cg oo C, ) would be
s minimal preseatation of Monly 1f C; .( 1 <1 < n ) are bonds
of M, 1f Cy = CJ (1 o] ) it is easy to see that



M X (S'Ci) = M (Cl - ci $ ocoe Cn - Ci )

= H (Cl-ci’ ...ci.rci' Ci+1 -Ci'..‘cj-l-ci'
CJ+1'01’ es e Cﬂ - C1 )

Hence r / ¥ X (s=Cy) / & n=2, This coatradicts the fact
that C; 1s 3 bond of M. Hence the C; (1 <1 < n ) are
neceesarily distinct,

3.E.D.

While there may be many midimal presentations of a
transversal matroid there is a unijue maximal presentation,
The following theorem due to Bondy £  Bo 2 _J states this.
We omit the proof since a proof in keeping with the rest of
this section would turn out to be identical to that given by ’

Sondy,

Theorem 2.11, Let M be a transversal matroid on 8, and

1Ct ‘\11 = ( &1' Aa’ .o.ln) mdmz = ( Bl’ Bg ae e Bn ) b. m
maximal preseatations of M, Then there exists a permutation
Ly 2 eeeeee 8 ) Luon that A, ®Bj for all Je& {1,%...n}.
11’12 LE R B N 10 J

Corollary 1. Let™w = ( Ayy Ag ece A, ) De a presentation

ol the transversal matroid M on 8. Let (31. Bg eoe 'n ) be
s family of subsets of 5 such that for evéry 1, (1 £1¢<n),
M (Bi) is the maximal matroid with respesct to

M (11’ es e ﬁi_ll ‘1’1.’ (XY &n ) such that



u ( Al’ A? e ‘a )g H (&1’ L & ] Ai"'l' Ai"’l’ LN An) v M (Bi)t

'.l'hon‘ul = (51, B?. coe Bn) is the maximal presentation of M.

Proof. ByTheorcml.?,(S-Bi} (1<4<n)isa
coloop free flat of M (By» Byy e B )e Hence by Theorem 1.1,
it follows that if<u, = ( Bys Byy oo B ) is a presentation of
M it 18 the maximal presentation of 4, e wlll now show that
N, is a presentation of M. 'l know that ( Byy %5 +.. 4 ) 1s
a presentation of M, 3up10se (313 By eee By j0 Ay ece 4 )

n
is a presentation of M, We then have

H(B].’ see Bk-l’ lk"l’ 'R \n) v “ (‘k) = H(&l,.’&k‘l’ \k‘*l..&n)

Vv M (\k} .

If D S S is such that M(D) is maximal with respect to
“(Bl' ' X ] Bk"l’ kk"‘l’ ee® &n ) QUCh tha.t

H(Bl’ es e Bk-l' D' Ahl’ (XX An )a: H(Ali oe e ln ) ]

then by Theorem 1.8, D = B, . Hence (By9BogeceBys Ay qreccty )
i1s a presentation of M. It thus follows by induction that
(Bl' eve Bn ) is a prelontation of M,

* Q.E.D.

We next prove a simple but useful Lemma, needed in the

proof of Theorem 2,12,



Lemma 2,2, Let ‘a = (A.lp &2. we e An ) and ' = (51’32'"311 )

be two presentations of a transversal matroid M on 8 such that

Ai c B1 for all1 1 2 {1,2, ese n}. Then

‘hl = (‘1' &2’ ev @ &1-1' Bi’ ‘1*‘1’ s ® &n>

is a presentation of M

pProof, It is easy to see that any set independent in

M (Ays 1y eee Ay ) 1s lndependent 1n M(Ay peoety 19Byalg qseety)
and that any set independent 1n M(A jecefy ;9By0 Ay qrecol )
1s independent in M (Bl, By eee B ). Since

M (&1' Aa' es e Avn ) = M ( Bl’ Bg Ses Bn ) L

the Lemma is immediate.

Q.. D.

Theorea 2,12, Let M be a trangversal matroid on S. Let

u = ( Bys» Byy ece B ) be 2 maximal presentation of M and
"nl = ( Ayo Ay soe Ap ) be any preseatation of M with

[ el |
Ay © B, (1 <1¢<n). Then if 4, & By andl,_C_ZBk (k 3% 3
ve have lk = B’ .

Proof., Since the maximsl presentation is unique, we clearly

'nud c_omidor oanly the maximal presentation of M obtained ap in
Corollary 1 of Theorem 2.11 i,e. M ('1) is the maximal matroid
with respect to ll(&l. cen Agy? Ahl,’ sae AL, ) such that

M= H(Al’ oooli-ll A,i'.’l’ ..'Aﬂ)vu(ai). (151_('! )o

¥



Now let ' = ( Dl' D, oo Dn ) be a family of subsets of S
cuch that D, = B, forall 42 ( {1,%... a} - {3, x} ).

Dk - BJ % D.1 = Bk .
Clearly“u' 1s a presentation of Mand D, 2 &, (1¢1 ¢n ).

Fence by Lemma 2,2 we have,

A\

M (5‘1’ oo-'\n) = M (Al’ ....o_.l..o. %3-1' DJ' &3‘51’ L &n F
= M (A.li ...Aj-l’ lJ‘.'l os e An ) VM (Dj)

= M (&1’ .o.-n-j-l' &J“"l' ooo&n ) v H (BJ)

But M(BJ) 1s maximal with respect to M(a,, ..'.&3_1, &Jﬂ_,..\n)

and hence by Corollary 1 of Theorem 1,3, DJ < BJ o
wve can show that nk < Bk o Hence Bj = Bk .

Simi larly'

Qo E.Do
The following Corollary is now obvious,

Corollary 1. hot M be a transversal matroid on S and let

“w= (Byy Byy eee B, ) be the maximal presentation of M, Let

o, = (Al. Agy eoe Ap ) be any presentation of M such that

Ay € By for all1 e {12, eoo n}. Them &f N (D) 1s the
maximal matroid with respect to M(Ayseehy yohy 99 oo Ay )

such that M (R;9 Agy eee A)™ M(Ays ey 39 Agigs oo Ay ) V M(Dy)
for all 1 € { 1,2, ... n} 'y then

Dy =B, foralli@ {1,8 ...} .



Theorem 2,19, /  Brualdi - Dinolt / Brl 1 _/_7

Let M be a transversal matroid on S and let
w= ( 3y 32, ees B } be the maximal presentation of M.
Suppose W) = ( Ay Ay eee Ay ) 1s any presentation of M such
that &, S B, and r L MX(S=1 ) 7=k (1g1gn)
Then [mil is the maximum eardinality of all subsets of B,
wvhose complement has rank g {(1<1<n)in¥M In particular

Awch thrat” + [Mx(sA'))

if alsou, = ( &1', m, ses Ay ' ) 1s any presentation of Mk

vith 4,' = 8, (1 <4 <n), th-n[xilslai'l (1<1<m).
Proof. Since M (&1, Apy eae An) = M(Blo Bgeeo By ) and

Ay, B8 (1<1<n), ve have by Lemma 2.9,

i
H(lli ae e hi' eee ‘\n ) = H(Al'tcoli-lj Bi’ &1,._1' eea ‘n )
forallie {1,2...n}

Hence

H(kl’ ...Al-l' Ai"’l’ 2ee An ) v H (Ai )

= M (llt ...A‘i'l' A’."’l’ sece Aﬂ ) VM ( Bi ) ®

Using Corollary 1 of Theorem 2,12 it is clear that H{Bi )

is the maximal matroild with roqpoct to H(ll....ki_lp ‘i+1"“‘n)
such that

H(Alo la se la) = M (llioooﬁ.lt ‘1’10 o0 Aﬂ YV M (’1 )

for all 1 ¢ {1,2 ... n}. The theoren now follovs immediately

from Corollary 1 ot Theorem 1,6,
Q.%.D,



Section 3 : Gammoids, Base Orderable Matroids and

Series-parallel Networks

In this section we show that the operation of series
connection is a snecial case of the matroid union operation.
This enables us to show that the classes of binary gammoids,
binary base orderable matroids and series parallel networks

are identical.

The following results in this section are believed

to be new.

Theorem 3.7 and its corollaries, Theorem 3.10,
Theorem 3,12 and its corollary 2, Theorem 3.13 and its
corollary 2, Theorem 3.16 and its corollary, Theorems 2,17

and 3,18, proof of Theorem 3,19, Theorems 3.2 and 3,71,

Notation, (1) M(S) will denote the matroid M on 8.

(2) 1r F, and Fg are two families of subsets of § and T

respectively, then Fi X Fa vill represent the family of =all
subsets C U D wvhere C 13 a member of Fl and D is a member

of Foe

(3) we will denote the class of all bases of the matroid M

(4) ["(N) denotes an oriented graph (without loops) with a
finite set of nodes N and edges Ed (" ), When the set of nodes
is clear from the context we will simply use lﬂ instead of r’(l).‘



An edge e of [ (N) with a positive end n, and a negative end
n, will be represented by the ordered pair (n_,, nl) (1.e.
directed from n, towards B, Yo

We now give a 1list of definitions,

Definition 3.1, A pointed matroid is an ordered pair (M,p)

wvhere M is a maitroid on a set S and p 2 s,

| Let (M, p) be a pointed matroid defined on a set S with
P € S. Then we define dual of (Myp) as (M,p)* = (M‘,p),
contraction of (Myp) to TS S (withp 2 T ) as

(Myp) X T= (M X Typ) &
Reduction of (Myp) to TS 8 (withp 2 T ) as

(M,p).?'(".?,’)-

Definition 3.2, Given a pointed matroid (M,p) defined on § .

and a family F of subsets of M, we define F'(M) to be the
sudfamily of F whose members 40 not contain the base point p
and F'' (M) to be the family of all those subgsets H of S=p such
that (HUp)e F,

Definition 3,3.  Given two polnted matroids (M;»p) and (My,p)

defined on 8§ and T respectively with SN T = {p} s the series
connection 8 L'(Hl.p), (KQ,- p) / is the pointed matroid (Hs.p)
defined on 8 U T, such that its class of bages, I (Hs), is
defined by the following s



I'(Mg) = I'(%) XX (Hg)

IM(Mg) = L7 I" (M) XI'(MG) 7 U LTI0(M) 717 (M) 7.
Definition 3.4. We define the parallel connection

P L (Mp)y (Myy p) 7 = (M, p) of (M9p) and (Myyp) 10 terms
of the class I(HP) of ite bases as follows 3

I'(M) = £ 100) X I (M) 7 U LTI (M) X 17(w,,) T
IV (M) = I () X I (M, ).

Definitions 3.3 and 3.4 are taken from ¢ Bry 1 _7.

Definition 3,85, Let M, and M, be matroids on S, and g,

respectively, Then "1 and Hg are said to be isomorphie iff there
eéxistg a bljection o 51 -» 32 ‘auch that for any b < 51’ b 1is
a base of Hl i1ff o~(b) is a bage of Hgo The bi jection o~ is |
called an isomorphism from "1 onto lla.

The pointed matroids (M;y ;) » (M5Dg) are isomorohic
1ff there exists an isomorphism from M, onto M, such that
o~ (pl) = pg -

Definition 3.6, The operation (V) will be called the matroid

union operation while the operaticon ( A ) will be called the
matroid iatersection operation. These operations have been
defined earlier in Definition 1.2 and Corollary 2 of Theorem
1.1 of Chapter 2. We further define the union and intersection
of pointed matroids as



(Mo PIV CHpop )= (M) VM, »p)

and
(Mys P) A (Mgepd = ( M A My 5 p )
where M; aud M, are matroids defined on the same set <.

Deiinition 3.7. h matrold < is sald to be base orderable

1ff for any two bases bl and b, of M there exists a bl jection
o~ 3 bl -+ b, such that (b, U 4 - o(d) ) and (bl Uo(d) - 4 )
are both bases for all 4 in bl'

Definition 3.8, A matroid is sald to be strongly base

orderable 1ff-fbr any two bases bl and b8 of M there exists a
bijection o= bl < b, such that (b2 UA=0o(A)) and
(by U o (o) = A ) are both bages for all subsets A contained’

in bl'

Definitions 3.7 and 3.8 are taken from/ Brl 7 _/.
Clearly every strongly base orderable matroid is base orderable.
The following is an example (due to Prof. A.W. Ingleton / Ing 1 _7
of @ base orderable matroid thait is not strongly base orderable.

Example 3.3.1.  Let 8 = fa)s850850841d; 1dg0dg0dg | .
Let M be the matroid oan S with r (M) = 4 und with the following
ags the circuits of cardinality less than 6,

(a0 4 dgrdg v {as 1y 8 dsf'{fz‘ 4y dgr 4y /s

{agr 890 80 4 | {-“1' 8918508 }o



M can be shown to be base orderable but for the pair of bages
{nl.ap,a,,a4 };{dl’d‘é!’da’dra} there existc ao bijection

satisfying the conditions of Definition 3.8.

Definition 3.9, A path P in the orlented graoh [ (N) 1s

an alternating sejuence of distinct nodes "M, and edres

(ni. D44y ) of .
R - nl . (nl’np‘) ™ n“? ® (nq’nﬂ) L] nﬁ sees0
beginnin: and ending with a node.

We admit the degenerate path P = Oy

Definiticn 3.10. We use In.P, Nod.P and Ter.” to denote the

initial node, set of nodes and the teraminal node of P, .

regpectively.

Definition 3.11. ‘3 will denote a finite family of paths

and In P etc., will denote the set of initial nodes ete. of

L]
the members of P.

Definition 2.12, A family For paths is pairwise-node-disjoint

(p.n.d.} 1ff Nod, Py N Nod, l".1 = ¢ for all paths Py e PJ in P.

Definition %.13. A gset of nodes A is salid to be linked in

. -y,
r‘ (N) to a set of nodes B 1ff there th.n.d. family of paths P
with In.P = A and Ter P = B,

Definition 3.14. For each n £ N, the star of n in Fm is the

aotSt(n‘)g{xleN,(n,x)EEd(r' ) } .



We state the following theorem due to 3rualdi / Brl 7 _/
without proof,

Theorem 3.1. Let ["(N) be an oriented graph. Let M, (V)
be a matroid. Then subsets of N which are linked in [° to
1ndependent sets of H]_(N) form the indenendent sets of a
matroid M(N).
We will say that M(N} is induced by Ml () through M.
: a
Deiinition 3.1E, Let M(N) beLmatroid induced by MI(N)

through [ (N). If M, (N) has a unigue basis then M(N) is

called a strict gammoid,

Definition %16. A matroid M(Y) is a gammoid 1ff there

exists a strict gammoid "1(") such that ¥ < N and
(M, () X ¥ = MCY) "'

Definitions 2.15 and 3.16 are due to Mason. In/ Ma 4 _/

he has made a detailed study of gammoids and strict gammoids
and has shown, among other things, that gammoids form the
'elosure' class of strict gammoids under the operations of
contraction, reduction and dualization. The following theorem
due to Ingleton and PAff / Ing 2 _/, stated here without

proor,_forn a natural complement to Mason's work,

Theorea 3.3. gtrict gammoids and transversal matroids are

dual to each other. We can now prove the following simple
result 3



Theorem 2.3. (a) Matroid uanion of transversal matroids

is a transversal matroid,

(b} Matroid intersection of strict gammoids is a striect

gaamoid,

Proof. (a) follows directly from Corollary 1 of Theoream

2.1 and (b) 1follows from the definition of matroid intersection,

Theorem 7,2 and (a) above,

The following simple results (Theoremg 3,4, 3.5) are
due to Mason / Ma 4 _/.

Theorem 3.4. Every transversal matroid is a gammoid,
Proof, Let M be a transversal matroid, with a presentation

n
us=( A,y A, coc A_ ), defined on S2 U A, . Consider the -
1" 2 n {=] 1

oriented graph | on the set of nédu{al Y™ ""nf U S

( 8 nfays 85 000 2yl = &)y all its edges having their
positive ends in iai, 8y oo 'n} and negative ends in S and
such that a, @ St (x) 4ff x @ Ay . Let M (8 U{ajsay oo 0, ])
be the matroid with {a,s8y eee 8, } as 1ts uniyue basis.

Let M, be the strict gamsoid induced by ¥ through [ . Then
it 1s easy to see that M= M, X 9. Hence X is a gammoid.

Theorem 3.5. Reduction of a strict gammoid is a strict

gaomoid,

Proof. Let M be a striet gammoid on'S, Let ¥ € 5. We

need to show that M . Y is a strict gammoid, By Theorem 3.2

l(', is a transversal matroid. Now X xYis a transversal

]
2



matroid by Corollary 4 of Theorem 1,1 of Chapter 2 and
Corollary 1 of Theorem 2.1 of this chapter. Since by Theorem
T2-(9), (M™ X ¥) = ( M. Y )™ 1t follows that M, Y is a

strict gammoid.,

e Be Do
Corollary 1. The contraction, reduction ani dual of =
gammoid are gammolds.
Préof. Let M be a zamroid on S, Then there exists a strict

gammoid H]_ on sosa N 2 S such that H1 X § = M, Hence
MXT=M XT for every T <€ s. Hence every contraction of M,

is a gammoid.

Now for every T & S we have,
u.'raulxs.'r--nl.(u-(s-r))xr

But by Theorem 3.5, M, . (N = (8-T)) 48 a strict gammoid and -
hence it follows that M, T is a gammoid, Now

M = (8, X8 e=u" ..
But |11t i1s a transversal matroid by Theorem 9,2 and therefore
by Theorem 7.4 is a gammoid, Hence "l‘ o 8 = W 1sa gammoid,
Q.B. D.

Theorenm 9.6, Let M be a matroid on 8, Let T be a separator

of M. Then M is a gammoid iff M X T and M X (8-T) are gammoids.



Proof, Let T be a separator of M and M X T, M X (8-T)

be gammoids., Let M, and N, be strict gammoids on sets P and )
such that P 2 T, 4 2(8=T)y PN Q = ¢ MlxrsﬂxTand

H; X (£=7) = MX (5-T). Let Hﬂ be the matroid on P U1 Q having

P as a separator such that M, Xps= M, and M, X Q= M, It is
easy to see that “3 can be induced by a matroid on P U J having
a uni ue bagis and is therefore a strict gammoid. Now clearly
HSXShuTasauparator andM:,XSXTurlIX‘rnMXT
andHSXSX(S-T)HHQX(S-T)nﬂ‘((S-'.'.' )o Hence My X 5= M
and N i{s therefore a gammoid, If M ig a gammoid by Corollary 1

of Theore® 3.5, M X T and M X (S=T) are gammoids.

Qe Ee D

Corollary 1. Let M be a matroid on § and let M; De & matroid

obtained from M by adding loops and coloops. Then Ill is a
gammoid iff M is a gammoid, '

Proof. The result follows immediately from Theorem 7.6 when

ve note that any matroid on a singleton set is a gammoid,
Q.E'D.

Theorem 3.7, Let I‘l be an oriented graph on the set of

nodes '1‘ Let u9 be 2 gamnmoid on lll. Then Il, 1ndmoi a gammoid
My on K, through I .

Proof, Siace ua is a gammoid, there exists a strict gammoid

lll(ﬁ) such that (1) u1(u) is induced by a matroid M(W) having

No C N as its unique basis, through an oriented graph r.



(2) N' < N,
(3) There exists a bijection f 3 X, = Ny' such that for any
'
A C Ny s £f {(A) is independent in HI(N) X Ny 1ff A 18 independent

in My(N;) i.e. My (N) X Ny* and M,(N;) are isomorphic.

We will take NO N; = Now we construct an orlented
graph ['' on the set of nodes K= N U Hl as follows 3 Fir:at
construct the oriented graph T" on ¥ with Nl ag 2 set of isolated
vartices. Now for each node 4 € Nl we add an oriented edge
(d, £(d)) from d to f(d) € Nl' . Let M“ (X) be the matroid
having No as 1ts unigue basis 2and let MS(K) be the striet gammoid
induced on K through [' by H‘(K). Now it is eagy to see that a
set A is independent in Hs(K) X N, 1ff £(A) 1s independent in
Mg (K) X N °. |

8ince Mg(K) X Ny' = M, (N) X N,' 1s isomorphic to My(N, ), 1t
follows that M, (N;) = Mg(K) X Nj. We next construct the ‘
following oriented graph on K, First coastruct ' on XK. Then
construet [’y on Ny, We shall call the resulting oriented graph
on K, [*".

Let Mg(K) be the strict ganmoid on K induced by ll‘(K)
through [*" . Consider HG(K) X M. It is elear that a subset
{ of 5, 1s independent 1n Mg(K) X Ny 1ff 1t 1s linked to an
independent set of !la(l!) X Ny by p.n.d-; paths in r. Thus
lle(!() XN = "3 (!ll) and Ha(nl) is a g,ammid..

Qe ElD.



Corollary 1. Ifr Hl and Ha are gammoids on §, H1 v H,,‘- is

& gammnoid.

Proof. Let H1 and Hz be matrolds on &, Let S‘l and S,, be

sets disjoint from S and from each other such that [5,| = |5, | ={c |,
Let M, De the mtroid on 5y U 5, =uch that

(1) Sy 1s a separator of N, .

(2) The matroids M, X 5) and M} are isomorphic.
(3) The matroids M, X S, and M, are isomorphic,

Then by Theorem 3.6 it is clear that M3 is a gammid, Let fl

be a bljection from 51 to S and fz a bijection from 8y to 8.
Now construct the oriented graph [ on the set of ﬁodos |
8 © Sl ) 8, as follows 3+ For each 4 2 ...S 2dd oriented edges
(4, £,(4)) and (4, £,(a)). |

Let l'l‘l be the matroid on § W S]-. v S, such that

2
M, X (8 U 8y )= Ny snd 58 < C(M). Let M (S WS, U s, )

be the matroid induced by M, through " « Then it is easy to

ses that Mg X S = "1 v llg e« Also H“ is 3 gamnoid by Corollary 1
of Theorem 3.6, and so is Mg by Theorem 3.7, Hencoforollary 1
of Theorem 3.8, Mgy X 8= ll1 VM, isa gamwold,

Qona D.

Corollary 2_._ If ll1 and llla are gammids, IIIA ll8 is a gammoid.

Proof, The result follows from the definition of matroid
intersection, Corollary 1 of Theorea 3.8 and Corollary 1 sbove.

JeEs D,



We now give some of the corresnonding simple results for (stro-gly’

base orderable matroids.
First we state the folloving obvious theorem s

Treorem 23,9, The coatraction, reduction and 3uil of a

(strongly) base orderable matroid 1s (strongly) base orderable,.

Theorem 3.9. Union of (strongly. base orderable matroids is

(strongly) base ordaerable.

Proof. We will prove the theorem for strongly base orderable

matrolds and omit the cage of base orderable matroids since its

proof i1g similar,

Let Ml’ Hg be strongly base orderable matroids and
M= Ml v M. Clearly it 1s sufficient for our purpose to considor
only the case where M has no coloops. Then by Corollary 1 of
Theorem 1,2 of Chapter 2 it follows that if b is any base of M,
b= bl J bg. where bl is a base of Hl and b2 is a bage of Hg.
Let bl, b? be two bases of M, with bl = b1 & b,' and
b2 = b 2 v b 2 her 1 2 re bases of nd b 1 b 2

y \J by'y where b;" 4 by " are ¥; and by By,
are bases of M, Since HI(MQ) is strongly base orderable ve
have a bijection fl(fg) from bll (bal) to hla(hag) such that
for any A S b1 (Dbt )y (02 UL (0) - 0)(Bg! U £(D)-D)))
is a base for "1("2) and

(bl8 UA-~- fl(A}) (( bga UDe~ f,(D)))-%s a base for M,(M,).

Let £ 1 b = b? be the bijection such that f/b > = £, /b0 = £,



Then if E C b*

(b} U £ (E) - E)

] ! i ! \ 1
= (b, UL, (ENDB)=-(EAD )T (D, UL I(EN b, ) = (E Nnb, ),

g-
and hence is a base of M. imilarly ne can show that b U B =f(R’
is a base of H,
-‘[‘I.E. Dl

The following Corollary is now obvious :

Corollary 1. If M, and M, are (strongly’ base orderable

H1 A M, 1s (strongly) base orderable,

Definition 3.17. A matroid Mon S is said to be minimal

non (strongly) base orderable iff
(1) M is not (strongly. base orderable, and

(2) every minor of Mon every T C S is (strongly) base

crderable.

Theorem 3.10. (1) Every minimal non base orderable matroid

is atomic of kind (2).

(2) Every minimal non strongly base orderable matroid is also
atomic of kind (%),

Proof. We prove only the Case (2) for minimal non-strongly

»

base orderable (m.n.s.b.) matroid, the other case (1) being

similar,



Let M be a2 m,n.s.b, matroid, Then there exist two bases
b1 and bq of M such that there exists no bijection f : bl -+ b,
for which b, Tf(A)-Aandb,UA~( (A) are bases for every
A =S hl. Hence 1t follows that M Y ( b1 U b? Y 1s non-strongly
base orderable, Therefore b, Ub,= 5. Since ¥ is a m.n.s. b.
matroid so must M° be by the use of Theorem 7,8, It can’
therefore be =zeen using the above afgument for M* that bl and hg

are disjoint bases,

Now let ™ ©€ S be suck that ¥ X T 1s a matroid of kind (?),
Clearly M, (S-T) is also a matrold of kind (2) and both M , T
and M., (S = T ) are strongly base orderable. o b N Ty
b, N T are bases of M X Tand b; N ( S=T ) , by N( 5~ T )
are basegs of M. ( S = T ). Hence there exist bijections
£, 15y, NT +byN Tand £, BN (S5=T)=+b,N(s-T )
such that for 111 A & b;N T, ((by N Y U fl(!\) - A ) and
((byn T) U A = £,(1)) are bases of ¥ X T and for all
DEd N(s5=-T)((bN (=TT £, (D) = D) and
(( bgn (s=T))U D= f.a(D)) are bases of M ., (8=-T),

Let £ bl - bq be the bijJection such that t/bln T= fl
and t/bln ( S-T) = fs » Then for all EE Db, (bl U £f(E) - ®)
and (b, T E - £(B)) are bases of M by Theorem T3. This
contradicts the fact that M is m.n,s.b, Hence M must be atomic
of kind (2).

QeE. D,



We state the following theorem due to Mason / Ma 4 _/
without proof.

Theorem 3.11. Tvery gammoid is a strongly base orderable

matr‘)i d.

We will now show that series connection is a special
case of the matroid union operation and dually, parallel

connaction 1s 3 special case of the mitrold intersection overation.

Theorem 3.12.  Let (M;sp)y (Myp) De two pointed matroids

on Sl’ s‘ respectively, with 54 N S2 = {p} « Let

2
( ﬁl’ p) L ( ﬁg, p ) 7 be the pointed matroid on S, U §, with
its contraction to 8,(8,) being (M,,p) L (Myp) 7 and with

(32-81) a (81-82) _/ as a set of loops. Then

87 (M5p)s (Mgep) 7 = ( Bysp) V (Hgp) o
Proof. Let 8/ ( Msp) » ( Myp) 7 = (Myp) .
(1) Let b be a base of (Myp) such that b 2 I'(M) f,e. p k b,
Then by Definition 2.3, b = b, U b, » where b, is a bage of
( ilp p ) and by is a bage of 742, P )» Hence b is 21 base of
(l.llap) v (ﬁg. Pl

(1) Let b be a base of (M,p) such that ( b =-p ) g I' (M)
i.e. p @ b. Then by Definition 3.3,b = p = b; W by wvhere
LY (by) is a base i ( ﬁlsp) VAR ﬁg'p) Jand by Up (bl Up )
is a base in ( iaap) L. ( ﬁli P )_7. "

Hence b is a base of (¥ sp) V (Hgp)e



Conversely let b be 1 base of (T&,p) V (Mosp)e Again we

coansider two cases,
(1) p X b. Then

b= blt:fbg y where hl is 12 base of ( ;’1' P ) and bg
is a base of ( K, p ). Heace by Definition 3.3, b @ I'(M),
(1i) pe€ b . Then

b

b, U Db, withp g b, say,

s

Then b, U b, - p belongs to 1°'* (M) by Definition 3,3 and hence

b 1is a base of (M,p).
Q.E.D.

Corollary 1. Series connection of pointed trangversal matroids

is a pointed transversal matreoid. -

Proof. This is a consequence of Theorem 3,12 and Theorenm 7.9,
QeEe D,

Corollary 2. Series connection of pointed gammoids is a

pointed gammoid,

Proof. This is a consequence of Theorems 3,12 and Coreollary 1

of Theorem 3.,7.
Qe E.D.

Corollary 3.  Series comnection of pointed (strongly) base

orderable matroids is a pointed (strongly) base orderadle matroid.

Proof, This is a consequence of Theorem 9.12 and Theorem 2,9.

'Q.E. Do



We state the followinz lemma due to Brylawski L- Bry 1 _7

without proof.

Lemma 2.1. Let (Mlyp).(lggp) be pointed matroiids defined on

Sy S.? resnectively such that Sl N S? = {p} ’

1

Then © £ (Mysp)y (Mpep) 7 = £7s £ Ctyap)™, () 777 .

Theorem 2,173, Let (ngp), (H,,,p) be two pointed matroids
defined on 51, S, Tespectively with 5, N S, = {p} . Let
( Ml.p) ya Ml,p) ./ be the pointed matroid which has
(Hl,p) A (Ma,p) _J as its contraction to 5y A ,_7 and
(84-8y) L (8,-84 Y Jas a set of coloops. Then
= =
P L (M sp)y (Maep) 7 = ( My 5 P A (Myop) &

Proof. The theorem follows from the definition of intersection

operation, Theorem 3.11 and Lemma 3.1l. 5
HOE. L

Corollary l. Parallel connection of pointed strict gammoids

is a pointed strict gammoid,

Proof. This is a consevence of Theorem 3.13 and Theorem 3.3.

QoEoDo

Cé'roihq 2. Parallel connection of pointed gammoids is a
pointed gammoid,

Ereofs This is a consequence of Theorem 3.13 and Corollary 2

of Theoren 3.7,
Q-EQDQ

L]



Corollary 3. Parallel connection of pointed (strongly)

base orderable matroids is a pointed (strongly) base orderable

matroid.

Proof. This 15 a consejyuence of Theorem 2,1% and Corollary 1

of Theorem 3.9,
Qo r:‘o D.

The following definition is due to Bixby / Bix 1_/.

Definition 3.18, Let ¥ be a matrold on S, ¥ is decomposable

1ff there exist pointed mitroids (Ml,p), (Hq,p) on sets §,,5,
respectively, |[S;]| » 181 234 5, N 8y = {p} such that,
1t P L (M ap)y (Mgop) 7 = ( Mgy P) then

M= "3 X ( 8, o Sy = P Y o or eguivalently,
1£ 3L (Mpp)y (Myep) 7 = ( Moy p) then

M= ﬂ‘-( 8 U8,-p ) .

Definition 3.18. Let M be a matroid on S and let R U T = 8§,
Let ¢ be the rink fuaction of M, We define f (M} R,T) as

g(u;a,r)-t(n)-&!(r)-r(u)+1

and A(M) as

NM) = inf  F (M3 R,T) , where the infimum is taken with
respect to sets R and T satisfying the following conditions
RYTssg and QR)+ &T) - [R] ¢ P(M) -1

QR) + &(T) = [T] < r(M) -1 ,



with the convention that sp( M3, S) = ¢ o
M 1s saild to be n-connected (where n is a positive integer )
if A (M) > n,

The above definition is due to Tutte 7/~ Tu 1o _/.

The following theorems due to Bixby £~ 3ix 1 _/ are

gtated here without proof,

Theorem 3.14. Let M be a matroid on S, Then M is not

R-connected iff M is decomposable or M has a separator T c 3,

Theorem 3,185, Let (Hl. Pl ( Mg,p) be pointed matroids on

sets 8, and 8, respectively vith 5, N S, = {p} , and
|81] » ISg] 2 3. Let ( Myp) = 52 (M) (Mosp) 7

and let H-Ks.(SIUS'z-p).

Let C be a eircult of i such that C N Sy 9% ¢ and
cC N 82 wnk ¢ andlotdecnsl ’ recnsq. Then there
exists an isomorphism o=, from My to MX (s UC), (s, UL )
such that Lt (p) = f and an isomorphism g from M, to
HX(8,UC ) ( Sg U 4) such that o=, (p) = d,

We are now in a position to prove the following simple
result,

Theorem 3.16, Let ¢/ be a class of matroids closed under
the operations of matroid union, contraction and reduction,
apnd additi f loops and coloops,

Lc% tﬁo utgglg M onps %- a minimal nonemember of M (1.6,

HkmbntirnlonT.CSI.saninorofH,nguﬂ). Then

~



M is 3=-connected,

Proof. Let M be a minimal non-member of ¢ . If M is not

n-connected, M either (1) has a separator T C S or (2) M can

be arnressed as

M= M, . (5 USy-F ) where [5;] 4 [5,] > 3

]

and  (Mysp) = 5 £ (My0p) » Cgep) 7

If ¥ has a separator TC S it 1s easy to see that

M= ( MXT)V{MXC(sT),e But M X Ty M X (S=T) are members
of eM by the minimality of M. Hence M is a member of oM since
oY 1s closed under matroid union. This is a coantradiction,

Hence M has no separator T € S, Hence Case (2) holds i.e.

M=M, . (5 U8,-p )y where M,y &+ 84y are as definad
above, By Theorem 3.15 it is clear that “1 and H, are

i somorphic to minors of M defined on proper subsets of 5 and
hence by the minimality of M are members of ¢/, But then

Ml v l(g 1s a member of ¢/f, (l"ll, Fla defined as in Theorem

'!,12}.

Now by Theorem .12, M, = 'i'll v ia . Since «Af is
closed under contraction and reduction it follows that
u-na.(sltlsa-p)uunnberofv‘f. This is a

contradiction., We, therefore, conclude that lll is S-connected.

Qo E.D.



Corollary 1. Minimal non-gammolds and minimal non-(strongly)

bige orderable matroids are 2econnected,

Procf, The result followe from Theoorem 3,16, Corollary 1 of

Theorem 3.5, Corollary 1 of Theorem 2,7, Theoremr 2.8 and
Theorem 3.19.

‘€ e | D.

Series Parallel Netwvorks :

ve define serles -~ paraliel networks sli;htly different
from/” Bry 1 _/. Our aim here i= to give a definition which
corregponds exactly to the definition of series « parallel

networks given in / Ses 1 _7,

Definition 3.20. Let ( Cg,p) be the pointed mtroid on ’

[d,p} such that {d,pf is a eircuit, Let T ( Cg.p) be the
class of all pointed matroids obtained by repeated application
of the series or parallel connection operations on pointed

Matroids each of which is isomorphic %o ( C.a.p).

A matroid is a series - parallel network 1ff it is a
connected minor of a matroid M, such that the pointed matroid

(Mp) € T ( Cpoup Do

It 1s clear that ( Cp p) 1s a pointed gammoid since it
obviously is a pointed transversal matroid. Also by Corollary 2
of Theorem 3.12 and Corollary 2 of Theorem 3.13 series or

parallel connection of pointed ganmids is 2 pointed gammoid,



We, therefore, have the following theorem s

Theorem 3.17.  The class T ( Cqip) is contained in the class
of pointed gammoids. '

But every minor of a gammoid is a ganmid, H'aneb

Theorem 2.18, kvery serios-parallel netwvork is a gammoid,

Let K denote the polygon Iltrold of the ecomplete trlnpl_:
on 4 nodes., We nov state the toumdﬁ ‘well known z;uults
vithout proof.

Leams 3.2. ¢ Bryl_J. A matroid s a series-parallel network

1££ 1t 1s bloary and does mot contain K, as a minor,

Lesma 3.3 " M 4_7. K, 1is not base-orderable and hence
not a gammoid. ' ?

Lemma 3.4. No base orderable matroid can eontain 14 as & nipor..

Proof. This is a consequence of Leama 2.9 and Theoream 3.8,

Q.E.D,

Theoren 3.19. Every binary base orderadle matroid is

series-parallel network,

Proof., This is a conseqiience of Lemma 2.9 and Lemma 3.4.
Qe®eDe

Theorem 3.20. A binary matroid is s gammoid “t it is a
series-parallel network.



Proof. This is a conseguence of Theorem 9.11, Theorem 3.18

and Theorem 3,19,

‘D..F.D.
Theorem 3,2, The classes of binary gam oids, binary (strongly)

base orderable matroids ani geries-parallel networks are

identical.

Proof. This is 1 conseyuence of Theorem 3.11, Theorem 3.19
G e

and Theorem 3.20.
Q.E ® D-

That (strongly) base orderable matroids and series -
parallel networks are identical is proved in £ B0 1 _/ and
(" Des 1 _]. The result for binary gammoids and the proof

for the above result are new,

P-segquences of Series and Parallel Con_ueetiom

Definition 3.22. Let M, "a be matroids on 81 8,

respectively where sln 8a = ¢ Then the direct sum H1 @ ll(9
is thoutroidusonslﬂﬂs such tnatuaxsi-ui (1 =1,2)
and 81 are separators of llal.

Definition 3.27. Let K, My be matroids on 8, 8y
(31 N 8By = 0) respectively., Let

1y ® S | 1
"’1 have the P-seguence {Pi } = Pl 3 oo lf'u

i=] |



' 2) ® 2 o
He have the P-sejuence {PJ } = Pl ) ooe P‘ .

J=1
Let ? be the function on the class of subsgets

~ l

ol

follows

1 1

2 (P )="[“1x(k21pk1)“’11

J for all
1e {1,2...a}.

b

2 - 1l 2

f(P,2)mdal MyX( U PY ). PZ 7 forall
J‘ ) L qs]_ q d 3

J 8{1'2 os e .} L
Let the range of § be {"1 ’ "2 coe o }, the 0(1 being
arranged in descending order.
' [
Lat{Pi} = Pl’ P2 see P' be the sejuence of sets
i=]l
obtained by defining for every i € {1.3 coey s} s P, to be

the union of all sets T from the P=sequence of "1 and HQ such
that £ (T) = oy .

Then we denote the sequence of sets
. ' " - 0 -
{7y} by {’1 } ® {Pi }
is] i=1 im]

The following theorem is an easy eonhequ.aec of l‘hooron 1.6 and
Theorem 3.7 of Chapter 2.



Theorem 3.%2°. Let “1’ H2 be matroids on sets SI’S!’.

resnectively, where 5, /N S5, = G

Let M, have fhe P-sejuence {Pil} and
i=]
_ - m
M, have the Pmsejuence {Pi } .
i=]

n m
Then Ml. @ ¥, has the P-seque:ce _§P11} @{Pig} .
| | i=] i=]

We now describe, partially, the P-seguence of the series
and parallel connections of two matroids in terms of the

P-sequences of these matroiis, through Theorem 3.%2.

Theorem 3.23. Let ( Hl.p) y H?,p) be pointed matroids

on gets Sl. 82 respectively such that 81 N 88 - {p} .

Let(HatD)SSL- (ngp) y H,_lP)J -

Let t be the least positive integer such that

pXa (M )rana phrOnt)

1 1 1

Let Py Py eee Pr be the P-sequence of the matroid

[ulxu(ul")j@ [ugxt(u;)_? .

Then if Pl’ l’g eve Pn is the P-sequence of 143. ve have

) § 1
Pl = Pl 9 ese Pr = Pr ®



Proof. Ve define ( il' P ) and ( ﬁ, s+ P ) as in Theorem

?.12, Then for all positive integers j we have

3
- - - J
(M) = 7 Wy VEy 7 = (B VR, )

HCOCO,
WA RIS E-N WA E St A NV & A,

Let
'rl'-'w(Mlt) s T?-A(M;)

Then it follows from the above that

Aty o, L

Now since p § Ty U T, 1t is not difficult to see that

2

usx('rlu'.rg)-(nl'xrl)@ (M, XT,) .
By using Theorem 1.8 of Chapter 2 it follovs that
ACus’x(rlura)_?-a[ul’xtljtn[ua-’xr,_]
for every positive integer J.
Hence
WAl AS YRR ERIERVAS A NSA NVa Al X A0S



But by Lemma 6,1 of Chapter 2,
VWl AL IR R E I E-R Wl
M, 19 %9 = 9 i

Hence

vty 2 o1,

t
andthua\(!a )-TIUT?.

The theorem is now immediate from Corollary 1 of Theorem °.6,

of Chapter 2 taking note of the fact that
My X (T TTy )= (M X1 )@ (MyxT, ).

Q.E.D,

- Since

&= - '!
P L)y (Mpepd7 = L8 L e 5 (g™ 7 7
ve have the following obvious Corollary

Corollary 1. Let (M, 4p)y (Myp) be pointed matroids on

sets 5,» 8, respectively such that S; N S, = {p} .

Let (Mo p )=P L (Msp )y (M D )./

and let (My0p)% = (Mep)y (Mgep)® = (Mgy p ).

‘Let t be the least positive integer such that

pkh(ﬂ‘t) and pk&(ﬂst_)'.



Let Pll, qu coe Prl be the P-sequence of the matroid
4‘u4xa(uut)_7@[usxu(n5t)_7

Then 1if P1. PQ i Pn is the Pegsejuence of !4q ve have

S - 1
Pn-ﬂl - Pr LN N Pn = Pl [ ]



CONCLUSION

This thesis is concerned with certain fundamental
problems in Network 1nalyais and with the problems together
with their extensions that these have givea rige to in

matroid theory.

Chapter 1 gives a falirly rigorous and gself-contained
deseription of Kron's Diakoptics for electrical networks,
Also given is 2 new method of Network Analysis which can be
looked upon as a natural complement to Kron's theory.

Chapter 1 also serves to highlight a fundamental
problem in Network Analysis viz. that of construeting a
partition for a graph (matroid) that eorroiponds to the
'topological degroe of freedom' or ‘hybrid rank' of the graph
(matroid). One such partition is Kishi-Kajitani's *'Prinecipal
Partition', Chapter 2 is eoncerned with a certain natural
extension of the 'Principal Partition' for a matroid, that can
be regarded in a sense as the finest possible. Our treatment
is based almost completely on the matroid union thecrem of
Edoonds and Nashwilliams,

Chapter 3 deal with applications of the matroid union
theorem to transversal matroids, gammoids snd base orderadle

matroids,



Areas for Future Dovelognent

It would be interesting to carry out a systeuafic atudy
of atomic matroids, especlally with respect to subsets of a
set S invariant under the automorphiams of an atomic matroid
on S, This would be of great use in developing reasonably
efficient algorithms (at least for some speciil cases) fo;
generating all the invariant sets of 3 matroid. In this

context we make the following conjecture 3

Conjecture

-Let M be a2 matroid on S, Let Plg P2 cas Pn be subsets
of S such that

(1) P, UPg  eee UP, = 8

(2) MX U© P1 " PJ is a totally symmetric matroid (i.e. the
j2J

only set invariant under its automorphisms is Pj) for every
J E{l,a ses n}' and every j E J.

Then, if T € B invariant under the automorphisms of N,
T= U P, where K 1is some subset of {1.8 ose n} .
tex 1
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R E 8 U X B

This thesis is concerned with certain fundamental problems
in Network Analysis and their extensions to matroid theory. The
probleas in Network Analysis that we have dealt with are conan;ed
with efficient methods of solving electrical networks, Tho'
related problem in matroid theory is to construct a partition, |
for -any general matroid, that corresponds to the hybrid rank of
the matroid. Such a partition is the 'Principal Partition' of
Kishi and Kajitani. One of our main aims in this thesis has
been to construct the finest possible natural refinement of
this partition and study in detail its relation to the matroid
union theorem (of BEdmonds and Nashwilliams). %The ultimate
piices into which we breask up a matroid in this manner are
called "tonio' matroids in this thesis, 8ince our partition ,
i1z invariant under automorphisms of the matroid and can be easily
manipulated theorstically, (see for instance Section 8 of
" Chapter 2) a study of the invariant sets of an ‘atomic' matroid
should throw -ol;'light on the invariant sets of any general
matroid. This may be one of the themes for future work.

In a separate chapter ve have explored ipplieationa of
the matroid union theorem to other branches of matroid theory
such as the theory of transversals, gammoids and base orderable
matroids.



