
Background 

 

Electrophoretic experiments on Polyelectrolytes (PEs) are of great importance in the field of molecular 

dynamics. The studies can be extrapolated and techniques can be applied to protein folding, DNA 

separation, molecular separation, etc. which are very crucial inputs to more complex technologies.  For 

example, molecular separation is a key technology for future miniature devices. 

 

 

Algorithm by Netz 

 

The paper by Netz [1] assumes presence of both, PE monomers and counterions, and a strong coupling 

between the two. It analyzes both the static (zero electric field) and dynamic (non-zero electric field) 

non-equilibrium behaviors of the PE sequence and develops scaling arguments for both. The PE 

monomers and counterions condense together in the former case while the PE aligns along the direction 

of electric field in the latter. 

 

The experimental set-up consists of a single PE with N monomers in a cubical box of length L along with 

N oppositely charged counterions of the same valency (q) and unity radius. The box volume L
3
 

corresponds to the inverse PE concentration and plays an important role. The position Langevin 

equation is discretized over time step ∆ to determine the velocity (r) of the i
th

 particle at any discrete 

time instance t: 

ri((t/∆)+1) = ri(t/∆) - µo∇riU(t/∆) + µoqeSiEf + √6 ҃µ҃o ҃ξ ҃i҃( ҃t҄/ ҃∆ ҃) ҃  , where 

 

µo – bare particle mobility 

U – dimensionless (i.e. scalar) potential energy 

e – single coulomb’s charge 

S – +/-1 for Monomers/Counterions respectively 

Ef – Applied electric field 

ξ҃i – Vectorial random force with unit variance, acting on the i
th

 particle   

 

The dimension-less potential energy has several contributions: U = Unn + ULJ + UC, where 

 

Unn = Connectivity component of potential energy 

ULJ = Lennard Jonnes component of potential energy 

UC = Coulombic component of potential energy 

 

The connectivity of the PE is ensured by Unn = KΣ(i,j)(|ri-rj|-2)
2
 where the sum runs over nearest neighbors 

of the PE chain only. The bond stiffness is K=100 which gives a very narrow distribution of bond lengths. 

 

Collapse of counterions and charged monomers is prevented by a truncated Lennard-Jones term acting 

between all particles in the simulation: ULJ = ϵΣ(i<j)((2
12

/(ri-rj)
12

)-(2
7
/(ri-rj)

6
)+1) used for separation |ri-rj|<2 

only with an energy parameter ϵ=1. 

 

The coulombic part is Uc = ΞΣ(i<j)(SiSj/|ri-rj|), where Ξ=q
2
lB is the coupling strength and measures the ratio 

of the coulombic interaction and the thermal energy at a typical distance lB which is the Bjerrum length 

in water. 

 



Equilibration takes roughly 10
6
 time steps and therefore simulations are run for at least 10

7
 time steps. 

 

In the absence of electric field and presence of a very small coupling between the monomers and 

counterions, the PE sequence resembles a neutral polymer since the electrostatic repulsion between 

monomers is very small. As the coupling increases, the monomer-monomer repulsion leads to a more 

swollen configuration (the standard PE effect). However, as the coupling further increases, counterions 

condense on the PE, decrease the repulsion between monomers and the PE starts to shrink. Finally, at 

very large electrostatic coupling, the PE is collapsed to a close-packed, almost charge-neutral 

condensate which contains most of its counterions. 

 

When the PE is subjected to external electric field, the electric field induces motion in monomers and 

counterions, thus dissipating energy and causing a nonequilibrium situation. The simulations in the 

paper show that linear-response theory describes the induced dipole moment of a condensed PE 

globule in an electric field quantitatively up to a critical field strength at which the PE unfolds and 

orients in the direction of the field. This nonequilibrium unfolding transition occurs at a polarization 

energy equivalent to approximately thermal energy. 

 

The Langevin Equation is decomposed (∇ operator) into three components (viz. X, Y and Z) in order to 

calculate the potential energies of each particle in three directions. These energies are then used to 

update the three co-ordinates of each particle at the end of every time-step. Eg., for the x xo-ordinate: 

 

Unn-x = KΣ(i,j)[-2 *(|xi-xj|)*(|ri-rj|-2)/ (|ri-rj|)] 

ULJ-x = ϵΣ(i<j)[3* (|xi-xj|)*((2
14

/|ri-rj|
14

)-( 2
8
/|ri-rj|

8
))] 

UC-x = ΞΣ(i<j) [Si*Sj*|xi-xj|/|ri-rj|
3
] 

Xi-updated = µo*(Unn-x + ULJ-x + UC-x + Gaussian-Noise + Ef*qi) (Assuming, Ef is applied in the x-direction) 

 

The integrated Langevin equation itself is used to compute the net potential energy of individual 

particles. Energies of all particles add up to give the total energy of the system at the end of every time-

step. 

 

TEi = Σn(Unn + ULJ + UC). 

 

Fig.1 summarizes the algorithm in [1] for every time-step. The same is repeated for 10
6
- 10

7 
time steps. 

The per time-step procedure can be divided into 4 major parts with time complexities of the order of 

O(N), O(N
2
), O(N

2
) and O(N) respectively. The insignificant 5

th
 part comprises of miscellanious tasks like 

file reading, memory allocations, writing outputs to the file, etc. Fig.2 shows the computational intensity 

of the 5 parts for a PE of length 256 over 10
3
 time-steps. Though both parts 2 and 3 execute particle-

particle simulation, part 2 takes much more time owing to more complex mathematical functions and 

extra computations coming from branching to check |ri-rj|<2. The 4 parts constitute almost 100% of the 

running time while parts 2 & 3 consume close to 90% of the running time justifying the need for 

parallelization. The algorithm is a good candidate for parallelization on many-cores because of it’s 

largely SIMD nature (in a single time-step, every particle can be computed upon independently) and 

typically high input size. GPU becomes an obvious choice because of the availability of large number of 

processing cores. A parallel implementation (as explained in the sections ahead) was done on Nvidia’s 

GTX280 GPU with frequency =1296MHz of the unified processors. 



 



 
 

 

Parallelizing on the GPU 

 

The system of PE under study is very data-parallel for 2N particles. The CUDA implementation can be 

designed to evenly distribute work among threads such that each thread accesses only one particle and 

thus most computations can be performed inside a single kernel without the need of any global 

synchronization. However, this cannot happen due to practical considerations. 

 

In order to take advantage of the many-cores on the GPU, the algorithm in [1] needs to be analyzed for 

parallelizing.  

 

COMPUTATIONS: 

The updated co-ordinates at the end of a time-step become the input to the next time-step. Thus strict 

data-dependency exists between successive time-steps. Within a time-step, the following need to be 

computed and can be parallelized in the following way: 

 

1. Connectivity component of potential energy of every monomer, in the X, Y and Z directions, 

needs to be computed using decomposed Langevin equation. Though every monomer interacts 

with its neighboring particles for this computation, it can be calculated independently for every 

monomer though input data of the neighboring monomers needs to be available. Thus, as many 

number of threads as the number of monomers may be launched to perform the computation 

in parallel. 

2. Computation of the net connectivity component of potential energy for every monomer using 

the Langevin equation. It can be calculated independently for every monomer though input data 

of the neighboring monomers needs to be available. Thus, as many number of threads as the 

number of monomers may be launched to perform the computation in parallel. 

3. Lennard-Jonnes component of the potential energy, of monomers and counterions, in the X, Y 

and Z directions, needs to be computed using decomposed Langevin equation. Though every 



particle interacts with every other particle, it can be calculated independently for every particle 

though input data of other particles needs to be available. Thus, as many number of threads as 

the total number of monomers and counterions may be launched to perform the computation 

in parallel. 

4. Computation of the net Lennard Jonnes component of potential energy for every particle using 

the Langevin equation. It can be calculated independently for every particle though input data 

of the neighboring particles needs to be available. Thus, as many number of threads as the total 

number of monomers and counterions may be launched to perform the computation in parallel. 

5. Coulombic component of the potential energy, of monomers and counterions, in the X, Y and Z 

directions, needs to be computed using decomposed Langevin equation. Though every particle 

interacts with every other particle, it can be calculated independently for every particle though 

input data of other particles needs to be available. Thus, as many number of threads as the total 

number of monomers and counterions may be launched to perform the computation in parallel. 

6. Computation of the net Coulombic component of potential energy for every particle using the 

Langevin equation. It can be calculated independently for every particle though input data of 

the neighboring particles needs to be available. Thus, as many number of threads as the total 

number of monomers and counterions may be launched to perform the computation in parallel. 

7. Updating co-ordinates of each monomer and counterion in the X, Y and Z directions. It can be 

done independently for every particle. Thus, as many number of threads as the total number of 

monomers and counterions may be launched to perform the computation in parallel. 

8. Total potential energy of each particle is computed by adding up net Connectivity, Lennard-

Jonnes and Coulombic components of potential energies for that particle. It can be done 

independently for every particle. Thus, as many number of threads as the total number of 

monomers and counterions may be launched to perform the computation in parallel. 

9. Total energy of the system = sum total of net potential energies of all the particles. This can be 

computed only in series since threads for different particles cannot write simultaneously to a 

single variable. 

 

MEMORY: 

In the brute-force method, for 2N particles (N monomers and N counterions), a lot of memory would be 

required to store the inputs, intermediate data and the output.  

 

1. 2N input elements need 6N storage to store co-ordinates of each particle in X, Y and Z 

directions. 

2. 2N input elements need 6N storage to store the Connectivity of potential energy of each particle 

in the X, Y and Z directions. 

3. 2N input elements need 6N storage to store the Lennard-Jonnes component of potential energy 

of each particle in the X, Y and Z directions. 

4. 2N input elements need 6N storage to store the Coulombic component of potential energy of 

each particle in the X, Y and Z directions. 

5. 2N input elements need 6N storage to store the net Connectivity, Lennard-Jonnes and 

Coulombic components of potential energy of each particle. 

6. 2N output elements need 6N storage to store co-ordinates of each particle in X, Y and Z 

directions.  

7. 2N output elements need 2N storage to store total energy of each particle. 

 

Thus, it would require 38N storage for a system of 2N particles. A system of 1000 PEs (i.e. 1000 N) will 

need storage for 38000 elements of 4 bytes each (assuming single precision floating point data) i.e. 



149KB of storage space. A GTX 280 with <= 1GB of global memory space will thus allow a computation 

(between two sets of data-transfers between host and device) on a maximum of 7061 monomers. The 

scalability and efficiency of this design can be improved by re-using memory for storage.  

 

MEMORY RE-USE: 

 

1. 2N input elements need 6N storage to store co-ordinates in X, Y and Z directions. At the end of 

every time-step, X, Y and Z co-ordinates of every particle need to be updated and then fed as 

input to the next time-step. Once the output of one time-step is computed, the input is no more 

required. Thus, the ouput can easily replace the input itself. Thus only 6N storage is sufficient to 

stote the input and output co-ordinates in X, Y and Z directions. 

2. 2N input elements need 6N storage to store the Coulombic component of potential energy of 

each particle in the X, Y and Z directions. Lennard-Jones component and Connectivity of 

potential energy of each particle in the X, Y and Z directions can be added to the same 

respective location if calculated one after the other. Thus only 6N storage would be required to 

store the intermediate results of potential energy in each direction.  

3. 2N elements need 2N storage to store total energy of each particle. The 3 components of the 

total potential energy viz. Connectivity, Lennard-Jonnes and Coulombic, can be added to the 

same location. 

 

Thus, a requirement of 38N storage is reduced to 14N making the system available for over 18900 

monomers in one go. 

 

Based on the above parallelizing and memory considerations, the algorithm has been implemented on a 

GPU using CUDA in the following way: 

 

Computations 1, 3 and 5 above are mapped on the GPU over three kernels (kernels 1, 2 and 3 

respectively). Computations 2, 4 and 6 can be clubbed with the computations 1, 3 and 5 above because 

of similar computational requirement. Computations 1-2 and 3-6 are kept in separate kernels since one 

set requires N threads (for N monomers) while the other set requires 2N threads (for N monomers and 

for N counterions). Theoretically, computations 3 to 6 can be clubbed in a single kernel. But in order to 

re-use the memory to store the outputs of these computations (as suggested in step-2 of memory re-

use), synchronized read-after-write is required between computations 3 and 5. Hence, these steps are 

split into separate kernels. We would naturally think of clubbing computations 3 and 4 in kernel-2. 

However, since computations 4 and 6 share a lot of operations, they are clubbed with computation 5 in 

kernel-3. In order to re-use memory as suggested in step-3 of memory re-use, computation 8 is split into 

three parts, viz. for Connectivity, Lennard-Jonnes and Coulombic components, executed in kernels 1, 2 

and 3 respectively. The results of each of these sub-computations are stored in the same location as the 

net potential energy of each particle. Computation 7 is carried out in a 4
th

 kernel to ensure synchronized 

read-after-write after all the energy components are calculated in kernels 1, 2 and 3. Computation 9, if 

computed on GPU, would have required reduction addition in either the same kernel or multiple kernels 

causing a lot of resource wastage or overhead respectively. Instead, since a lot of host-device bandwidth 

is available (along with transfering updated co-ordinates back to the host), the array storing total 

energies of all particles is also sent back to the host. These energies are then added in series on the CPU 

to give the total energy of the system. 

 

Fig.3 summarizes the GPU implementation of algorithm in [1] for every time-step. 

 



 



Optimizations 

 

Fig.4 shows profiling of the un-optimized CUDA implementation. The counter values have been shown 

as percentage contributors to the total time on the GPU. As is seen, gld32, gst32 and gld64 constitute 

97% of the time with more than 87% of it spent in kernel-3 alone. Memory read (gld) is close to 87% of 

all memory accesses for obvious reasons. Fig.4 when compared to fig.2, it is seen that kernel-2 and 

kernel-3 times almost reverse from serial to parallel implementation. This is because of three-fold 

reasons. One, the net Lennard-Jonnes component’ calculation has been moved to kernel-3 in the 

parallel implementation. The branching in kernel-3 is far more than in kernel-2. Kernel-2 uses many 

more registers, leading to faster access, and reduced global memory access compared to kernel-3. 

 

 
 

The implementation was not required to be a much optimized one. Hence only some basic optimizations 

have been carried out towards memory accesses. They are explained ahead. Few other optimizations 

that can be carried out in future have also been discussed ahead. Optimizations not applicable have also 

been mentioned. The following discussion follows the recommendations in ch.5 of [2]. 

 

Maximize Memory Throughput 

 

The obvious optimization is to use a low-access-latency memory like shared memory. However, most of 

the computations in [1] being massively independent and parallel, most threads need only self data. 

Hence, use of registers to store repeatedly used thread-specific inputs/intermediate results/outputs, is a 

faster option than using shared memory. Hence, in all the four kernels, all repeatedly used inputs, 

intermediate results and outputs are deliberately stored into thread-personal registers. The register 

usage rises by 31% giving an approximately 17% rise in the speed-up for a range of input sizes. 

 



In the kernels 2 and 3 based on particle-particle (n-body) simulation, limited use of shared memory has 

been made. Input data of a certain number (multiple of block-size) of particles is pulled into shared 

memory. Each thread of the block (i.e. each particle of the block) computes interaction with each of 

these particles in the shared memory. Once done, next set of particles are pulled into shared memory 

and so on. The percentage of particles (monomers and counterions) that can be pulled into shared 

memory per block decides the benefit gained. As in the current implementation, because of increased 

register usage, only 64 particles are being pulled into shared memory per block. Hence, performance 

benefit for smaller input sizes is good while for larger input sizes is negligible. Also, the register usage 

rises by an additional 7% giving an approximately 4% additional rise in the speed-up for a range of input 

sizes. 

 

A comparison was made between two schemes: one with reduced registers and increased number of 

particles in shared-memory and the other with increased registers and reduced particles (64 per block) 

in shared memory. The latter scheme out performed the former because registers being faster-access’ 

than shared memory. Hence the latter has been retained. This scheme resulted in 2 to 5% rise in speed-

up depending on the input size. Also, profiler results show negligible serializatin suggesting correct use 

of shared memory in the implementation. 

 

Another basic optimization, that has been implemented, is to limit the input and output data exchanged 

between the host and the device. Only the initial positions of the monomers and counterions (only at 

the begining of the first iteration) are sent on to the device as input. After all the required time-steps, 

only the net potential energies of individual particles are sent back to the host as output. 

 

The effective bandwidth for the unoptimized version for say N=4096 for 10
3
 iterations will be = 

(2*4*2*4096*4*10*1000)/(10
9
*9.61) = 0.273 GB/s and for the optimized version will be 

(2*4*2*4096*4*10*1000)/(10
9
*8.08) = 0.324 GB/s. Thus an improvement in the effective bandwidth is 

achieved. 

  

Yet another obvious optimization (not implemented) is using built-in vector type like float3 or float 4 to 

store x, y and z co-ordinates and charge (wherever required) of every particle. This would have 

maximized 128 byte accesses reducing the net number of memory accesses. However, the resultant 

achievement can’t be commented upon till it is implemented and measured. 

 

Constant memory can be used to store certain initially defined constant parameters. However, resultant 

increase in use of static shared memory (for kernel arguments) needs to be balanced. Texture memory 

cannot be used since inputs are over-written by outputs, at the end of every time-step, in order to re-

use memory. No input needs to be retained for more than a time-step. 

 

Maximization of Utilization 

 

The implementation is divided into strictly serial kernels in order to be able to re-use memory. Hence 

using asynchronous function calls is not possible. Time-steps being strictly data-dependent, streams of 

kernels cannot be launched.  

 

A block-size of 32 has been frozen based on experimentation with many block-sizes (all multiples of 

warp-size). With the block-size of 32, the GPU SMs remain under-utilized till a certain size of input. It 

was observed that the speed-up stagnated only beyond 8192 threads i.e. atleast 8192 threads were 

needed to exploit the GPU completely. This would mean atleast 8 blocks or 8 warps (since here block-



size = warp-size) per SM, on GTX280, are required to take care of scheduling for latencies and 

synchronization barriers. With the amount of global memory accesses and data-dependency between 

subsequent instructions in the implementation, it is slightly higher than the typical figure of 6 warps per 

SM. 

 

Because of high usage of registers and small block-size, the occupancy in all the four kernels of the 

unoptimized implementation is only 25%. This further reduces as we deliberately increase the number 

of registers. The discussion of occupancy involves an important learning particular to this kind of 

programs. With a block-size of 32, the occupancy is limited by maximum number of active blocks per SM 

while the number of active warps per SM stays much below the maximum physical limit of 32 for 

GTX280. If the block-size was doubled to 64, the occupancy would double to 50% while the number of 

active warps per SM still stays below the maximum physical limit of 32. But surprisingly a block-size of 

32 gives higher speed than 64 for all input sizes. Why so? Especially in an implementation suffering from 

memory accesses, one would expect increased occupancy to increase performance. Why is the outcome 

not as expected?  

 

The reason is “low arithmetic intensity of the program”. It is difficult to calculate this ratio from the 

definition in [2].  

 

The alternate definition could be the number of operations performed per word of memory transferred. 

This can be roughly approximated from the profiler counters as the ratio of instruction throughput to 

global memory overall throughput. It should be noted that instruction throughput will be quite higher 

than floating point operation throughput (FLOPS). Hence this ratio will be slightly higher than even the 

peak arithmetic intensity. The average ratio for all the four kernels for N=4096 and 10
3
 iterationsranged 

from 0.38 for the unoptimized version to 1.11 for the fully optimized version, which is very low. Suppose 

the number of warps is increased under the general assumption that scheduling of warps will hide the 

memory access latency. But because of the low arithmetic intensity, each new warp scheduled will soon 

stall at memory access. Thus scheduling overhead will take over latency hiding giving increased times of 

computations. Hence, block-size of 32 works better than 64. Experimenting with 32 active warps per SM 

(maximum limit) would have been interesting. Unfortunately that is not possible with the high register 

usage in the program. 

 

Maximize Instruction Throughput 

 

With the minimal optimizations implemented, a good increase in the instruction throughput is achieved. 

This can be measured from the profiler. Also the arithmetic intensity, by the above definition rises, has 

risen. 

  

Routine optimizations for arithmetic instructions (viz. using i>>log2n for (i/n), i<<log2n for (i*n), and 

(i&(n-1)) for (i%n), when n is a power of 2) have been implemented. 

 

For upto 10
7
 time-steps, the single precision CUDA implementation results match with single precision 

CPU results till only upto 10
-2

. However, since the visualization of the results match we can safely 

assume that higher accuracy is not needed. Instruction throughput with single precision is certainly 

higher than that with double precision. Also, fast math options cannot be availed due to already reduced 

precision. 

 



Limited warp-divergence (resulting from control flow) is unavoidable due to the nature of the algorithm. 

Thankfully it forms less than even 1% of the GPU time (ref fig.4) else unrolling of loops can be 

experimented with. 

 

Since the overall occupancy is low, another suggestion is to optimize by exploiting instruction level 

parallelism by taking inspiration from [5]. 

 

 

Parallelizing on Multi-core X86 processor 

For inputs of smaller sizes to the explained CUDA implementation, the GPU remained under-utilized 

giving poor GFLOPS. Hence the algorithm was also implemented on an Intel i7 2.67GHz CPU (4 cores + 

hyperthreading) using POSIX.  

 

The implementation remained the same as the CUDA implementation with the following difference: 

1. Kernel killing was not required to be replaced with equivalent global synchronization barrier in 

POSIX. Re-use of memory location is not perceived as read-after-write as in CUDA. 

2. Updating positions at the end of every time-step requires ensuring that all energy computations 

were over. Similarly, beginning a new time-step requires ensuring that all particle-positions are 

updated at the end of the previous time-step. Hence a global synchronization barrier 

(pthread_barrier_wait) was used at the beginning and end of the calculation for updating positions. 

3. After experimentation, the optimum number of POSIX threads, for the implementation, was 

confirmed to be 8. It concurs with underlying architecture of 4 cores supporting hyperthreading i.e. 

4x2 = 8 virtual cores. 

 

 

Results 

There being strict data-dependency. Only per time-step computations are moved to the GPU at a time 

 

Fig.5 shows the speed-up results with both GPU and multi-core for 1000 iterations: 

 

 



As is visible from fig.5, the multi-core cannot exploit the data-parallelism as well as the GPU. Since time-

steps are data-dependent, the speed-up remains constant for higher number of time-steps than 1000.  

 

Another metric to evaluate performance is GFLOPS. The following assumptions were followed while 

calculating the number of floating-point operations (FLOPs): 

• Addition, Subtraction, Multiplication and Division were all taken as one FLOP each. 

• All complex math-functions were taken as one FLOP each (though in practice, they are over one 

FLOP in a lot of cases). 

• Since the implementation involves a lot of comparison operations, they couldn’t have been 

ignored. It was found from CUDA literature that one comparison takes 1/4
th

 the number of 

clock-cycles as required for a FLOP. Hence each comparison operation was considered as 

0.25FLOP. 

• For if-else statement, FLOPs were computed for the part which would be encountered by 

maximum number of threads. In case of no clarity about that, the one with maximum FLOPs was 

considered. 

• FLOPs under an ‘if’ condition were also considered, thus giving peak FLOPs.  

• All other operations were ignored. 

 

With the above assumptions, the total GFLOPS for the implementation were calculated to be 23.49 for 

the un-optimized version and 28.14 for the optimized version. Kernel-2 implements pure n-body 

simulations with complex math functions. The GFLOPs for kernel-2 were calculated to be 314.23 which 

can be considered better than in [4] owing to complexity of math involved. 

 

Thus GPU was a good choice for parallelizing [1]. 
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