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FIELD OF THE INVENTION

The present invention relates to error control  coding.  Particularly  the invention provides error 

correction codes derived from projective geometry based graphs. More particularly the invention 

provides  method  and  system  for  generating  error  correction  codes  derived  from  higher 

dimensional projective geometry based graphs.

BACKGROUND OF THE INVENTION

Retention of information in form of data is one of the core functions of the modern computer, and  

is provided by storage. Hence storage is a fundamental  component of all  modern computing 

systems. Now-a-days data storage commonly refers to mass storage, more particularly optical 

storages such as CD-ROM and DVD-ROM or magnetic  storage like  hard disk drives etc.  In 

architecture parlance, such components are generally called secondary storage.

Disc storage is a general category of secondary storage mechanisms, in which data are digitally 

recorded by various electronic,  magnetic,  optical,  or  mechanical  methods on a surface layer 

deposited  of  one  or  more  planar,  round  and  rotating  platters.  A  disk  drive  is  a  device 

implementing such a storage mechanism with fixed or removable media. Internal hard disc drives 

are examples of fixed media, while CD-ROMs are example of removable media. In modern times, 

it is the disc storage that is the most popular way of implementing data storage unlike the tape 

storages in past.

The two popular methods of recording digital data on discs are magnetic and optical recording. 

Magnetic recording refers to the storage of data on a magnetized medium. Magnetic storage uses 

different patterns of magnetization in a magnetizable material to store data, and is a form of non-

volatile  memory. Hard disk drives, commonly found in a computer’s CPU, is one example of 

magnetic recording. On the other hand, Optical Recording is encoding of binary digital data in the 

form of pits (point which lacks reflection when read) and lands (point that reflects when read) on a 

special material surface. The encoding material (e.g., Aluminum) sits atop a flat surface of thicker 

substrate (usually polycarbonate), which makes up the bulk of the disc. CD-ROM and DVD-ROM 

are the most prominent examples of optical disc recordings, while Laser Disc, Magneto-optical 

disc, Universal Media Disc, Blue-ray Disc, HD Disc, Holographic and protein-coated discs are 

other lesser known examples of optical recordings. The encoding pattern for most magnetic or 

optical recordings follows a continuous, spiral path covering the entire disc surface and extending 

from the innermost track to the outermost track.
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Although  discs  are  more  durable  than  earlier  storage  mechanisms  such  as  tapes,  they  are 

susceptible to environmental and daily-use damage. Unlike the now-obsolete 3.5-inch floppy disk, 

most removable media such as optical discs do not have an integrated protective casing and are  

therefore  susceptible  to  data  transfer  problems  due  to  scratches,  fingerprints,  and  other 

environmental problems such as dust speckles. These data transfer problems, while the data is 

being read, manifests itself in form of bit errors in the digital data stream. Even mechanical issues 

such  as  vibration  due  to  occasional  high  rotational  speeds  of  disc  motors  also  produce 

undesirable  noise,  and  hence  bit  errors  occur  in  fixed  as  well  as  removable  media.  A  long 

sequence  of  bit  read  errors  while  a  track  is  being  read  (e.g.  a  scratch  on  a  track)  can  be 

characterized as burst error, while bit read error arising out of tiny dust speckle masking limited 

number of  pits  and lands on a track leads to random error.  The occurrence of  such events 

obviously not being rare, recovery of data to maximum extent in presence of such errors is an 

essential subsystem within most computing systems, such as CPU and disc players. 

To achieve the data recovery caused by above said errors there is a need for efficient error  

correction  coding.  However,  the existing methods and systems are  capable  of  correcting  bit  

errors to some extent but they are not efficient enough to correct burst error.  Some of the error 

correcting systems and methodologies which form the prior art are given below:

US6842872 to Yedida, et al. provides a method for evaluating and optimizing an error-correcting 

code to be transmitted through a noisy channel and to be decoded by an iterative message-

passing decoder. Yedida, et al. teaches the representation of error-correcting code by a parity  

check matrix which is further  modeled as a bipartite graph having variable nodes and check 

nodes. Yedida, et al.  specifically teaches about the analysis of decoder to obtain a set of density  

evolution  rules  including  operators  and  operands,  which  are  then  transformed  to  projective 

operators and projected operands to generate a set of projective message passing rules. The 

projective message passing rules are applied iteratively to the error-correcting code modeled by 

the bipartite graph until a termination condition is reached.

The problem addressed particularly relates to evaluation and optimization of an error-correcting 

code modeled by the bipartite graph. Further it is concerned with soft decoding of LDPC codes. 

LDPC codes are bit error correcting codes which use message passing algorithm during each 

decoding step. The patent discusses about improving the reliability, estimated through projective 

analysis during each step of decoding. It doesn’t teach about the implementation of the error-

correcting code for improving burst error correction capabilities of decoders in conventional CD-

ROM drives.
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US5838695 to Yang provides a method and apparatus for processing a Reed-Solomon Product-

like Code (RSPC) for error correction in a substantially real time mode. Yang specifically teaches 

about providing two RSPC error correctors in the CD-ROM decoder which performs RSPC error 

correction.

The problem addressed particularly relates to processing a Reed-Solomon Product-like Code 

(RSPC) for error correction applicable to CD-ROM format. Hence it is concerned with RS coding 

scheme for CD-ROM applications. The other focus of the scheme is to improve the speed of  

decoding process. It doesn’t teach about providing error correction codes derived from projective 

geometry  based  graphs  for  improving  burst  error  correction  capabilities  of  decoders  in 

conventional CD-ROM drives.

US5732093 to  Huang provides a  correction method and apparatus  for  optical  disc systems, 

capable  of  performing  error  correction  procedures.  Huang  specifically  teaches  a  method  of 

decoding the old data sequences and the associated erasure pointers so as to generate new data 

sequences and a set of erasure pointer modification parameters. 

 

The problem addressed particularly relates to providing a correction method and apparatus for 

optical disc systems, capable of performing error correction procedures, and doesn’t teach about 

providing error correction codes derived from projective geometry based graphs for improving 

burst error correction capabilities of decoders in conventional CD-ROM drives. 

 

EP1111799 to  Alexander,  et  al. provides an error-correction method for  use in  a process of 

decoding cross interleaved Reed-Solomon code (CIRC) that corrects errors in data stored as C1-

code words C1_CDWk (k=0, ..., 108) and C2-code words C2_CDWm (m=0, ..., 108) in a memory 

with several locations Nij (i=0, ..., 217; j=0, ..., 31), each of said locations N ij containing a data byte 

of said data. 

The problem addressed particularly relates to an error-correction method for use in a process of 

decoding cross interleaved Reed-Solomon code (CIRC) and doesn’t teach about providing error 

correction  codes  derived  from  projective  geometry  based  graphs  for  improving  burst  error 

correction capabilities of decoders in conventional CD-ROM drives.

FR2838581 to Emmanuel, et al. provides a method for decoding  error-correction codes which 

are encoded as follows: A block of  un-encoded data is  encoded according to a global  code 

comprising at  least  two  constituent  sub-codes (Ri).  Emmanuel,  et  al.  specifically  teaches an 
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irregular bipartite graph is associated with the global code, the decoding method is iterative, and 

each iteration produces a block of extrinsic data.

The problem addressed particularly relates to method for decoding a block of coded data, coded  

according to a global code comprising at least two constituent sub-codes (Ri). It doesn’t teach 

about  providing  error  correction  codes  derived  from  projective  geometry  based  graphs  for 

improving burst error correction capabilities of decoders in conventional CD-ROM drives.

Yamauchi, et al.  in “A 24×-speed CIRC decoder for a CD-DSP/CD-ROM decoder LSI” teaches a 

data recovery method for disk storage devices by applying matrix ECC (Error Correction Code) 

for a block of sectors. This method allows long burst data error correction capability with little loss  

of the data capacity and the performance. The configuration of a block is: j (integer) sectors are 

appended as the matrix ECC for leading k (integer) data sectors such as, Sector_1, Sector_2,,,, 

Sector_k, ECC_sector_1, ECC_sector_2,,,ECC_sector_j. Though with the teaching of Hiroyuki, et 

al. a data recovery method for disk storage devices is achieved by applying matrix ECC (Error 

Correction Code) for a block of sectors, however, the problem to provide error correction codes 

derived from projective geometry based graphs for improving burst error correction capabilities of 

decoders in conventional CD-ROM drives.

The above mentioned prior arts fail  to disclose an efficient  method and system for  providing 

symbol error correcting codes. The prior arts discussed above also fail to handle error correction 

in large data blocks, particularly burst errors; instead most of them are bit error correcting method 

or systems. Thus, in the light of the above mentioned background art, it is evident that, there is a 

need for a solution that can provide error correction codes capable of correcting errors in large 

data blocks, particularly burst errors. The existing solutions generally do not provide support for 

correcting burst errors for disc-based secondary digital storage devices such as HDD, CD-ROM 

and DVD-ROMs. Hence, due to the drawbacks of the conventional approaches there remains a 

need  for  a  new  solution  that  can  provide  burst  error  correcting  capabilities  for  disc-based 

secondary digital storage devices such as HDD, CD-ROM and DVD-ROMs.

OBJECTIVES OF THE INVENTION

In  accordance  with  the  present  invention,  the  primary  objective  is  to  provide  symbol  error 

correcting codes based on a higher dimensional projective geometry graph. 
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Another objective of the invention is to provide a method and system for error control coding 

based  on  higher  dimensional  projective  geometry  graph  that  has  exceptional  average  case 

performance for random errors when compared to the theoretical bounds of the code.

  

Another objective of the present invention is to provide symbol error correcting codes, which 

belongs to the family of expander-like codes having Reed Solomon (RS) codes as component  

codes. 

Another objective of the present invention is to provide a method and system for error control 

coding which has exceptional random and burst error detection and correction capabilities for  

large data blocks in storage devices and in communication. 

Another objective of the present invention is to provide a method and system for error control 

coding which is capable of correcting symbol errors with high degree of probability.

 

Yet another objective of the invention is to provide a method and system for error control coding 

that  improves existing burst  error  correction capabilities of  decoders within  conventional  CD-

ROMs.

Still another objective of the present invention is to provide a method and system for error control 

coding which has a highly parallel and symmetric design. 

SUMMARY OF THE INVENTION

Before  the  present  methods,  systems,  and  hardware  enablement  are  described,  it  is  to  be 

understood  that  this  invention  is  not  limited  to  the  particular  systems,  and  methodologies 

described, as there can be multiple possible embodiments of the present invention which are not 

expressly illustrated in the present disclosure.  It is also to be understood that the terminology 

used in the description is for the purpose of describing the particular versions or embodiments 

only, and is not intended to limit the scope of the present invention which will be limited only by  

the appended claims. 

The  present  invention  provides  symbol  error  correcting  codes  based  on  higher  dimensional 

projective geometry graphs.
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In one embodiment of the invention a method and system is provided for error control coding  

based  on  higher  dimensional  projective  geometry  graph  that  has  exceptional  average  case 

performance for random errors when compared to the  theoretical bounds of the code.

In another  embodiment  of  the invention the method and system is  provided for  error  control  

coding  based  on  higher  dimensional  projective  geometry  graph  known  as  a  bipartite  graph. 

Typically, the said bipartite graph is derived from the incidence relations of a projective space. 

In another embodiment of the invention, the said projective space of dimension d consists of one 

dimensional subspaces of a (d+1)-dimensional vector space. An m-dimensional subspace of the 

projective space consists of all one dimensional subspaces of a (m+1)-dimensional subspace of 

the vector space.

In another embodiment of the invention the symbols of the code are mapped to the edges of the 

bipartite graph in order to maximize the burst error detection and correction capacity. Each vertex 

of the graph has a fixed degree and the number of vertices in each partition of the graph is equal.

In yet another embodiment of the invention  one vertex of the graph is associated with each m-

dimensional subspace and one with each  (d-m-1)-dimensional subspace of the said projective 

space. Two vertices are connected by an edge if the corresponding subspaces are incident on 

each other.  Said vertices correspond to processors which comprise,  means for decoding the 

edges incident on the vertex; ability to skip decoding if more than correctable errors are detected; 

and a memory element to store the address space in the required order of computation;

In still another embodiment of the invention the system for error control coding is having Reed-

Solomon (RS) decoders with the capability of handling shortened RS codes. 

The above said method and system are preferably error correcting codes for storage devices and 

communication but also can be used for many other applications.

BRIEF DESCRIPTION OF THE DRAWINGS 

The foregoing summary, as well as the following detailed description of preferred embodiments, 

are better understood when read in conjunction with the appended drawings. For the purpose of 

illustrating the invention shown in the drawings are exemplary constructions of  the invention; 

however,  the  invention  is  not  limited  to  the  specific  methods  and  system  disclosed  in  the 

drawings:
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Figure 1 shows conventional/prior-art flow diagram of the process for error correction

Figure  2  is  a  flow  diagram  of  method  for  error  control  coding  using  expander-like  codes 

constructed from higher dimensional projective geometry based graphs

Figure 3 represents inter-dependence of variables and constraints in expander-like codes

Figure 4 illustrates ECC Block layout of DVD-R

Figure 5 represents ECC block’s partition into recording frames

DETAILED DESCRIPTION OF THE INVENTION

Some embodiments of this invention, illustrating all its features, will now be discussed in detail. 

The words  "comprising,"  "having,"  "containing,"  and "including,"  and other  forms thereof,  are 

intended to be equivalent in meaning and be open ended in that an item or items following any 

one of these words is not meant to be an exhaustive listing of such item or items, or meant to be  

limited to only the listed item or items.

It must also be noted that as used herein and in the appended claims, the singular forms "a," 

"an," and "the" include plural references unless the context clearly dictates otherwise. Although 

any systems and methods similar or equivalent to those described herein can be used in the 

practice or testing of embodiments of the present invention, the preferred, systems and methods 

are now described. 

The disclosed embodiments are merely exemplary of the invention, which may be embodied in  

various forms.

The present invention enables a method and system for error control coding based on a higher 

dimensional  projective  geometry  graph   and  has  exceptional  average  case  performance  for 

random errors when compared to the theoretical bounds of the code.

The present invention provides a method for error control coding for a digital storage device or  

packet data transmission. The said method is characterized by use of a symbol error correcting 

code based on at least one higher dimensional projective geometry based graph followed by 

mapping the symbols of the error correcting code to the edges of the said one or more graph,  

wherein  the  said  higher  dimensional  projective  geometry  based  graph  is  generated  by  the 

computer implemented steps of:
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a. defining  the  projective  space  wherein  the  said  projective  space  of  dimension  d 

consists of one dimensional subspaces of a (d+1)-dimensional vector space.  An m-

dimensional  subspace  of  the  projective  space  consists  of  all  one  dimensional 

subspaces of a (m+1)-dimensional subspace of the vector space;

 

b. deriving the higher dimensional projective geometry based graph from the incidence 

relations  of  said  projective  space,  wherein  the  higher  dimensional  projective 

geometry based graph is having at least two partitions and each partition is having at 

least one vertex;

c. associating one vertex of the graph with each m-dimensional subspace and one with 

each (d-m-1)-dimensional subspace of the said projective space wherein each vertex 

of the graph has a fixed degree and the number of vertices in each partition of the  

graph are equal; 

d. connecting  all  vertices  from  one  partition  with  the  other  vertices  from the  other 

partition by an edge if the corresponding subspaces are incident on each other; and

 

e. decoding all symbols by all vertices in at least one partition of the higher dimensional  

projective  geometry  based  graph,  wherein  the  symbols  correspond to  the  edges 

incident on the vertex; and coding for error control in a communication and digital 

storage device by use  of  a  symbol  error  correcting  code  based on at  least  one 

derived higher dimensional projective geometry graph.

The present invention provides a system for error control coding in a digital storage device or 

packet data transmission; the said system comprising of at least one decoding device, at least 

one digital storage device and at least one memory element communicatively coupled with each 

other, wherein the said system is characterized by using a symbol error correcting code based on 

at least one higher dimensional projective geometry graph followed by mapping the symbols of  

the error correcting code to the edges of the said one or more graph, wherein the said higher 

dimensional projective geometry based graph is extracted from:

a. decoding device defining the projective space wherein the said projective space of 

dimension  d consists of one dimensional subspaces of a  (d+1)-dimensional vector 

space and an  m-dimensional subspace of the projective space consists of all one 

dimensional subspaces of a (m+1)-dimensional subspace of the vector space;
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b. decoding device deriving the higher dimensional projective geometry based graph 

from the incidence relations of said projective space, wherein the higher dimensional 

projective geometry based graph is having at least two partitions and each partition is 

having at least one vertex;

c. decoding  device  associating  one  vertex  of  the  graph  with  each  m-dimensional 

subspace and one with each  (d-m-1)-dimensional subspace of the said projective 

space  wherein  each  vertex  of  the  graph  has  a  fixed  degree  and the  number  of 

vertices in each partition of the graph are equal; 

d. decoding device connecting all vertices from one partition with the other vertices from 

the other partition by an edge if the corresponding subspaces are incident on each 

other;

 

e. decoding device decoding all symbols by all vertices in at least one partition of the 

higher dimensional projective geometry based graph, wherein the symbol correspond 

to the edges incident on the vertex; and coding for error control in a communication 

and digital storage device by use of a symbol error correcting code based on at least 

one higher dimensional projective geometry graph. 

Referring  to  Figure  1,  it  is  a  conventional/prior-art  flow  diagram  of  the  process  for  error 

correction.  The  process  starts  at  step  102;  data  is  encoded  and  further  recorded  on  digital 

storage such as CD-ROM, DVD etc. At step 104, data is decoded while reading digital storage. At 

step  106,  errors  are  detected  while  decoding  data  from  digital  storage.  At  step  108,  error 

correction codes are employed to correct errors while decoding data from digital storage. The 

process ends at  step 110,  errors  that  occurred while  decoding data  from digital  storage are 

corrected.

Referring to  Figure 2,  it  illustrates a flow diagram of a method for error control  coding using 

expander-like codes constructed from higher dimensional projective geometry based graphs. The 

method starts at step  202, projective space is defined and choice of two subspaces is done, 

wherein  one  of  the   projective  subspaces is  of  dimension  d, consisting  of  one  dimensional 

subspaces of a (d+1)-dimensional vector space and the other is a m-dimensional subspace of the 

projective space consisting of all one dimensional subspaces of a (m+1)-dimensional subspace of 

the vector space. At step 204, the higher dimensional projective geometry based graph is derived 

from the incidence relations of said projective space. The higher dimensional projective geometry 

based graph is having two partitions and each partition is having equal number of vertices. At  
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step 206, one vertex of the graph is associated with each m-dimensional subspace and one with 

each (d-m-1)-dimensional subspace of the projective space. Each vertex of the graph has a fixed 

degree and the number of vertices in each partition of the graph is equal. At step 208, one vertex 

from one partition is connected with the other vertex from the other partition by an edge if the 

corresponding subspaces are incident on each other. The method ends at step 210; one RS 

subcode is decoded by each vertex in at least one partition of the higher dimensional projective  

geometry based graph. The RS subcode corresponds to the edges incident on the vertex. The 

coding for error correction is done in digital storage device by use of a symbol error correcting 

code based on the derived higher dimensional projective geometry graph.

Expander codes 

Expander codes are a family of asymptotically good, linear error-correcting codes. They can be 

decoded in sub-linear time (proportional to log (n), where n is length of codeword) using parallel  

decoding algorithms. Further, this can be achieved using identical component processors, whose 

count  is  linearly  proportional  to  n.  These  codes are  based  on  a  class  of  graphs  known  as 

expander graphs.

Expander graph

An expander graph is a graph in which every set of vertices has an unusually large number of  

neighbors. More formally, 

Let G = (V,E) be a graph with n vertices. Then the graph G is a δ-expander, if every set of at most 

m vertices expands by a factor of δ. That is, 

      

Expander codes being a subclass of LDPC codes, for whose iterative decoding using variables 

and constraints a bipartite graph is required, we are interested mainly in bipartite expander graph. 

More specifically, a general (unbalanced) bipartite expander graph is a (c, d,Є, δ) expander if it is 

a (c,d)-regular bipartite graph in which every subset of at most an Є fraction 

of the c-regular vertices expand by a factor of at least δ. 

The degree of “goodness” of expansion, especially for regular graphs, can also be measured 

using its eigenvalues. The largest eigenvalue of a k-regular graph is ‘k’. If the second largest 

eigenvalue is much smaller than ‘k’, then the graph is known to be a good expander.

Construction of Expander Codes

It is well known that a randomly chosen  (c,d)-regular graph will be a good expander with high 

probability. A deterministic construction of good expander graph, that further leads to construction 
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of good expander codes is by considering the edge-vertex incidence graph B of a d-regular graph 

G. The edge-vertex incidence graph of G = (V,E), a (2,d)-regular bipartite graph, has vertex set E 

Ụ V and edge set 

{(e,v)  Є E × V : v is an endpoint of e}

Referring  to  Figure  3,  vertices  of  B corresponding to  edges E of  G are  then associated to 

variables (302), while vertices of B corresponding to vertices of G are associated to constraints 

(304) on these variables. Each constraint  corresponds to a set of linear restrictions on the  d 

variables that are its neighbors. 

In particular, a constraint will require that the variables it restricts form a codeword in some linear  

code of length d. Further, all the constraints are required to impose isomorphic codes on different  

variables. The default construction of expander codes requires d to remain constant as the order 

of G increases. In invented construction, d will also increase with increase in order of G (hence 

the term, 'expander-like', instead of expander). However, all important properties and advantages 

of using specific expander codes for various applications still remain intact.

Formally, let B be a (2,d)-regular graph between set of n nodes called variables, and 2/d* n nodes 

called  constraints.  Let  b(i,j)  be  a  function  such  that  for  each  constraint  C i,  the  variables 

neighboring Ci are vb(i,1), · · · , vb(i,d). Let S be an error-correcting code of block length d. The 

expander code C(B, S) is the code of block length n whose codewords are the words (x1, · · · ,  

xn) such that, for 1 ≤ i ≤ 2/d* n, xb(i,1), · · · , xb(i,d) is a codeword of S.

Good Expander Codes

As pointed out earlier, the decoding algorithm for such codes is iterative. Hence good expander 

codes imply at least the following properties:

• Better minimum distance (hence larger error-correction capability) than other codes of 

same length,

• Faster convergence, and

• Better code rate than other codes in the same class

Construction of good codes having the above said properties is described below,  Construction 

makes use of   three theorems. We only state these theorems before giving the construction  

details. For proofs of the theorems refer literature.  

12



We assume that an expander code C(B, S) has been constructed having S as a linear code of 

rate r, block length d, and minimum relative distance Є, while B as the edge-vertex incidence 

graph of a d-regular graph G with second-largest eigenvalue λ.

Theorem 1 The code C(B, S) constructed as above has rate at least 2r - 1, and minimum relative 

distance at least

Theorem 2 If a parallel decoding round for C(B, S) is given as input, a word of relative distance α 

from a codeword, then it will output a word of relative distance at most equal to  

                                    from that codeword.

Theorem 3 For all Є such that 1- 2H(Є) > 0, where H(·) is the binary entropy function, there exists 

a polynomial-time constructible family of expander codes of rate 1 - 2H(Є) and minimum relative 

distance arbitrarily close to  Є2 in which any  α <  Є2  /48 fraction of error can be corrected by a 

circuit of size O(n log n) and depth O(log n).

From theorem 1, it is observed that to have high minimum relative distance for the expander 

code, S should have high Є and B should have low, λ/d.. Since B has been constructed out of d-

regular graph G, low λ/d signifies high distance between first and second eigenvalues, i.e. the 

graph G has to be a “good” expander graph. Further, to have high rate for the expander code, S 

has to have a high rate r  as well,  besides  having the requirement of  having high minimum 

relative distance Є. 

From  theorem 2,  it  is  observed  that  to  shrink  the  relative  distance  of  input  word  from  the 

codeword after one iteration maximally, we need to again have Є as high as possible and λ/d as 

low  as  possible.  Such  maximal  shrinking  of  distance,  per  iteration,  leads  to  the  fastest 

convergence possible, and is also brought out in the proof of theorem 3 which has been given in  

previous literature.

From theorem 3, it is observed that to be able to correct as high fraction of errors as possible, it is 

required to have Є as high as possible..
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RS Codes as Good Component Codes

By choosing a “good expander” graph, and fixing a code with high minimum relative distance Є, 

one can design code, having the first two properties described earlier. Simultaneously, to have 

high code rate for C(B, S), the component code S also needs to have high rate r. Reed-Solomon 

codes are a class of non-binary, linear codes, which for a given rate, have the best minimum 

relative  distance  (so-called  maximum  distance  separable  codes),  and vice-versa.  The  code 

parameters for the RS codes are given by  (n, k, n − k + 1).

It had been observed that earlier definition of expander code requires ‘d’ to remain constant as ‘n’ 

increases. In the present construction, ‘d’ increases as ‘n’ increases. However, it is clear from 

statement of theorems 1 and 2 that higher value of ‘d’ leads to better properties of the code C(B, 

S). However, such codes may not be called expander codes in wake of definition of these, but  

just graph-based, or expander-like codes.

PG Graphs, Ramanujan Graphs and Good Expander Graphs

The construction of expander codes makes use of an unbalanced bipartite graph B made out of a 

d-regular graph G. Zemor pointed out that if G is a regular bipartite graph, then the % of errors 

that can be corrected using a parallel iterative decoding algorithm can be increased twelve-fold.  

Further, he reasoned out through theorem 1 that to achieve good  minimum relative distance for 

the expander code graph G should be a Ramanujan graph with the property: λ (second-largest 

eigenvalue) ≤ 2  .

However, it should be noted that (a) Approximately half the constructions of the bigger class of 

Ramanujan graphs lead to bipartite regular graphs, and (b) Using bipartite regular graphs as G 

leads to twelve-fold improvement in error correction capability. Hence it is imperative that one 

focuses on using Ramanujan graphs for construction of good expander codes instead.

Construction of PG-graph based Expander-like Codes

In one embodiment of the invention to construct an expander-like code, Zemor’s Construction has 

been followed. The present invention uses Zemor’s construction, which is based on a d-regular 

balanced bipartite graph, G=(V,E). The set V is divided into two sets A and B, with |A| = |B| = n 

such that every edge has one endpoint in A and another in B. For any vertex t, the set of edges 

incident on t is denoted by Et. As the graph is bipartite, the sets   induce a 

partition on E. A similar partition can be created using the edge sets of the vertices belonging to 

B. The expander code, C(G, S) is constructed by treating the edges of G as variables and the 

vertices as constraints for a binary component code S. The block length of code C is N = n * d. As 
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before, the second largest eigenvalue of G is denoted by λ. The steps in one decoding round of 

the algorithm suggested by Zemor are as follows:

• Each constraint t in set A completely decodes the sub-vector associated with the set of d 

variables, Et, and replaces it with the closest codeword in S. This step can be carried out  

in parallel by all constraints in A as no symbol is shared between two constraints.

• The constraints in set B replace the sub-vector associated with its edge sets, E t, t , 

with the closest codeword in S. This again can be carried out in parallel by all constraints.

In another embodiment of the invention we use the following two properties of projective space of 

dimension d over GF(s), namely P(d,GF(s)) where s = pk, k being a positive integer for improving 

the error correction properties of the the said code beyond Zemor bound.

1. The number  of  subspaces  of  dimension  m is  equal  to  the  number  of  subspaces  of 

dimension d − m − 1.

2. The  number  of  m-dimensional  subspaces  incident  on  each  d  −m−  1-dimensional 

subspace is equal to the number of d − m − 1-dimensional subspaces incident on each 

m-dimensional subspace.

  

In another embodiment of the invention the above said two properties of projective subspaces 

have been used to create balanced regular bipartite graphs under the condition q = 2, m=0,and 

d>2  (point-hyperplane  incidence  graphs).  Point-hyperplane  incidence  graphs  also  satisfy  the 

eigenvalue properties that make it a Ramanujan graph.

In another embodiment of the invention the following properties of Projective space over finite 

fields are used to count the number of hyperplanes and number of points on each hyperplane in a 

general projective space over finite fields. The description is also extended to count the number 

of points in an m-dimensional subspace and also to count the number of l-dimensional subspaces 

in an m-dimensional subspace where l<m 

Though we restrict  our construction of  expander-like codes to F = GF(2k),  the properties are 

detailed for general finite fields.

Consider a finite field F = GF(s) with s elements, where s is a power of a prime number p i.e. s =  

pk,  k  being a  positive  integer.  A projective space of  dimension d is  denoted by P(d,  F)  and 

consists  of  one-dimensional  subspaces  of  the  (d+1)-dimensional  vector  space  over  F  (an 
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extension field over F), denoted by Fd+1. Elements of this vector space are of the form (x0, . . . , 

xd), where each xi ЄF. The total number of such elements are s (d+1) = pk(d+1).  An equivalence 

relation between these elements is defined as follows. Two non-zero elements x, y are equivalent  

if there exists an element λЄ GF(s) such that x = λ y. Clearly, each equivalence class consists of 

s elements of the field (s − 1 non-zero elements and 0), and forms a one-dimensional subspace. 

Such 1-d vector subspace corresponds to a point in the projective space. Points are the zero-

dimensional subspaces of the projective space. Therefore, the total number of points in P(d, F) 

are

An m-dimensional subspace of P(d, F) consists of all the one-dimensional subspaces of an (m + 

1)-dimensional subspace of the vector space. The basis of this vector subspace will have (m + 1)  

linearly  independent  elements,  say  b0,  …,  bm.  Every  element  of  this  subspace  can  be 

represented as a linear combination of these basis vectors.

 

Clearly, the number of elements in the vector subspace are s (m+1). The number of points in the m-

dimensional  projective subspace  is  given by  P(m)  defined  in  earlier  equation.  This  (m + 1)-

dimensional vector subspace and the corresponding projective subspace are said to have a co-

dimension of r = d − m (the rank of the null space of this vector subspace). 

Let  us  denote  the  collection  of  all  the  l-dimensional  projective  subspaces  by  Ω l.  Now,  Ω0 

represents the set of all the points of the projective space, Ω1 is the set of all lines, Ω2 is the set of 

all  planes and so on. To count the number of elements in each of these sets, we define the  

function

 

Now, the number of m-dimensional subspaces of P(d, F) is  Ø(d,m, s). For example, the number 

of points in P(d, F) is Ø(d, 0, s). Also, the number of l-dimensional subspaces contained in an m-
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dimensional subspace (where 0 ≤ l < m ≤ d) is  Ø (m, l, s), while the number of m-dimensional 

subspaces containing a particular l-dimensional subspace is Ø(d − l − 1,m − l − 1, s).

In  another  embodiment  of  the invention one vertex of  the graph is  associated with  each m-

dimensional subspace and another one with each d − m − 1-dimensional subspace. 

In  another  embodiment  of  the  invention  two  vertices  are  connected  by  an  edge  if  the 

corresponding subspaces are incident on each other. As edges lie only between subspaces of 

different  dimensions,  the  graph  is  bipartite  with  vertices  associated  with  m-dimensional 

subspaces  forming  one  set  and  vertices  associated  with  d  −  m −  1-dimensional  subspaces 

forming another. Also, the two properties, listed above, ensure that both the vertex sets have the  

same number of elements and that each vertex has the same degree.

In another embodiment of the invention we consider the graph, G=(V,E) obtained by taking the 

points and hyperplanes of P(5,GF(2)). This is the first code constructed and used throughout. 

This projective space is generated from GF(26). In this projective space, the number of points (= 

number of hyperplanes) is Ø(5, 0, 2)=63. Each point is incident on Ø(4, 3, 2)=31 hyperplanes and 

each hyperplane has  Ø(4,  0,  2)=31 points.  Therefore,  we have |V |=126 and |E|=1953.  This 

implies that the block length of code C is 1953 and the number of constraints in the code is 126.  

The second eigenvalue of G, λ is 4. Hence the ratio λ/d is quite small, as required for design of  

“good” expander-like codes. 

In another embodiment of the invention as the expander graph G is 31-regular, the block length of 

the component code also is required to be 31 to construct an expander-like code. The 31-symbol 

shortened Reed Solomon codes have been chosen as the component code, with each symbol 

consisting of  eight  bits.  Decoding algorithm is  identical  to Zemor’s,  except that  if  a particular 

vertex  detects  more  errors  than  it  can  correct,  it  skips  the  decoding  for  that  vertex.  This  is 

because as a side output, it is possible to compute using Berlekamp-Massey’s algorithm for RS 

decoding, whether the degree of errors in the current input block of symbols to the decoder be 

corrected or not. If not, then the algorithm can be made to skip decoding, thus preserving the 

errors  in  the  input  block.  This  variation  in  decoding  will  reduce  the  number  of  extra  errors 

introduced by that vertex if  the decoding fails.  Based on this decoding algorithm, a MATLAB 

model of decoder was first made, to observe code’s performance. It uses the built-in RS decoding 

and encoding functions from MATLAB.

In  yet  another  embodiment  of  the invention performance of  the above code against  random 

symbol errors is benchmarked. To benchmark the error-correction performance in the wake of 
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random errors, a decoder model for the proposed expander code was simulated in MATLAB and 

tested for different minimum distance values(Є)  for the component codes. Symbol errors with 

different  magnitudes  were  introduced  at  random  locations  of  the  all  zero  codevector. 

Convergence  of  the  decoder’s  output  back  to  the  all  zero  codevector  was  checked  at  the 

simulation. As the code is linear, the performance obtained in testing for all zero codevector is 

valid for the entire code. Since the errors were introduced at random locations, simulations were 

run over many different rounds of decoding for different pseudo-random sequences as inputs, 

and averaged, to get reliable results. These sequences differ in random positions in which the 

errors  are  introduced.  Each  round  of  decoding  for  particular  input  further  involves  several 

iterations of execution of decoding algorithm. One iteration of decoding corresponds to both sides 

of the bipartite graph to finish decoding the component codes.

It is observed experimentally that in case of a decoding failure, beyond 4 iterations, the residual 

error in the overall codeword ceases to converge, implying that if correctable error patterns were  

present  they  would  have been corrected  within  4  iterations.  In  the  case  of  correctable  error 

patterns, residual errors after each iteration reduces and by the end of 4 iterations it would have 

converged to zero.

Hence the stopping threshold of decoder is fixed to exactly 4 iterations. The results of simulations 

are presented in  Table 1 and Table 2. The component codes used for these simulations have 

minimum distance of   5  and  7  (symbols),  respectively.  The “failures”  column represents  the 

percentage of decoding failures. The “average number of iterations” column signifies the average 

number of iterations required for successful decoding of a corrupt codeword, over various rounds.

No. of errors Failures Avg. No. of iterations
50 0 1
80 1 1.71

100 18 2.33
110 40 2.72

Table 1 Random errors (Є= 5)

No. of errors Failures Avg. No. of iterations
150 0 1.6
175 0 1.99
200 0 2.19
250 23 3.82
275 64 4.5

Table 2 Random errors (Є= 7)
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Some worst-case  bounds  on  rate  and  error-correction  capability  of  the  proposed  codes  are 

presented in  Table 3. The minimum distance of subcode has been varied between 3 and 15. 

Beyond 15, rate of the overall code C becomes very less and hence impractical. These results 

were compared with the theoretical bounds established by Zemor. Zemor proved that if  , 

the total fraction of errors that can be corrected using the above algorithm is  for_β < 

1, where  is the minimum distance, and d is the length of the subcode. This fraction can be seen 

proportional to , an twelve-fold improvement over bound stated in Theorem 3. For calculating 

the Zemor bounds and making a fair comparison, it was needed to remove the advantage of  

using Reed Solomon codes as subcodes.  Zemor had derived the bounds for  general  codes 

assuming  that  ≥  Є/  2  errors  could  not  be  corrected  for  any  distance  (even/odd).  For  Reed 

Solomon component codes used in construction, since only odd distances have been used, (Є+ 

1)/ 2 errors can never be corrected. To account for 

this Є/2 has been replaced by (Є + 1)/2 in Zemor’s formula to calculate the bounds.

Table 3 Change in parameters of C with variation in minimum distance of subcode

A geometrical  analysis  of  process of  error  correction in  the overall  code C has been given.  

Results from this analysis have also been used to derive the bounds on error correction capability  

of C. To do this analysis we observe that in P(5,GF(2)), points form the 0-dimensional subspaces 

and hyperplanes form the 4-dimensional subspaces (m = 0 and d-m-1 = 4). Also there are 7 

points contained in a plane (2-dimensional subspace) and a plane is contained in 7 hyperplanes 

in P(5,GF(2)).

The analysis tries to answer the question: given the minimum distance Єof the subcode, what is 

the minimum number of random errors the code C can correct This is decided by the error pattern 

which causes the vertices corresponding to the points and hyperplanes of the graph get locked in 

such a way that in each iteration, an equal number of constraints fail on each side. This is the 
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minimal configuration of  failure.   Errors can expand over iterations (more edges representing 

symbols get corrupted), but that may not lead to the minimum configuration of failure. Similarly, if 

errors shrink, i.e. lesser number of vertices in bipartite graph fail in next iteration, then it leads to a 

case of decoding convergence, not decoding failure. 

For example,  if  we consider  Є= 5,  each vertex of the graph can detect  and correct  up to 2 

erroneous symbols ((Є-1)/  2) in the set of symbols that it is decoding. If 3 or more erroneous 

symbols are given to it, then either the decoder, based on Berlekamp-Massey’s algorithm, skips 

decoding, or it outputs another codeword that in worst case has at least Єdifferent symbols now 

(than the transmitted codeword), and hence at least Єerrors. However, the extra errors may get 

corrected if they do not lead to a minimal configuration of failure, and hence the invention does 

not concentrate on  this  case. So, if a case can be generated in which decoding of the subcode 

fails at vertices corresponding to 3 points, all of which are incident on 3 hyperplanes, a situation in 

which the  3  points  will  transfer  at  least  3  errors  to  each  of  vertices corresponding  to  the  3 

hyperplanes. These vertices may also fail, or decode a different codeword, while decoding their 

inputs.  Again  in  the  worst  case  each  of  these  hyperplane  decoders  will  output  at  least  3 

erroneous symbols. These corrupt symbols, or errors, are then transferred back to the vertices 

representing the 3 points. Thus, the errors will  keep oscillating infinitely from one side of the 

graph to the other, and the decoder will never decode the right codeword. Thus, a minimum of 

3*3=9 errors are required to cause a failure of decoding. We also assume in the worst case 

scenario that the “wrong” decoding by a vertex which is part of the minimum configuration of 

failure,  does  not  reduce  the  number  of  errors.  With  this  assumption,  the  bounds  may  be 

considered to be “tight”.

For any case in which less than 9 corrupt symbols exist, by pigeonhole principle, it will have at  

least one hyperplane or point having less than 3 errors incident on it. Decoder corresponding to 

that vertex will correctly decode the sub-code, thus reducing the total number of errors flowing in 

the overall decoder system of C. This will, in next iteration, cause some other hyperplane or point  

to have less than 3 errors.  Thus in the subsequent iterations,  all  the errors will  definitely be 

removed. Therefore, 8 errors or less will always be corrected. As it can be seen from Table 1, the 

worst case scenario is very unlikely to occur and for randomly placed errors, even 80 errors are 

found to be corrected 99% of the time.

Now the question is, when can one find a configuration in which 3 points are all incident on 3 

hyperplanes? If any plane in the given geometry is chosen, any three points of that plane can be 

picked up and any 3 hyperplanes corresponding to the same plane can be found out. This will  

ensure that all the 3 points are incident on all the 3 hyperplanes. Thus, if for some input, the  
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decoding at these 3 points fails; in the worst case they will corrupt the entire edges incident on 

them. This in turn would cause 3 errors each, on the chosen hyperplanes. Hence the errors would 

oscillate between points and hyperplanes for each successive iteration. Thus, in the worst case, 

there need to be 9 erroneous symbols, located such that they are incident on the 3 chosen points, 

to cause the decoder of C to fail.

In general, if we are given a minimum distance Єof the subcode, it is known that at each vertex, 

more than ((Є+ 1)/ 2) errors will not be corrected. So, in the graph G we have to find the minimum 

number of vertices ‘ξ’  required to get an embedded bipartite subgraph such that each vertex in 

the subgraph has a degree of at least ((Є+ 1)/ 2) towards vertices on other side of the subgraph. 

Once this number of vertices in some embedded subgraph has been found, the number of errors 

that can always be corrected by the proposed decoder is given by: 

In P(5,GF(2)), a plane has 7 points, and is contained in 7 hyperplanes. For 3 ≤  Є≤ 13,  Єbeing 

odd, the minimum number of vertices ξ corresponds to ((Є+ 1)/ 2), and the corresponding points 

and hyperplanes can be picked from any plane. For Є≥ 15, the calculation of ξ is non-trivial, since 

points and hyperplanes from one plane are not sufficient. This is because ((Є+ 1)/ 2) = 8, which 

would  require  us  to  get  a  subgraph  of  minimum degree  8.  Construction  of  such  embedded 

subgraph is not possible by choosing only one plane. A proof has been constructed to show non-

existence of a minimum degree 8 embedded bipartite subgraph having order of 9 and 10, within 

point-hyperplane graph of P(5,GF(2)). 

At a conjecture level, we suspect that an order-11, minimum degree 8 subgraph embedding is 

also  not  possible.  Without  using  this  conjecture,  still,  the  lower  bound  of  87  as  number  of 

erroneous symbols in a 1953-length block of input based on C, as in the Table 3, is a loose lower 

bound. Since invented constructions are exact,  these tight  lower bounds can be used for all  

practical  values of  Є,  wherever calculation of  it  is  possible.  Otherwise,  another  looser,  lower 

bound can be found using eigenvalue calculations. Without that, it is still clear that the bound is 

much better than the bound obtained by Zemor using eigenvalue arguments.

In  still  another  embodiment  of  the  invention,  performance  of  the  code  for  burst  errors  is 

benchmarked. The strongest applications for this code lie in the areas of mass data storage such 

as discs. As pointed earlier, burst errors are the dominant cause of data corruption. Hence, the  

burst  error  correction  capabilities  of  invented  code  have  been  examined.  The  burst  error 

correction  capability  has  been  benchmarked  against  those  codes  designed  in  ECMA-130 
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standard for CD-ROM encoding, which is considered to be very robust to burst errors. In bipartite  

graph  G  constructed  from  P(5,GF(2)),  the  edges  are  labeled  with  integers,  to  map  various 

symbols of the codeword. Such a labeling is not required to understand/ characterize the random 

error correction capability of the code. But here, the edges are labeled with numbers to try to 

maximize  the  burst  error  correction  capability.  This  is  achieved  if  each  consecutive  symbol, 

possibly part of a burst, is mapped to edges that are incident on distinct vertices representing 

different component decoders. Thus, consecutively numbered edges, representing consecutively 

located symbols in input symbol stream, go to different vertices hosting different RS decoders. 

Since there are 63 vertices on one side of the graph, this scheme of numbering implies that 

edges incident on vertex 1 are assigned the numbers {1, 64, . . . , 1890}. Similarly, the edges 

incident on Vertex 2 are assigned {2, 65, . . . , 1891}, and so on. This numbering essentially  

achieves  the  effect  of  interleaving  of  code  symbols.  If  the  error  correcting  capacity  of  each 

component  RS decoder  is  μ(=(Є-1)/  2,  for  odd  Є),  then  the  minimum burst  error  correcting 

capacity of C will be μ*63. For example, for Є= 5, μ is 2, and the minimum burst error correcting 

capacity is 2*63 = 126. Table 4 gives MATLAB simulation results for burst error correction for Є= 

5.

No. of errors Failures Avg. No. of iterations
126 0 1
135 26 2.43

Table 4 Burst errors (Є= 5)

To demonstrate the excellent burst error correction capacity of the invented code, it has been 

benchmarked against the massive interleaving based codes in CD-ROMs. Traditionally in ECMA-

130, the encoding utilizes heavy interleaving and dependence on erasure correction to deal with 

burst errors. For erasure correction, one level of decoding identifies the possible locations of the 

error  symbols.  The  next  level  of  decoding  uses  this  information  to  correct  them.  The 

stage/process of interleaving used in CD-ROMs makes the encoding and decoding slower. 

Two  schemes  have  been  proposed,  which  are  described  later  in  description,  which  offer 

significant improvement in burst error correction at similar data rates. The decoder, being fully 

parallel in its decoding, can handle larger sets of data at a time and hence could be used to 

increase the throughput. In the proposed schemes, however, it was required to fit the decoders in 

place of the heavy interleaving stage of the CD-ROM decoding data path, which only processes 

one frame at a time. Thus, in terms of throughput the CD-ROMs will be matching the proposed 

code in complexity but in burst error correction capability it will surpass them.
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BEST MODE/EXAMPLE OF WORKING OF THE INVENTION 

The invention is described in the example given below which is provided only to illustrate the 

invention and therefore should not be construed to limit the scope of the invention.

Multiple decoders based on expander-like codes described in the invention may be used to have 

two new decoding schemes that give better performance than the existing decoders. The details 

for such decoder for new, expander-like codes targeted for CD-ROM application is described 

below. The bipartite graph is constructed by using the point-hyperplane incidence relations of 

P(5,GF(2)). The points are generated using a primitive polynomial, which give the tapping points 

in a linear shift feedback register (LFSR). The primitive polynomial used to generate GF(2 6) is x6 

+x+1. The points of this projective space are given in Table 5. To identify the points lying on a 

particular  hyperplane, first  one has to  construct  the 5-dimensional  vector  subspace of  the 6-

dimensional  vector  space  GF(26).  Then  the  points  that  correspond  to  vectors  lying  in  that 

subspace  can  be  taken  as  the  points  on  the  particular  hyperplane.  One  such  hyperplane, 

represented by its point set, is (0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 18, 19, 24, 26, 27, 28, 32, 

33, 35, 36, 38, 41, 45, 48, 49, 52, 54, 56). The remaining 62 hyperplanes can be obtained by 

applying shift automorphism to this hyperplane. 

Let  the hyperplanes,  numbered from 0 to 62,  form one side,  called A,  of  the bipartite graph 

between points and hyperplanes. Similarly, let the points, numbered from 63 to 125, form another 

side of the graph, called B. Based on this numbering,  Table 6 gives the complete list  of the 

hyperplanes and their adjacent vertices. To improve the burst error capability, the edges need to  

be numbered such that consecutive edges always go to different vertices. Hence we label edge 

between vertex 0 and 63 as edge number 1, between vertex 1 and 64 as edge number 2 and so 

on. 

Viewed as a computation graph, every vertex of this graph maps to a RS decoding computation. 

The input symbols to each of these decoders correspond to the edges which are incident to the 

vertex in question. During decoding, these symbols are provided as inputs in a specific order:  

message symbols first and then parity symbols. This order also gets reflected in the reduced row 

echelon form of the corresponding generator matrix, G. The edges incident on a vertex of side A 

(say, V1) are sorted with respect to increasing index numbers of the vertices reached on side B.  

This is the order in which the corresponding symbols are fed to the RS decoder represented by 

V1. A similar strategy is used for ordering inputs for RS decoders of vertices on side B.
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While generating the bipartite graph and its edge/vertex labels, alternate representation described 

in equation 1 is preferred. To recall, the points of an n-dimensional projective space over a field  

F can be taken to be the equivalence classes of nonzero vectors in the (n + 1)-dimensional vector 

space over F. Vectors in an equivalence class are all  scalar multiples of one-another.  These 

vector being one-dimensional subspaces, they also represent the rays of a vector space passing 

through origin. The orthogonal subspace of each such ray is the unique n-dimensional subspace 

of Fn+1, known as hyperplane. Each vector h of such orthogonal subspace is linked to the ray, p, 

by a dot product (addition is modulo 2 because of GF(2)) as follows.

                                                 

Where pi is the ith coordinate of p. This uniqueness implies bijection, and hence a vector p can be 

used to represent a hyperplane subspace, which is exclusive of this vector as a point. Due to 

duality, similar thing can be said about a hyperplane subspace. It is important to note that the 

above equation does not imply orthogonality. It is just a way to generate the hyperplane and point 

subspaces and is a convenient representation of incidence. Using this representation, vectors 

representing  the  hyperplanes  can  be  found  out,  containing  a  given  set  of  points,  and  then 

correlates them to the decimal numbers used to represent the hyperplanes. The representation of 

points and hyperplanes is further dependent on the representation of the underlying vector space. 

For the vector space, canonical representation is used. In this representation, those positions are 

set in a vector as 1 which corresponds to that power of x existing in the 1-D subspace. For 

example, point 0 is represented by 000001, point 2 as 000100, and point 8 as 001100 and so on.  

This representation can also easily be derived from Table 5.
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Table 5 Points of P(5, GF(2))
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Table 6 Point-Hyperplane Adjacency List

The burst error correcting capability of the envisaged code has been benchmarked against the 

code  for  CD-ROM  error  correction  as  detailed  in  ECMA-130  Standard.  Based  on  this 

benchmarking, two novel schemes for CD-ROM encoding and decoding have been proposed. 

These schemes are based on the expander-like codes. Application of these codes, at various 

stages of  CD-ROM encoding scheme and correspondingly  in decoding scheme, substantially 

increases the burst error correcting capability of the disc drive.

The major part of error correction of the CD-ROM coding in ECMA-130 Standard scheme occurs 

in  two stages, Reed-Solomon Product Code (RSPC) and Cross Interleaved Reed Solomon Code 

(CIRC). On the encoder side, Reed-Solomon Product Code (RSPC) stage comes before Cross 

Interleaved Reed Solomon Code (CIRC) stage, while on decoder side, Cross Interleaved Reed 

Solomon Code (CIRC) stage comes before Reed-Solomon Product Code (RSPC) stage. 
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To  get  an  idea  of  the  average  error  detection  and  correction  capabilities  of  CDROM 

scheme(without erasures), Reed-Solomon Product Code (RSPC) and Cross Interleaved Reed 

Solomon Code (CIRC) stages of the ECMA standard were simulated in MATLAB. Because the 

CIRC uses delay elements to implement the interleaving, any frame arriving at the input of the 

second RS decoder has data symbols from the preceding 109 frames. Thus to gauge the error  

correction  capabilities,  it  started  with  218  frames  of  32  symbols  each.  The  109th  frame  is 

considered as 0th frame. After considering the effect of interleaving, this frame will require data 

symbols from the previous 109 frames. Errors are distributed over the last 109 frames and the 

error correction capability is observed. The details of Reed-Solomon Product Code (RSPC) and 

Cross Interleaved Reed Solomon Code (CIRC) stages are as follows. 

Cross Interleaved Reed Solomon Code (CIRC):  This stage leads to interleaving of codeword 

symbols. The massive interleaving done here is mainly responsible for the burst error correction.  

In a frame of 6976(=32*109*2) symbols, it can correct on an average 240 consecutive corrupt  

symbols. This amounts to approximately 2000 bits. If the burst is placed appropriately i.e. at the 

end  of  one frame of  6976  symbols  and  at  the beginning  of  the next  frame,  then the Cross 

Interleaved Reed Solomon Code (CIRC) can potentially correct 4000 bits of burst errors. The 

success of error correction thus depends on the location of the burst.

Reed-Solomon Product Code (RSPC): After the Cross Interleaved Reed Solomon Code (CIRC) 

stage during  decoding,  some of  the burst  errors  get  corrected,  and  others  get  re-distributed 

among  F1-Frames  due  to  de-interleaving.  Due  to  re-distribution  and  de-interleaving,  the 

remaining errors can be considered as random errors. The Reed-Solomon Product Code (RSPC) 

stage in decoding then serves to correct these errors using Reed-Solomon decoding as erasure 

decoding. Success of this stage depends on the marking corrupt symbols as erasures by Cross 

Interleaved Reed Solomon Code (CIRC) stage. 

Considering  error  detection  and  correction  without  erasures,  Reed-Solomon  Product  Code 

(RSPC) and Cross Interleaved Reed Solomon Code (CIRC) on an average corrects a burst of  

270 symbols in a frame of 6976 symbols. The scheme proposed here involves replacing one or  

both of the CIRC and the RSPC with encoders and decoders based on the expander-like codes. 

Burst error correction can be maximized in a way, without compromising on the code rate.

 

Scheme 1: As discussed, the Reed-Solomon Product Code (RSPC) and Cross Interleaved Reed 

Solomon Code (CIRC) subsystem in the decoder of ECMA-130 Standard  can detect and correct  

a burst of about 270 erroneous symbols, in a frame of 32x218(=6976) 8-bit symbols. In the first  

scheme we propose, this subsystem is replaced by a set of 4 decoders, each of them being 
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expander-like  code,  C.  The  Reed  Solomon  subcodes  used  in  C  have  block  length  d  as 

31(symbols).  Further, we fix their minimum distance as  Є = 7. The output of corresponding 4 

encoders is further interleaved to improve performance, and de-interleaved on receiving side. Let 

k be the number of message symbols in each subcode. For Reed-Solomon code, which are 

maximum distance codes, we have n − k + 1 = Є, which implies that the code rate of the subcode 

is k/n = 25/31 = 0.806.

 

To construct these subcodes, a (255, 249, 7) Reed Solomon code has been chosen, The first 25 

symbols are considered as message symbols; The remaining 224 symbols are set to 0. Hence 

we have a shortened RS code with each symbol (still) represented by 8 bits. Shortened Reed 

Solomon code has been used because each data symbol in the CD-ROM is a byte long. 

 

For  the overall  code C,  the  code rate  is  equal  to  (2*r−1),  where  r  is  the rate  of  the (Reed  

Solomon) subcode. Hence the rate for codes used in each of the proposed encoders/ decoders is  

2*0.806−1= 0.612. Thus, the number of message symbols for each decoder is equal to 1953* 

0.612 = 1197. The rest are therefore parity symbols.

Cumulative input of the encoders and also the cumulative output of decoders, are set to a stream 

of 199 frames, each having 24 symbols payload. Assuming that each symbol can be encoded in  

1 byte, this leads to generation of 4776 bytes. With 12 padding bytes added to it, this bigger set of 

4788 bytes can be re-partitioned into 4 blocks of 1197 bytes each (4*1197=4788). Each block of 

1197 source symbols can then be worked upon by 4 parallel working encoders. After encoding 

each block to  1953 symbols,  one of  the extra added (padding)  bytes is  removed from each 

encoder giving 244 frames of 32 bytes of data. Every RS decoder has Є =7, which implies that it 

can detect and correct up to 3 errors. Thus, each encoder for C will give a burst error correcting 

capability  of  63*3=189.  Since  4  of  such  encoders  work  in  interleaved  fashion,  burst  error  

detection and correction capability of at least 756 symbols among 244 frames can be achieved. 

This is against burst error correcting capability of 270 symbols in 218 frames, in the case of 

Reed-Solomon  Product  Code  (RSPC)+Cross  Interleaved  Reed  Solomon  Code  (CIRC) 

subsystem of ECMA-130 Standard 

There are certain advantages associated with the scheme 1 such as, a massive improvement in 

burst error correction:270 in 32x218 symbols for CIRC+RSPC system, versus 756 in 32x244 in 

the proposed scheme and the code rate achieved is also comparable to the one for CIRC+RSPC 

subsystem. In the latter case, the code rate is 24/32=0.75, whereas in the proposed case it is 

0.62.

31



There are certain disadvantages also, such as that this scheme is hardware expensive due to use 

of many parallel RS decoders. Also, the high throughput of the proposed decoder is not utilized. 

The resource complexity can be reduced by time-multiplexing the decoders, and also folding the 

architecture of each decoder.. 

Scheme 2: This scheme is a hardware economical scheme, which also increases the burst error 

correcting capability. Since the decoder also has a very good random error correcting capability, 

an error correction advantage can be achieved by replacing the Reed-Solomon Product Code 

(RSPC) stage of the ECMA-130 Standard with the envisaged  encoder/decoder (with Є=5). Two 

of the encoders can replace the Reed-Solomon Product Code (RSPC) encoder in this scheme. 

Data from these encoders is then interleaved, and passed on to the Cross Interleaved Reed 

Solomon Code (CIRC).  In  the  decoding  stage,  after  Cross  Interleaved  Reed Solomon Code 

(CIRC) there is correspondingly de-interleaving and this is followed by decoding based on the 

invented code.

 

This scheme has the advantage that it increases the error correction capability. It also matches 

the code rate of CIRC: 0.75 for Cross Interleaved Reed Solomon Code (CIRC), versus 0.74 for 

the decoder. Also, it  is  a hardware economical  scheme. MATLAB simulations shows that the 

burst error rate goes up from 270 for Reed-Solomon Product Code (RSPC)+Cross Interleaved 

Reed Solomon Code (CIRC) subsystem, to more than 400 for Cross Interleaved Reed Solomon 

Code (CIRC)  and the encoder.  Table  7  and Table 8 show some simulation  results  for  this 

scheme.

No. of errors Failures
270 2
300 45
400 86

Table 7 Response to burst errors for Reed-Solomon Product Code (RSPC)+Cross Interleaved 

Reed Solomon Code (CIRC)

No. of errors Failures
400 7
450 17
500 26

Table 8 Response to burst errors in Scheme 2
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In this scheme, we use 2-error correcting RS decoders. The scheme could be hardware 

expensive scheme in terms of number of decoders used(126 in this case). However, the 

throughput of  decoder based on this scheme is so high that we can fold computations to 

use fewer processors, and still do better than the ECMA data rate. FPGA prototyping of 

one decoder with Є=5 and folded architecture gave throughput as 125 Mbyte/sec, whereas 

fastest  commercial  CD-ROM data rate  has throughput of upto 11 Mbyte/sec (source: 

wikipedia).  If  implemented  in  ASIC, the throughput  performance is  only expected to 

improve.

Application to DVD-R

The Reed Solomon class of codes can also be applied to evolve encoding and decoding for DVD-

ROM. This particular application of the new coding scheme also brings out the fact that taking a  

bipartite graph G from a higher-dimensional projective space can be advantageous in terms of 

better rate and better error correction capacity.

Present DVD-R Error correction blocks

The details of the ISO/IEC standard implementation have been known and an overview has been 

provided  for  the  main  error  correcting  block,  which  will  be  used  to  derive  a  new correcting  

scheme. The data received from the host, called Main Data, is formatted in a number of steps,  

before being recorded on the disk. It is transformed successively into following.

• A Data Frame,

• A Scrambled Frame,

• An ECC Block,

• A Recording Frame, and

• A Physical Sector.

Data Frames

A Data Frame consists of 2064 bytes arranged in an array of 12 rows, each containing 172 bytes. 

The first row starts with three fields spanning 12 bytes interval, which is followed by 160 Main 

Data bytes. The next 10 rows each contain 172 Main Data bytes. The last row contains 168 Main  

Data bytes, followed by four check bytes of Error Detection Code (EDC). Thus there are 2048 

bytes of Main Data in each Data frame of size 2064. 

Scrambled Frames
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The 2048 Main Data bytes are later scrambled. Scrambling bytes are generated with a Linear 

Feedback Shift Register (LFSR), and each data byte is XOR-ed with a corresponding scrambling 

byte.

ECC Block

Referring to  Figure 4, an ECC Block is formed by arranging 16 consecutive data frames, after 

scrambling, in an array of 192 rows (402) of 172 bytes (404) each. To each of the 172 columns, 

16 bytes of parity of an outer code (406) are added. This results in a block having 208 rows 

having 172 bytes each. To each resulting 208 rows, 10 byte of parity of an inner code (408) is 

added. Thus a complete ECC Block comprises 208 rows of 182 bytes each. The bytes of this  

array are identified as Bi,j, where i is the row number and j the column number. Thus the ECC 

block is nothing but a Reed Solomon Product Code, with the inner code being a RS (182,172,11) 

code, and the outer code being a RS (208,192,17) code.

Recording Frames

Sixteen  recording  frames  are  obtained  by  partitioning  an  ECC  block  into  16  frames,  while 

simultaneously doing interleaving. This is achieved by interleaving one of the 16 PO rows (406) 

as illustrated in Figure 4, at a time after every 12 rows of an ECC Block. Figure 5 brings out this 

partitioning graphically. The rate of this encoding can simply be calculated as 2064*16/37856 = 

0.8724.

Analysis of Error Correction in DVD-R

The main error correction in DVD-R is provided by the Reed-Solomon Product Code (RSPC) 

block, which consists of an inner RS (182,172,11) code and an outer RS (208,192,17) code. The  

inner code can detect and correct up to 5 errors ((11−1)/2), while the outer code can detect and 

correct 8 errors. 

Random Errors 

The minimum distance of the overall code is 17*11=187. Hence in a block of (208*182)=37856 

bytes, the number of random errors should be less than or equal to (187−1)/2=93, in order that 

the block be decoded completely. Further it has been pointed out that the number of errors in 8 

consecutive ECC blocks must be less than or equal to 280, for correct decoding. 

Burst Errors 

The Reed-Solomon Product Code (RSPC) used in DVDs is very robust towards burst errors. 

Since the data is arranged in a matrix fashion, as it can be seen in Figure 4, it is easy to calculate 

the worst case amount of errors than can be corrected by the inner and outer codes. 
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If erasures are not considered, then the inner code can correct a burst of 5 errors, while the outer 

code can correct a burst of 8 errors. The biggest burst of errors that we can be corrected in the 

product code can be derived as follows.

• 8 rows of 182 bytes can be allowed to get completely corrupted. Then, these will be detected 

and corrected by the outer code’s decoders, which operate on columns of the matrix.

• Further, an additional 5 bytes can be allowed to get corrupted in the row above and below the 

set of 8 rows. Since inner code decoding happens first, these errors will be corrected by the inner  

code’s decoders,  after  which the outer code’s decoders can correct  the remaining 8 rows of  

contiguous corrupted data.

It  is  clear  that  without  considering erasure decoding,  8*182+5*2=1466 errors  can still  be still 

detected and corrected in a burst, in one block of 37856 bytes. If two ECC blocks are placed back 

to back, the number of errors that can be detected and corrected increases. Another 8 rows of 

182 corrupt bytes can be added in ECC block 1, 5 bytes before these 8 rows (corrected by inner 

codes), 8 rows of 182 corrupt bytes in ECC block 2 and 5 bytes after these 8 rows. This gives a 

total of 8*2*182+5*2=2922 errors’ burst that can be corrected simultaneously.

If the inner decoding is allowed to mark as erasures, all the bytes of a codeword that has more 

errors that it can correct, the overall burst error correction can be increased even further. With  

only erasures, the outer code can correct 16 erasure symbols. Thus the total error correction 

capacity will be 16*2*182+5*2=5834 bytes. This is the absolute maximum burst that this stage 

can handle.

A New ECC Scheme for DVD-R

A  scheme  presented  here  is  based  on  expander-like  codes,  C.  This  scheme,  which  uses 

decoders for code C, can improve the error correction capacity of the DVD. In this scheme, the 

Reed-Solomon Product Code (RSPC) stage of the DVD encoding is substituted by encoders of 

code C.

The encoders are therefore employed during the transformation of Data Frames into Recording 

Frames. In order to be compliant with the rest of the standard, the encoded data must be taken 

as output as a block having same size as one recording frame, i.e. 2366(=13*182) bytes. Thus, 

2064 bytes per data frame has been taken as input, and need to output 2366 bytes in the format 

of recording frames.

35



Since higher rate and a better error correction capacity is required, there is a need to look at 

higher dimensions of PG. Higher dimensional of PG lead to better expansion properties, which 

leads to better error correction. In one such scheme, PG(8,GF(2)) is considered. This geometry 

contains  29−1=511  points  and  hyperplanes.  Further,  each  point  is  contained  in  28−1=255 

hyperplanes and similarly, each hyperplane contains 255 points. Thus, the degree of each vertex 

in the bipartite graph constructed will be 255, and the number of vertices in each partition of the 

bipartite graph will be 511. Each edge of the graph represents an 8-bit symbol. Thus, the total 

number of symbols in the overall code G8 will be 255*511=130305.

Each vertex of the graph is a Reed Solomon decoder which corresponds to a RS (255,239,17) 

code. Thus, each vertex can detect and correct 8 errors. The rate of the sub-code in this case is 

r=239/255 = 0.9373. The overall rate of the code is at least 2*r−1=0.8745, which is marginally 

better than the rate in the ISO/IEC standard for DVD encoding. The overall burst error correction 

capability without erasures will be 8*511=4088 bytes, which is much greater than 2922. Since 

2366*55=130130, 55 frames in one round of encoding can be taken as output. Hence 175 lesser 

source symbols have been chosen to encode, than required by G8. These remaining 175 source 

symbols will be set to 0, a padding byte value. These 175 padding bytes are later dropped after 

encoding,  to get  an overall  encoded block of  130130 bytes.  By using a systematic encoding 

matrix,  the  locations  of  these  padding  bytes  remain  intact  during  the  process  of  encoding. 

Because of using 175 lesser source symbols for encoding, the overall rate drops to 0.8732.

It is reasonable to assume pipelining while decoding, because of the application of DVDs in many 

real time applications like video etc. Thus, two frames of 130305 bytes put together can detect  

and  correct  a  burst  of  4088*2=8176  bytes.  This  number  is  quite  bigger  than  the  absolute 

maximum burst  of  5834 brought out  earlier.  Thus,  even if  erasures are not  considered,  at  a  

slightly higher rate, much better burst error correction capability is achieved.

Thus, at the price of extra hardware for decoding, and memory for storing the large frame sizes, a  

linear time decoder with an exceptional burst error correction capability can be obtained. As far as 

random  errors  are  concerned,  average  case  performance  will  easily  surpass  the  existing 

standard. The existing standard specifies that the number of random errors in 8 consecutive ECC 

blocks must be less than or equal to 280. The frame size of 130305 corresponds to approximately 

3.44 consecutive ECC blocks. Preliminary MATLAB simulation results show that around 1990 

random errors are always corrected in one iteration of the decoding itself.
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As a concluding note, the design of expander-like code to be used in DVD-R application is not  

limited to choice of RS (255,239,17) code. In fact, as the minimum distance increases from 17 to 

21 (i.e. RS(255, 235, 21) code), a burst error correction 511*2 more than 4088 can be obtained, 

that is, 5110, while the drop in overall code rate is just 0.03. If ‘r’ expander-like encoders are used 

simultaneously, and their outputs interleaved, then also the error-correction capability goes up by 

factor of ‘r’.

Application in Wireless Communication

These  codes  may  be  used  to  perform  adaptive  or  selective  encoding  of  data  in  wireless 

communication systems. Most digital wireless communication standards specify logical control 

channels  that  can  provide  feedback  on  channel  conditions  based  on  various  radio 

measurements. One of the challenges of land mobile communications is the time varying channel 

conditions caused by attenuation, fading and other changes of propagation environment.

Hence,  for  example,  if  the  SNR  of  channel  is  high,  then  only  one  set  of  RS  encoders 

corresponding to a side in bipartite graph of expander-like construction can be used to do one-

level encoding. Each RS encoder in such case works on a portion of block of inputs symbols.  

Sometime later, if and when SNR becomes poor, more powerful encoding can be done by using 

entire bipartite graph and RS code embedding into it, which has much better error correction 

capability. This way, the effect of adaptive multirate coding may be achieved.

The preceding description has been presented with reference to various embodiments of  the 

invention. Persons skilled in the art and technology to which this invention pertains will appreciate 

that  alterations  and  changes  in  the  described  structures  and  methods  of  operation  can  be 

practiced without meaningfully departing from the principle, spirit and scope of this invention.

Advantages of the invention

Choice of Projective Space

Extensive results have been given for the construction derived from P(5,GF(2)), but in no way it is  

restricted to this dimension. Major reason for picking up this dimension was that the degree of  

each vertex in the graph derived is 31, which is very close to the F2 frame size of 32 bytes in CD-

ROMs. Thus, the choice of this dimension would help in benchmarking the performance of code 

against an industry standard.

Advantages of Using PG Graphs
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If one looks only at the decoding algorithm and construction of the graph, it would seem that any  

simple, regular bipartite graph would be a good candidate for having good expander codes and 

corresponding decoders. Some of the reasons for using projective geometry based expander 

codes are as follows.

As discussed, the mapping of vertices to points and hyperplanes enables one to use several 

projective geometry properties for disproving the existence of certain bipartite subgraphs of a 

fixed minimum degree. This strategy leads to finding the minimum number of vertices required to 

form a complete  bipartite  subgraph  of  a  given  minimum degree.  This  number  of  vertices  is 

required to calculate the bounds for error correction capability of the overall code. Thus, it is not  

needed to  utilize  the  Zemor  bound for  computing  the  minimum distance  .  Also,  the  bounds 

obtained in this manner are better than the Zemor bound. Furthermore, Zemor had restricted the 

subcodes to be constrained by d ≥ 3λ, λ being the second largest eigenvalue of the graph. The 

present invention has no such restriction.

The use of  projective geometry  also helps in  developing a  perfect  folded architecture of  the 

decoder  for  hardware  implementation.  Folded  architectures  enable  efficient  utilization  of 

processors and memories, without any significant increase in scheduling complexity.

Again, as shown earlier, the probability of the errors getting locked in a subgraph during iterative 

decoding  is  very  less.  This  translates  to  saying  that   probability  of  occurrence  of  infinite 

oscillations due to errors while decoding is extremely low .

Advantages of Expander-like Codes

This  choice  of  higher  dimension  has  some  significant  advantages  over  using  2-dimensional 

projective space for code construction. 

1. The  projective  geometry  based  graphs  that  we  have  considered  for  designing  the 

expander-like codes are good Ramanujan graphs. Ramanujan graphs are graphs that 

follow the second eigenvalue upper bound property: λ2 ≤ 2    where d is the degree 

of a regular graph. A tight lower bound on the expansion coefficient of balanced, regular 

bipartite graphs is provided as: 
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Where, λ2 is the second largest eigenvalue of adjacency matrix of the bipartite graph. 

Since balanced, regular bipartite graphs are used, this lower bound holds for our graph. 

One can hence deduce from this bound that smaller the second eigenvalue is, higher the 

expansion coefficient consequently is, and hence better the expansion properties of the 

graph  is.  This  in  turn,  indirectly  from  expansion  properties  or  otherwise,  leads  to 

construction of good expander-like codes. 

The importance of Ramanujan graphs for being considered as better expanders stems 

from an earlier result by Alon. In this result, Alon proves that for any arbitrary family of d-

regular graphs (need not be Ramanujan graph), their second eigenvalue is asymptotically 

lower bounded with the same threshold:  2  X   Hence Ramanujan graphs as a 

particular subclass of d-regular graphs are important because they reach this threshold, 

thus having higher expansion coefficients, and hence are better expanders. 

To  establish  PG  as  good  Ramanujan  graph,  it  has  been  shown  that  the  second 

eigenvalue of the adjacency matrix of corresponding PG-based graph is small enough, 

than it upper bound. The second eigenvalue λ2 of adjacency matrix made out of point-

hyperplane incidence of a projective space can be derived as:   

Where, q is the base prime and t is the dimension of the projective space. In the present 

invention, q = 2 and t = 5, hence λ2  = 2(t−1)/2 = 4. The corresponding Ramanujan upper 

bound on 

λ2 is 2 X .

Since the number of points incident on a hyperplane in a t-dimensional projective space 

is 2t. This upper bound turns out to be 11.31 in our case, and ignoring the subtraction of 

1, approximately 2(t+2)/2 in general. Now the actual value of λ2 is sufficiently smaller than 

the  upper  bound  in  general;  almost  always  by  an  approximate  factor  of  . 

Hence PG bipartite graphs are good Ramanujan graphs in general.

 

2. The usage  of  higher  dimensional  projective  space  than  2  leads  to  better  expansion 

properties/coefficient.  The lower bound on expansion coefficient  of  t-dimensional  PG-

based bipartite  graph  turns  out  to  be  1  −  2−(t+1).  Hence  as  t  increases(dimension  of 

projective space), the lower bound on expansion coefficient asymptotically tends to 1, 

and hence perhaps using higher dimensional PG bipartite graph leads to construction of 
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better expanders. Similar advantages of using higher-dimensional projective space have 

been found in other applications of this coding scheme.

3. The decoding  complexity  of  a  parallel  decoding  in  schedule  based on  expander-like 

codes has RS subcode decoding as the major contributor. If almost same (n,k,n-k+1) RS 

codes are chosen to  compare  expander-like  codes,  versus  codes designed using  n-

dimensional  projective  space,  the  overall  (decoding)  computation  complexity  will  be 

mainly determined by the block length of the code. If it is assumed that the RS subcode 

length used in present codes is (2n−1), then the block length for codes is (2n−1)×(2n+1−1) 

=  O(22n)  =  O(subcode  length2).  For  2-dimensional  projective  space,  the  closest 

comparable subcode length is (2n +1). In such a case, the block length becomes (2n + 1) 

× (22n + 2n + 1) = O(23n) = O(subcode length3). The data in Table 9 reinforces this point.

4. From Table  9,  it  is  further  clear  that  using  similar-sized  RS-decoders,  expander-like 

codes constructed using higher-dimensional PG(where n ≠ 3 and 4) have better error 

correction capability than those constructed using 2-d PG. During comparison, the length 

of RS subcodes has been kept similar (2n -1 vs 2n+1). For n = 3 and 4, having subcode 

rate > 0.5 is not possible, while simultaneously assuming subcode distance  Є> 3 * λ 

(Zemor’s  decoding constraint).  For n = 5 onwards,  while the rates for 2-d PG based 

expander-like codes are better than their n-d counterparts by a factor of 2.5 or less, the 

(%) error correction capability(and hence minimum relative distance) is consistently better 

for  the  n-d  counterparts  (touching  almost  90  times  better).  As  a  side  note,  this 

observation also brings out  the classical  tradeoff  between rate  and distance (relative 

distance) of any class of codes.

5. Since the degree of graph used are of nature (2n -1), RS codes can be used which are 

not shortened. Whereas, in case of projective plane based graph codes, (2n + 1) almost 

always leads to usage of shortened RS codes. Using shortened RS codes reduces the 

code rate of the subcode, and hence the expander construction as well.

 

6. Since each decoder is RS decoder, it can also be used in sense of optimum erasure 

code decoder, since RS codes are optimum erasure correction codes. Then, the burst 

error correction capability gets doubled for each decoder.
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Table 9 Comparison of n-dimensional vs 2-dimensional PG-based Expander-like Codes
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Choice of Reed-Solomon Code (RS Code)

The parameters of the RS code have been chosen to enable efficient schemes that could be 

applicable to data storage systems. In case of application to CD-ROM, since the smallest symbol 

size is a byte, RS code of size 255 has been used. 

The degree of each vertex in the bipartite graph used there being 31, the RS code size has to be 

shorten to 31. This shortening is done by dropping the message symbols from 32 onwards. More 

specifically, if the minimum distance is Є, symbols 32 to 255− Є +1 are assumed to be zero. 

In turn, the minimum distances are chosen to get the overall rate of code to match the rate used 

by applications such as the CD-ROM encoding scheme. Additional error correction capability is  

achieved by adding a small amount of interleaving.
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WE CLAIM

1. A method for error control coding for a digital storage device or packet data transmission;  

the said method is characterized by use of a symbol error correcting code based on at 

least one higher dimensional projective geometry graph followed by mapping the symbols 

of the error correcting code to the edges of the said one or more graph, wherein the said 

higher  dimensional  projective  geometry  based  graph  is  generated  by  the  computer 

implemented steps of:

a. defining  the  projective  space  wherein  the  said  projective  space  of  dimension  d 

consists of one dimensional subspaces of a (d+1)-dimensional vector space and an 

m-dimensional  subspace  of  the  projective  space  consists  of  all  one  dimensional 

subspaces of a (m+1)-dimensional subspace of the vector space;

 

b. deriving the higher dimensional projective geometry based graph from the incidence 

relations  of  said  projective  space,  wherein  the  higher  dimensional  projective 

geometry based graph is having at least two partitions and each partition is having at 

least one vertex;

c. associating one vertex of the graph with each m-dimensional subspace and one with 

each (d-m-1)-dimensional subspace of the said projective space wherein each vertex 

of the graph has a fixed degree and the number of vertices in each partition of the  

graph are equal; 

d. connecting all vertices from  one partition with other vertices from the other partition 

by an edge if the corresponding subspaces are incident on each other; and

 

e. decoding  all  the  symbols  by  at  least  one  vertex  in   one  partition  of  the  higher 

dimensional projective geometry based graph, wherein the symbols correspond to 

the edges incident on the vertex; and coding for error control in a communication and 

digital storage device by use of a symbol error correcting code based on at least one 

derived higher dimensional projective geometry graph.

 

2. A method as claimed in claim 1, wherein the higher dimensional projective geometry 

based graph is a bipartite graph.
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3. A method as claimed in claim 1, wherein the error correcting code is an expander-like 

code having reed solomon (RS) code as component code.

4. A method as claimed in claim 1,  the symbol error  control  coding is based on higher 

dimensional projective geometry based graph, wherein the higher dimensional projective 

geometry is at least two in numbers. 

 

5. A method as claimed in claim 1, the symbol error correcting codes are provided for large 

data blocks in digital storage device or packet data transmission wherein the length of 

data blocks is at least one thousand symbols.  

6. A method as claimed in claim 1, wherein the digital storage device is selected from the 

set of disc based secondary digital storage devices comprising RAID systems, HDD, CD-

ROM and DVD-ROMs.

7. A method as claimed in claim 1, wherein the symbol error correcting code is employed to 

detect and correct  erroneous symbols of at least one said digital storage device.   

8. A method as claimed in claim 1, wherein the symbol error is selected from burst error or  

random error.

9. A system for error control coding in a digital storage device or packet data transmission; 

the said system comprising at least one decoding device, at least one digital storage 

device  and  at  least  one  memory  element  communicatively  coupled  with  each  other, 

wherein the said system is characterized in using a symbol error correcting code based 

on at least one higher dimensional projective geometry graph followed by mapping the 

symbols of the error correcting code to the edges of the said one or more graph, wherein 

the said higher dimensional projective geometry based graph is generated by same steps 

as in claim 1.

10. A system as claimed in claim 9, wherein the said decoding device is a reed solomon (RS) 

decoder.

 

11. A system as claimed in claim 10, wherein the said reed solomon (RS) decoder is having 

ability to skip decoding if more than correctable errors are detected.
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12. A system as claimed in claim 9, wherein the error correcting code is an expander-like 

code having reed solomon (RS) code as component code.

13. A system as claimed in claim 10, wherein the reed solomon (RS) decoder are capable of 

handling shortened reed solomon (RS) codes.

14. A system as claimed in claim 9,  wherein the higher dimensional  projective geometry 

based graph is a bipartite graph;  

15. A system as claimed in claim 9,  the symbol  error control  coding is  based on higher  

dimensional projective geometry based graph, wherein the higher dimensional projective 

geometry is at least two in number.

  

16. A system as claimed in claim 9, the symbol error correcting codes are provided for large 

data blocks in digital storage device or packet data transmission wherein the length of 

data blocks is at least one thousand symbols. 

17. A system as claimed in claim 9, wherein the digital storage device is selected from the 

set of disc based secondary digital storage devices comprising RAID systems, HDD, CD-

ROM and DVD-ROMs.

18. A system as claimed in claim 9, wherein the symbol error correcting code is employed to 

correct at least one error of at least one said digital storage device.   

19. A system as claimed in claim 9, wherein the symbol error is selected from burst error or 

random error.

20. A system as claimed in claim 9, wherein the system for symbol error control coding for 

digital storage device or packet data transmission has a parallel and symmetric design. 

21. A system as claimed in claim 9, wherein the memory element is utilized to store the 

address space in the required order of computation.

22. A  system  and  method  substantially  as  herein  described  with  reference  to  and  as 

illustrated by the accompanying drawings.
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ABSTRACT

Method and System for Error Control Coding Using Expander-like Codes

A method and system for error control coding using expander-like codes constructed from higher 

dimensional projective geometry based graphs is presented. The invention provides a method 

and system for error control coding which has exceptional random and burst error detection and 

correction capabilities for large data blocks in storage devices and in communication such as CD 

ROM, DVD ROM etc.
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Decode data from digital storage

Detect error while decoding data from digital storage

Employ error controlling code/ error correction code on digital storage

Correct decoding error of digital storage

Encode and record data on digital storage
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202

Derive the higher dimensional projective geometry based graph from 
projective space

Associate one vertex of the graph with each m-dimensional subspace and 
one with each (d-m-1)-dimensional subspace of the said projective space

Connect one vertexvertices from one partition with the other vertexvertices 
from the other partition using incidence relations of the projective space

Decode symbols usingby each vertex in at least one partition of the higher 
dimensional projective geometry based graph

Define the projective space
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Figure 5   
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