
Applications of Projective
Geometry in Computing and

Communications

Dual Degree Project Stage-III Report

Submitted in the Partial Fulfillment of the

Requirements for the award of Dual Degree

in

Electrical Engineering

by

Abhishek Patil

Roll No: 04D07022

Under the Guidance of

Prof. Sachin B. Patkar, Prof. D. K. Sharma and Dr. B. S.
Adiga

Department of Electrical Engineering

Indian Institute of Technology

Mumbai - 400076

Approval Certificate

Department of Electrical Engineering ,

Indian Institute of Technology,

Bombay Powai, Mumbai-76

The DDP Third stage report titled “Applications of Projective Geometry
in Computing and Communications” submitted by Abhishek Patil (Roll no.
04D07022) was done under my guidance and may be accepted for evaluation.

————————–

Date: 23rd June,2009 Prof. Sachin Patkar

i

Acknowlegdement

I would like to thank Prof. S. Patkar for his guidance and support during
the course of this project. I would also like to thank Prof. H. Narayanan, Prof.
D. K. Sharma and Dr. B. S. Adiga for their useful insights.

I would like to acknowledge that the work on expander codes has been done
in partnership with Swadesh Choudhary and Yash and I am thankful to both
of them.

I also want to thank Mr. Nachiket Gajare and Mr.Hrishikesh Sharma for
reviewing my work and providing constructive feedback, and Mr. Balamurali,
Tata Consultancy Services, Bangalore, for supporting this work under the TCS
Project Code 1009298.

Date:23rd June,2009 Abhishek Patil

04D07022

ii

Contents

Table of Contents iii
1 Introduction . 1
2 Karmarkar’s Architecture . 3

2.1 Projective Spaces Over Finite Fields 3
2.2 LU Decomposition . 4
2.3 4-D Projective Geometry over GF(2) 6

2.3.1 Frobenius Automorphism 8
2.3.2 Shift Automorphism 8

2.4 Perfect Matching Sequences 9
3 Problem-mapping strategies . 10

3.1 Algorithm Mapping Scheme I 10
3.1.1 Data Distribution 10
3.1.2 Operations Involved 11
3.1.3 Distribution Of Computations 12
3.1.4 Details of 0-th iteration 14
3.1.5 Design Analysis 15

3.2 Algorithm Mapping Scheme II 15
3.2.1 Distribution of Computational Load 15
3.2.2 Details of 0-th iteration 16
3.2.3 Design Analysis 18

3.3 Simulation Results . 18
3.4 Conclusions . 21

4 Perfect Difference Networks . 22
4.1 Perfect Difference Sets . 22
4.2 Networks based on PDS 22
4.3 Routing Algorithms . 23
4.4 Edge Expansion of Perfect Difference Networks 25
4.5 Conclusions . 27

5 Expander Graphs and Expander Codes 28
5.1 Characteristics of a Linear Code 28
5.2 Expander Graph . 28
5.3 Construction of Expander Codes 28
5.4 Sipser and Spielman’s Decoding Algorithm 29
5.5 Zemor’s Construction and Decoding Algorithm 30

iii

5.6 MATLAB Implementation: Code Construction 31
5.7 MATLAB Implementation: Results 32
5.8 Conclusions . 33

Bibliography . 34
A Appendix . 35

A.1 Generation of GF(25) from GF(2) 35
A.2 Projective Geometry Structure 36
A.3 Graph for expander codes 42

iv

List of Figures

1 Scheme I: Diagonal block communication 11
2 Scheme I: Execution of 0-th iteration on (0, 1, 2, 5, 11, 18, 19) (steps

1-9) . 12
3 Scheme I: Execution continued (steps 10-16) 13
4 Scheme II: Diagonal block communication 16
5 Scheme II: Execution of 0-th iteration on bus (0, 1, 2, 5, 11, 18, 19) 17
6 Perfect Difference Network with 7 nodes [3] 23
7 (a)Complete Graph, G1 (b)Perfect Difference Network, G2 25
8 (a)Cut shown in Complete Graph, G1 (b)Lines in PG with points

on either side of the cut(marked with *) (c)Cut in Perfect Differ-
ence Network, G2 . 26

v

List of Tables

1 Transfer of diagonal data, 0th iteration 14
2 Block Sizes and Relative Time Periods 19
3 Total communication and computation cycle count for the three

schemes . 19
4 Total time required for the three schemes 20
5 Average Active Processor Cycles 20
6 Normalized Perfect Difference Sets [3] 23
7 Change in parameters of C with variation in minimum distance

of subcode . 32
8 Elements of GF(25) . 35
9 Points of P(4,GF(2)) . 36
10 Planes of P(4,GF(2)) and the mappings S1, . . . , S7 41
11 Points of P(5,GF(2)) . 43

vi

Abstract

Projective geometry(PG) based graphs have found many applications in the
areas of computing and error-control coding. Firstly, we look at the use of
PG in the design of processor-memory interconnection architectures. We have
used projective subspaces to create novel schemes to solve the problem of LU
decomposition. We have simulated these architectures and compared them with
conventional schemes. In this report, we present our findings. Then, we study
a new family of networks based on PG. We understand how the regularity and
symmetry in their structure is used to develop communication primitives for
them. Finally, we look at expander codes, which are based on expander graphs,
and present our construction of such codes based on graphs obtained using
PG. Through simulations, we have found that these codes perform better than
the theoretical bounds suggested in literature. We present the results of these
simulations in this report.

1 Introduction

Projective geometry and graphs based on projective spaces are being extensively
studied for many different applications. We look at the use of projective geom-
etry in computations and development of good error-correcting codes.

For speeding up computations, it has become necessary to look towards parallel
architectures. The two major problems encountered in parallelising computa-
tions are

• Load balancing: Distributing the computations in such a way that each
processor gets equal computational load.

• Memory-access conflicts: In parallel architectures, many situations
arise when two or more processors need to access the same data and this
leads to memory-access conflicts. These conflicts have to be resolved on a
case-to-case basis by the programmer.

In [2], Karmarkar suggested a novel processor-memory interconnection archi-
tecture based on finite projective geometry. The processors and memories are
associated with elements of these geometries and the interconnections are based
on the incidence relations between these elements. The computations assigned
to a processor also depend on the geometry and incidence relations and because
of the symmetric nature of the geometry, the computational load on each pro-
cessor is balanced. The automorphisms governing these geometries are used to
develop ’perfect-access patterns’ and ’perfect-access sequences’, which ensure
that all the processors and memories are simultaneously involved in communi-
cation of data without any conflicts. Algorithms to solve various problems on
this architecture can be developed using these properties.

In the first part of this report, we take a closer look at Karmarkar’s archi-
tecture and then focus on the problem of LU decomposition. We have devised
schemes for distribution of data in the memory modules and distribution of com-
putations on different processors based on a 4-dimensional projective geometry.
In this report, we have evaluated two different approaches based on the amount
of communication and computation required for solving a fixed problem. A
comparison is also drawn with parallel algorithms based on conventional mesh
architecture to judge the performance of these approaches.

We then take a look at another projective geometry based interconnection pat-
tern called Perfect Difference Network, which were suggested by Parhami and
Rakov in [3]. We look at some of the important features of these networks such
as a constant diameter of 2, smaller node degree and higher bisection width.
We also study the communication primitives suggested in [4].

In the final part, we investigate the use of projective geometry in error-correcting
codes, especially in expander codes. We study the construction of regular bipar-
tite graphs based on projective geometry. The findings from simulations carried

1

out on such expander codes have also been reported.

The organisation of this report is as follows. The next section deals with the
study of Karmarkar’s architecture and development of the geometry and its
automorphisms needed for LU decomposition. In the third section, we look at
the approaches we have developed to solve LU decomposition on Karmarkar’s
architecture. We also discuss our results from the simulations and present a com-
parative study. The following section deals with perfect difference networks, its
properties and study of some communication algorithms in these networks. In
the last section, the work by Sipser and Spielman, and Zemor on expander codes
is studied and a software implementation of these codes has been discussed. The
appendix, at the end of the report, details the construction of finite fields and
projective spaces used in our implementations.

2

2 Karmarkar’s Architecture

As stated before, Karmarkar’s architecture defines the interconnection pattern
between processors and memories based on finite projective geometry. A fi-
nite geometry of dimension d consists of a set of points S, which form the
zero-dimensional subspaces. These points can be grouped together to form sub-
spaces of higher dimensions (1, . . . , d). The subspaces of dimension 1 are called
lines, 2-dimensional subspaces are called planes and the d − 1-th dimensional
subspaces are called hyperplanes. Once the appropriate geometry for a problem
has been identified, a pair of dimensions dm and dp are chosen. The processors
are associated in one-to-one correspondence with the subspaces of dimension
dp while the memories are associated with subspaces of dimension dm and a
connection between a processor and memory is established if the corresponding
subspaces have a non-trivial intersection.

The access of memory is done in a structured fashion. By exploiting the symme-
try of the geometry, it is possible to identify processor-memory pairs, involving
all the processors and memories, which can communicate in a conflict-free man-
ner. Each such set of processor-memory pairs forms a perfect-access pattern. A
collection of all such patterns together forms a perfect-access sequence, which
ensures that every processor gets to communicate with every memory it is di-
rectly connected to.

For the distribution of computational work between processors, first the problem
is broken down into atomic computations and operations that can be carried
out parallely are considered together. Then the memories, which contain the
operands needed for a particular operation, are identified and the operation is
assigned to the processor connected to these relevant memories, which is unique
for most operations and depends on the problem and the underlying geometry.
The symmetry of the geometry ensures that a balance is maintained in the dis-
tribution of load among the processors. Thus, the data required for computation
is brought in parallely using parallel access sequences and the computations are
then carried out parallely on each processor, ensuring efficient use of resources
while avoiding conflicts and maintaining load balance.

2.1 Projective Spaces Over Finite Fields

In this section, we look at how the projective spaces are generated from finite
fields.

Consider a finite field F = GF(s) with s elements, where s is a power of a
prime number p i.e. s = pk, k being a positive integer. A projective space of di-
mension d is denoted by P(d, F) and consists of one-dimensional subspaces of the
(d + 1)-dimensional vector space over F (an extension field over F), denoted by
F d+1. Elements of this vector space are of the form (x1, . . . , xd+1), where each
xi ∈ F . The total number of such elements are s(d+1) = pk(d+1). An equivalence

3

relation between these elements is defined as follows: two non-zero elements x,
y are equivalent if there exists an element λ ∈ GF(s) such that x = λy. Clearly,
each equivalence class consists of s elements of the field (s−1 non-zero elements
and 0) and forms a one-dimensional subspace which corresponds to a point in
the projective space. Points are the zero-dimensional subspaces of the projective
space. Therefore, the total number of points in P(d, F) are

P (d) =
number of non-zero elements in the field

number of non-zero elements in one equivalence class
(1)

=
sd+1 − 1

s− 1
(2)

An m-dimensional subspace of P(d, F) consists of all the one-dimensional sub-
spaces of an (m+1)-dimensional subspace of the vector space. The basis of this
vector subspace will have (m + 1) linearly independent elements, say b0, . . . , bm

and every element of the subspace can be represented as a linear combination
of these basis vectors.

x =

m∑

i=0

αibi, where αi ∈ F (s) (3)

Clearly, the number of elements in the vector subspace are s(m+1) and the num-
ber of points in the m-dimensional projective subspace are given by P (m). This
(m+1)-dimensional vector subspace and the corresponding projective subspace
are said to have a codimension of r = d−m (the rank of the null space of this
vector subspace).

Let us denote the collection of all the l-dimensional projective subspaces by
Ωl. Now, Ω0 represents the set of all the points of the projective space, Ω1 is
the set of all lines, Ω2 is the set of all planes and so on. To count the number
of elements in each of these sets, we define the function

φ(n, l, s) =
(sn+1 − 1)(sn − 1) . . . (sn−l+1 − 1)

(s− 1)(s2 − 1) . . . (sl+1 − 1)
(4)

Now, the number of m-dimensional subspaces of P(d, F) is φ(d, m, s). For ex-
ample, the number of points in P(d, F) is φ(d, 0, s). Also, the number of l-
dimensional subspaces contained in an m-dimensional subspace (where 0 ≤ l <

m ≤ d) is φ(m, l, s), while the number of m-dimensional subspaces containing a
particular l-dimensional subspace is φ(d− l − 1, m− l− 1, s).

2.2 LU Decomposition

We now look at the kind of computations that are involved in LU decomposition
and justify our choice of 4-dimensional projective geometry as the underlying
architecture.

4

Consider an N × N matrix A. The LU decomposition of A is its factoriza-
tion into an upper triangular matrix, U and a lower triangular matrix L such
that

A = LU (5)

Rather than working with individual elements, we perform the LU decompo-
sition by breaking A into blocks, which are then assigned to processors. The
algorithm that we consider for mapping to Karmarkar’s architecture is the block-
level generalization of trailing matrix update algorithm, which is described be-
low:

1: for i=0:B-1 do
2: Ai,i ← blockLU(Ai,i)
3: for j=i+1:B-1 do
4: Lj,i ← Aj,iU

−1
i,i

5: end for
6: for k=i+1:B-1 do
7: Ui,k ← L−1

i,i Ai,k

8: end for
9: for j=i+1:B-1 do

10: for k=i+1:B-1 do
11: Aj,k ← Aj,k - Lj,iUi,k

12: end for
13: end for
14: end for

The LU decomposition of a matrix is not unique. However, if we impose the
constraint that all diagonal elements of L should be 1, then the decomposition
becomes unique.

This algorithm has two advantages. Firstly, it offers a lot of parallelism, which
can be exploited during load distribution. The updates at line (11) of the algo-
rithm are independent of each other and can be carried out parallely on different
processors. Secondly, it works inplace and the L and U matrices are generated
and stored in the lower and upper halves of A respectively. Hence, no additional
memory is required to store L and U and the memory requirements are minimal,
which becomes significant when large matrices are being considered.

Clearly, the dominant operation being performed repeatedly in this algorithm
is

Aj,k ← Aj,k − Lj,iUi,k (6)

From this equation, we see that for the update of Aj,k, we need the matrices
Lj,i and Ui,k, which, when created, occupy the same memory position as Aj,i

and Ai,k respectively. So, for the computation, we only need blocks that have
one index in common with the updated block. This property is exploited in
adapting this algorithm for the Karmarkar architecture.

5

The basic concept proposed by Dr. Karmarkar in his paper [2] is as follows.
The indices of the blocks of the matrix are mapped to points of the projective
geometry. The memory modules are associated with the lines, while the pro-
cessors are associated with the planes. The interconnection pattern depends on
the incidence relations of the lines and planes of the geometry. The block Ai,j

is stored in the memory module corresponding to the line joining the points
associated with i and j.

Each operation of the form shown in equation 6 can be characterised by the
triplet (i, j, k) of indices of the elements involved, where i is the iteration num-
ber and j, k are the indices of the updated block. Now, in the geometry, any
general triplet of points determines a plane. Hence, the computation involving
(i, j, k) is assigned to the processor associated with the plane determined by
the points corresponding to i, j and k. In performing this computation, this
processor needs to interact with three memory modules, containing one of Aj,i,
Aj,k and Ai,k, and all these modules are connected to it directly according to
our interconnection pattern. In the different approaches we have studied, these
concepts have been slightly modified. However, the choice of the geometry is
still governed by these considerations.

In a projective space, the number of m-dimensional subspaces is equal to the
number of subspaces with codimension m+1. Therefore, for a symmetric scheme
involving the same number of processors and memory modules, we need the ge-
ometry to have same number of lines and planes, i.e. d = (2+1)+1 = 4. Thus,
the most appropriate geometry for this problem is the 4-dimensional projective
geometry.

2.3 4-D Projective Geometry over GF(2)

We now look at the smallest 4-D projective geometry, generated over GF(2)
containing 32 elements. First, the extension field GF(25) is created using the
following polynomial of degree 5 over GF(2):

x5 + x2 + 1 = 0

By definition, the root of this equation, x, is one of the elements of the extension
field and is also a generator of the extension field. We take successive powers
of x and find their remainders when divided by x5 + x2 + 1 to generate the
successive elements of the field. The generated field and its polynomials are
shown in table 8 in the appendix.

Now, consider the one-dimensional subspaces of this 5-dimensional vector space.
Each of them represents a point in P(4,GF(2)). As discussed earlier, each one-
dimensional subspace will have two elements, 0 and a non-zero element. Hence,
each non-zero element of the field will give rise to one point in the geometry,
thus giving us a total of 31 points in the field. In the following discussion, each

6

point (of the form (0, xq), q ∈ 0, 1, . . . , 30) is represented by the index q of the
non-zero element.

The number of points on each line is φ(1, 0, 2) = (22 − 1) = 3. Also, there
exists a line between any two distinct points. To obtain a line, we start with
any two points, say 0 and 1, and combine the two one-dimensional subspaces
associated with these points and find all the linear combinations of the elements
involved. This generates a 2-dimensional subspace, which represents a line in
the projective space. The third point on the line can be obtained by studying
the elements generated as linear combinations of the starting elements. For ex-
ample, on the line joining 0(0, 1) and 1(0, x), the third point is 18(0, x+1). The
other line-point incidence relations can be generated using the automorphisms
of the geometry. This process is described in the next section. In the following
discussion, each line will be represented by a triplet indicating the three points
that lie on it.

Next, we look at the generation of planes. The number of points on each plane
is φ(2, 0, 2) = 7, which is also the number of lines on a plane(φ(2, 1, 2) = 7).
Further, there exists a plane between any two distinct lines that intersect. To
form a plane, we start with two intersecting lines, say (0, 1, 18) and (0, 2, 5), and
combine the corresponding 2-dimensional subspaces to form the 3-dimensional
subspace representing the plane containing the two lines. The other points on
the plane are obtained by studying the 3-dimensional subspace. For example,
the plane containing (0, 1, 18) and (0, 2, 5) also contains the points 11 and 19.
As in the case of lines, we use automorphisms to generate the other planes.
Also, for further reference, we will use a 7-tuple (indicating the 7 points) for a
plane.

A few important details about P(4,GF(2)) should be noted before we proceed
further.

• There are 31 points, 155 lines (φ(4, 1, 2)) and 155 planes (φ(4, 2, 2)) in the
geometry. Also, there is a unique line passing through two distinct points
and a unique plane passing through two lines intersecting in a point.

• Each line has 3 points on it while a plane has 7 points.

• Each plane has 7 lines (forms a Fano plane) and exactly 3 lines belonging
to one plane pass through any point.

• A line is incident on 7 different planes.

• A point is present on 15 different lines (φ(3, 0, 2)) and 35 different planes
(φ(3, 1, 2)).

7

2.3.1 Frobenius Automorphism

A field automorphism is a bijective ring homomorphism from the field to itself,
i.e., it is a one-to-one, onto function g : F → F such that

g(a + b) = g(a) + g(b) ∀ a, b ∈ F (7)

g(ab) = g(a)g(b) ∀ a, b ∈ F (8)

From the definition, we have g(0) = 0 and g(1) = 1. Such a mapping preserves
the structure of the field.

One such automorphism is the Frobenius map given by

Φ(x) = xp (9)

where x ∈ F and p is the characteristic of the field, which is 2 in our case. As
there is a one-to-one correspondence between the elements of the field and the
points, this map is also an automorphism of the projective space. In P(4,GF(2)),
the application of the automorphism corresponds to doubling of the index rep-
resenting each point (i.e. finding x2) and taking its remainder modulus 31, since

x25

= x ⇒ x31 = 1 ∀ x ∈GF(25) (for any field GF(q), xq−1 = 1 ∀ x ∈GF(q)).
Using Frobenius map repeatedly, in addition to x2(Φ(x)), we get other auto-

morphisms like x22

(Φ2(x)), x23

(Φ3(x)) and x24

(Φ4(x)) after which they begin
to repeat. So in all, we get 5 automorphisms using Frobenius map.

2.3.2 Shift Automorphism

In the geometry, the point i corresponds to the one-dimensional subspace (0, xi),
where x is a root of the polynomial x5+x2+1 over GF(2). Consider the following
mapping:

Lx : (0, xi)→ (0, xi+1), ∀ i ∈ 0, 1, . . . , 30 (10)

Clearly, the mapping Lx maps points from P(4,GF(2)) to itself, i.e.,

Lx(i) = i + 1 ∀ i ∈ 0, 1, . . . , 29 and Lx(30) = 0 as x25−1 = x31 = 1 (11)

Also, under this transformation, it is easy to verify that lines get mapped onto
lines, planes onto planes and in general, any k-dimensional subspace onto an-
other k-dimensional subspace. This map forms an automorphism of the projec-
tive space called shift automorphism. We can create higher order shift auto-
morphisms by repeatedly applying Lx. In all, there are 31 shift automorphisms
possible, L0

x to L30
x , after which they start to repeat.

Using the Frobenius and shift automorphisms and a starting line or plane, it
is possible to create the entire list of incidence relations. Consider the line
(0, 1, 18). Using Frobenius automorphisms, we get the lines (0, 1, 18), (0, 2, 5),
(0, 4, 10), (0, 8, 20) and (0, 16, 9). Applying the shift automorphisms on these,
each line gives rise to 31 lines, hence, giving us all the 155 (31 × 5) lines. Sim-
ilarly, we can obtain all the planes. The complete list of lines and planes is
shown in table 10 in the appendix.

8

2.4 Perfect Matching Sequences

Using the automorphisms, we develop perfect matching sequences, which are
bijective maps between lines and planes. This is possible because we have the
same number of planes and lines, both of which have been generated using the
same automorphisms. Of these, the mappings that are relevant to our work are
those that map a plane to one of the 7 lines that lie on it.

Consider the first sequence, S1 : Ω2 → Ω1.

S1(p) = La
x(Φb(0, 1, 18)), if p = La

x(Φb(0, 1, 2, 5, 11, 18, 19)) (12)

(The automorphism of a line or a plane is the set formed by the automorphisms
of individual points on that line or plane)

We start by mapping the first plane (0, 1, 2, 5, 11, 18, 19) to the first line (0, 1, 18).
Every other plane, obtained from plane (0, 1, 2, 5, 11, 18, 19) by b (0 ≤ b ≤ 4)
Frobenius automorphisms followed by a (0 ≤ a ≤ 30) shift automorphisms, is
mapped to the line obtained by applying the same set of automorphisms, in the
same order, to (0, 1, 18). Varying a and b in their respective ranges, we obtain
the complete mapping, which is shown in table 10. Similarly, mapping the first
plane to one of the other lines lying on it, we can create six other such perfect
matching sequences, S2 to S7, which are shown in the appendix.

After this brief introduction to the basic concepts about Karmarkar’s architec-
ture and the P(4,GF(2)) geometry, in the next section, we look at the various
strategies devised to solve the problem of LU decomposition on this architecture.

9

3 Problem-mapping strategies

There are 2 different schemes that we have discussed here. The two schemes
are based on the complete geometry using all the 155 lines and planes. There
are 155 processors and 155 memory modules in each case. However, they differ
in their architecture and in the distribution of computational load over the pro-
cessors.

For all the strategies, the number of blocks in each row and column in ma-
trix A is a multiple of 31, as the block indices are associated with the points
and there are 31 points in all. The indices are taken to be zero-based. The block
indices are mapped to points by taking their remainder modulo 31. Therefore,
we have the mapping function f : block indices → points as

f(b) = b (mod 31) (13)

3.1 Algorithm Mapping Scheme I

In this design, we have 155 processors and 155 memory modules and we use
the entire P(4,GF(2)) geometry in defining the interconnection network. Each
processor is connected to its own exclusive memory module, and this processor-
memory pair is associated with a line. In addition, the processor is also asso-
ciated with the plane mapped to the line through perfect matching S1. The
processor is directly connected to processor-memory pairs representing other
lines on its plane. Hence, each processor is connected to 12 other processors -
6 processors that lie on its own plane and 6 other processors in whose plane it
lies. For example, the processor-memory pair (0, 1, 18) is associated with the
plane (0, 1, 2, 5, 11, 18, 19) and is connected to the processors (0, 2, 5), (1, 2, 19),
(11, 19, 0), (1, 5, 11), (2, 18, 11) and (18, 19, 5), which lie on its plane and to pro-
cessors (13, 14, 0), (30, 0, 17), (27, 29, 1), (18, 22, 28), (23, 0, 12) and (0, 16, 9), as
it lies on planes associated with these processors [1].

3.1.1 Data Distribution

The distribution of data in the memory modules depends on the indices of the
matrix block and the triplet of points representing each module. Consider the
following function M(i, j) from point doublets (elements of Ω0 × Ω0) to Ω1,
which specifies the memory module for Ap,q if f(p) = i and f(q) = j.

M(α, β) = line joining points α and β ∀ α, β ∈ 0, 1, . . . , 30 and α 6= β (14)

M(i, i) = Li
x(Φa(0, 1, 18)), a ∈ 0, 1, 2, 3, 4 (15)

As can be seen from these equations, every block Ai,j , with distinct i, j, gets
stored in the memory module with the corresponding points in its 3-tuple repre-
sentation. For example, the blocks A0,1 and A32,31 go into the module (0, 1, 18).
This specifies the storage for all the non-diagonal blocks.

10

 PM PM PM PM PM

InverseU(U(0,0))

InverseL(L(0,0))

BlockLU(A(0,0))

Receives

L(0,0),U(0,0)
from

(0,1,18)

 PM PM
14,15,16

19,25,1,2
13,15,17

23,4,18,20
14,18,22

3,27,24,28
24,1,9,2
19,13,21

0,1,2,5
11,18,19

1

STEPS

2(a)

2(b)

13,14,15

18,24,0,1

 (14,15,1) (13,15,18) (15,0,24) (14,18,24) (24,1,13) (0,1,18) (13,14,0)

15,0,16,2
5,24,9

(15,0,24)

sent to

L(0,0),U(0,0) Receives

L(0,0),U(0,0)
from

(13,14,0)

(13,14,0)

sent to

L(0,0),U(0,0)

Figure 1: Scheme I: Diagonal block communication

Each diagonal block is stored in 5 memory modules. These 5 copies help in
faster distribution of Li,i and Ui,i, as will be seen later. The 5 modules, in
which p-th diagonal block gets stored, are those that correspond to lines ob-
tained after applying f(p) shift automorphisms on the line (0, 1, 18) and its
Frobenius automorphisms.

3.1.2 Operations Involved

In each iteration of the main loop, the operations to be carried out in LU
decomposition are as follows:

• Row/Column Update: In the i-th iteration, the blocks present in the
i-th column and i-th row have to be multiplied with U−1

i,i and L−1
i,i , as

shown in lines (4) and (7) of the algorithm respectively. This operation
needs the blocks Ai,j or Aj,i, and Ai,i and can be characterized by a triplet
(i, i, j) or (i, j, i) such that j ∈ {i + 1, i + 2, . . . , B − 1}.

• Trailing Matrix Update: These operations involve the update of all
elements Aj,k such that j, k ∈ {i+1, i+2, . . . , B−1} in the i-th iteration.
These updates can be characterized by the triplet (i, j, k) of the indices
involved in the operation.

We now look at the mapping of these operations onto the processors.

11

 (0,1,18) (1,2,19) (0,2,5) (2,18,11) (1,5,11) (11,19,0) (18,19,5)

0,1,2,5

11,18,19

 PM PM PM
2,18,3,20
23,11,27

 PM PM PM

InverseU(U(0,0))

InverseL(L(0,0))

BlockLU(A(0,0))

InverseU(U(0,0))

InverseL(L(0,0))

BlockLU(A(0,0))

Computes

L(1,0), L(18,0)

U(0,1), U(0,18)

Transfer of blocks
A(1,1), A(1,2), A(2,1), A(1,19)

A(19,1), A(2,19), A(19,2)

 PM
1,2,3,6

12,19,20
0,2,4,10
22,5,7

1,5,9,21
14,11,15

11,19,27
20,6,0,8

18,19,20
23,29,5,6

1

STEPS

2

3

Receives

L(0,0),U(0,0)
from

(0,8,20)

Computes

L(2,0), L(5,0)

U(0,2), U(0,5)

Computes

L(11,0), L(19,0)

U(0,11), U(0,19)

4

5

Transfer of blocks
L(2,0), L(5,0)

U(0,2), U(0,5)

6

7

8

9

Transfer of blocks

A(11,2), A(18,11), A(11,18)

Transfer of blocks

A(11,1), A(5,11), A(11,5)

Transfer of blocks
L(11,0), L(19,0)

U(0,11), U(0,19)

Transfer of blocks

(13,14,0)

sent to

L(0,0),U(0,0)

(26,28,0)

sent to

L(0,0),U(0,0)

A(2,2), A(2,18), A(18,2), A(2,11)

A(18,5), A(5,18), A(19,5), A(5,19)

A(18,18), A(18,19), A(19,18)

A(1,5), A(5,1), A(1,11)

Figure 2: Scheme I: Execution of 0-th iteration on (0, 1, 2, 5, 11, 18, 19) (steps
1-9)

3.1.3 Distribution Of Computations

The computations, which are represented by triplets of block indices are first
converted to a triplet of points using the f map. These point triplets are dis-

12

 (0,1,18) (1,2,19) (0,2,5) (2,18,11) (1,5,11) (11,19,0) (18,19,5)

0,1,2,5

11,18,19

 PM PM PM
2,18,3,20
23,11,27

 PM PM PM PM
1,2,3,6

12,19,20
0,2,4,10
22,5,7

1,5,9,21
14,11,15

11,19,27
20,6,0,8

18,19,20
23,29,5,6

10

STEPS

11

12

13

14

15

16

Computes

trailing matrix

updates

Transfer of blocks

A’(19,1), A’(2,19), A’(19,2)

Transfer of blocks

A’(11,2), A’(18,11), A’(11,18)

Transfer of blocks

A’(11,1), A’(5,11), A’(11,5)

Transfer of blocks

A’(1,1), A’(1,2), A’(2,1), A’(1,19)

A’(2,2), A’(2,18), A’(18,2), A’(2,11)

A’(1,1), A’(1,5), A’(5,1), A’(1,11)

A’(18,5), A’(5,18), A’(19,5), A’(5,19)

A’(18,18), A’(18,19), A’(19,18)

Figure 3: Scheme I: Execution continued (steps 10-16)

tributed according to the following map P (α, β, γ) : Ω0 × Ω0 × Ω0 → Ω2.

P (α, β, γ) = plane through non-collinear points α, β and γ (16)

P (α, α, β) = S−1
1 (line joining α, β) (17)

P (α, β, α) = S−1
1 (line joining α, β) (18)

P (α, β, β) = planes passing through α and the lines M(β,β) (19)

As can be seen in the above equation, the computations corresponding to non-
collinear triplets are allocated to the processor associated with the plane passing
through that triplet. The column updates for the i-th iteration are carried out
on the processors obtained by using the perfect matching sequence S−1

1 on each
of the 15 memory modules associated with lines passing through point i. The
update of a diagonal block is done alongwith the update of other blocks stored

13

Table 1: Transfer of diagonal data, 0th iteration

(0, 1, 18)
1stCycle
−−−−−→ (13, 14, 0)

2ndCycle
−−−−−−→ (15, 0, 24)

(0, 2, 5)
1stCycle
−−−−−→ (26, 28, 0)

2ndCycle
−−−−−−→ (30, 0, 17)

(0, 4, 10)
1stCycle
−−−−−→ (21, 25, 0)

2ndCycle
−−−−−−→ (29, 0, 3)

(0, 8, 20)
1stCycle
−−−−−→ (11, 19, 0)

2ndCycle
−−−−−−→ (27, 0, 6)

(0, 16, 9)
1stCycle
−−−−−→ (22, 7, 0)

2ndCycle
−−−−−−→ (23, 0, 12)

in the same module.

3.1.4 Details of 0-th iteration

The distribution of computations is done according to the map P described
above. Their execution is based on the 7 perfect matching sequences intro-
duced earlier. Let us consider the 0-th iteration for describing the execution
in detail. The computation of all updates is done on the processors associated
with the planes containing the point 0. Some of the 35 processor-memory pairs
involved in the computations are (0, 1, 18), (12, 13, 30), (13, 14, 0), (20, 21, 7)
and (26, 27, 13), all of which are matched to 0-containing planes through S1.
First, the 5 processor-memory pairs containing the block A0,0 perform block-
level LU decomposition, generating L0,0 and U0,0. This is followed by the com-
putation of their inverses. This pair of inverses is then transferred to all the
other 15 processor-memory pairs associated with 0-containing lines via a two-
step broadcast through some specific processors. This data transfer schedule
is shown in table 1. This communication is conflict-free as it is carried out on
links associated with different planes. Fig. 1 shows the process being carried
out on one particular plane (13, 14, 15, 18, 24, 0, 1). The 2(B − 1) row and col-
umn block updates are carried out by the 15 processor-memory pairs, to which
they are mapped according to P . These processors compute Lj,0 and U0,k,

j, k ∈ {1, . . . , B − 1}. After this step, we perform the trailing matrix update.

As can be seen from P mapping, all the trailing matrix updates in the 0-
th iteration are carried out on 35 processors associated with planes containing
the point 0. Before starting the update of trailing matrix blocks, we need to
move the Lj,0, U0,k and Aj,k blocks to the processors involved in this round of
computation. This communication is done in 6 steps. In the qth step, each of
the computing processors receives data directly from the processor mapped to
its plane through each inverse perfect matching pattern S−1

q+1, q ∈ 1, 2, 3, 4, 5, 6.
Once these six steps are completed, each of the 35 processors will have com-
plete information required to update the blocks it holds. This update com-
putation is then carried out parallely on all the 35 processors. Once this is
completed, we again have six communication steps to store back the updated
blocks in the appropriate processor-memory pairs, in the same manner as they

14

were accessed earlier. An illustration of all these steps taking place on the plane
(0, 1, 2, 5, 11, 18, 19) in the case of 0-th iteration can be seen in figs. 2 and 3.

The scheme given above works for the 0-th iteration. For the ith iteration,
the data transfer scheme is obtained by applying f(i) shift automorphisms to
all the involved entities.

3.1.5 Design Analysis

This design makes use of the entire P(4,GF(2)) geometry and the perfect match-
ing sequences, based on automorphisms, are applied to develop communication
strategies. This makes the design scalable - the use of a bigger geometry and
remapping of the problem is easy in this case.

The primary issue with this design is its under-utilization of parallelism. Either
15 or 35 out of 155 processors are working in each cycle, though they are load-
balanced among themselves. As the iteration index i increases, the number of
computations associated with line (11) of the algorithm decreases, which leads
to corresponding reduction in number of operational processors. Also, in later
iterations, because of duplicacy of diagonal elements, certain blocks are com-
municated to extra number of processors. With these considerations in mind,
we provide our next scheme, which improves upon the resource usage as well as
the wiring density.

3.2 Algorithm Mapping Scheme II

As in the earlier design, we have 155 processors and 155 memory modules in
this scheme, with each memory module connected exclusively to one processor.
Each such processor-memory pair is associated with a line of the geometry.
These lines are connected by buses corresponding to the planes. Each bus is
connected to the 7 processors associated with the lines that are incident on its
representative plane. Thus, we have 155 buses in all. Also, as a line is incident
on 7 planes, each processor lies on 7 busses. Therefore, the processor node
degree, in this design, is less than in the earlier one. The distribution of data
in the memory modules is the same as in the earlier scheme and is governed by
M(i, j).

3.2.1 Distribution of Computational Load

The distribution of computational load is done differently. This can be under-
stood by the following modified function P2 for computation allotment:

P2(α, β, γ) = line through distinct points β and γ (20)

P2(α, α, β) = line joining α and β (21)

P2(α, β, α) = line joining α and β (22)

P2(α, β, β) = line allocated Aβ,β (23)

15

InverseU(U(0,0))

InverseL(L(0,0))

BlockLU(A(0,0))

Receives

L(0,0),U(0,0)
from

(0,1,18)

Receives

L(0,0),U(0,0)
from

(0,1,18)

 PM PM PM PM PM PM

1

STEPS

2(a)

 (14,15,1) (13,15,18) (15,0,24) (14,18,24) (24,1,13) (0,1,18) (13,14,0)

L(0,0),U(0,0)

sent to

(13,14,0)
(15,0,24)

BUS

 PM

Figure 4: Scheme II: Diagonal block communication

In this scheme, each processor computes the update for all the elements in its
own memory, with the 5 copies of each diagonal element being updated in 5
different modules.

3.2.2 Details of 0-th iteration

We will again study the 0-th iteration in detail to understand the execution of the
computations on this architecture. Just as in the earlier case, the computation
begins with the five processors, which store A0,0 block, performing block-level
LU decomposition, generating L0,0 and U0,0. This is followed by computation of
their inverses. These inverses are then transferred to other processors associated
with 0-containing lines through 5 busses, which are

• (0, 1, 18) on bus (13, 14, 15, 18, 24, 0, 1)

• (0, 2, 5) on bus (26, 28, 30, 5, 17, 0, 2)

• (0, 4, 10) on bus (21, 25, 29, 10, 3, 0, 4)

• (0, 8, 20) on bus (11, 19, 27, 20, 6, 0, 8)

• (0, 16, 9) on bus (22, 7, 23, 9, 12, 0, 16)

The transfer of diagonal L and U blocks can be better understood in fig. 4. This
figure shows the steps of the transfer on bus (13, 14, 15, 18, 24, 0, 1). The 2(B−1)
row/column updates are scheduled now on each of the 15 processors with blocks
A0,i and Ai,0, i ∈ {1, . . . , (B− 1)}. The data required for this update is already
present on these processors. For the trailing matrix updates, each processor will
require the calculated Li,0 and U0,i, which is present on 15 processors associated
with 0 containing lines. These blocks are communicated to other processors for

16

InverseU(U(0,0))

InverseL(L(0,0))

BlockLU(A(0,0))

InverseU(U(0,0))

InverseL(L(0,0))

BlockLU(A(0,0))

 PM PM PM PM PM PM

L(2,0), L(5,0)
U(0,2), U(0,5)

 on
(29,0,2,8,20,3,5)

Broadcasts

L(2,0), L(5,0)
U(0,2), U(0,5)

 on
(23,27,0,12,5,2,6)

Broadcasts

L(2,0), L(5,0)
U(0,2), U(0,5)

 on
(15,0,16,2,5,24,9)

Broadcasts

Broadcasts
L(11,0), L(19,0)
U(0,11), U(0,19)

 on
(3,11,19,12,29,23,0)

Broadcasts
L(11,0), L(19,0)
U(0,11), U(0,19)

 on
(22,30,7,0,17,11,19)

Broadcasts
L(11,0), L(19,0)
U(0,11), U(0,19)

 on
(10,26,11,28,0,19,4)

Broadcasts
L(11,0), L(19,0)
U(0,11), U(0,19)

 on
(9,11,13,19,0,14,16)

1

STEPS

2

3

Receives

L(0,0),U(0,0)
from

(0,8,20)

Computes

L(2,0), L(5,0)

U(0,2), U(0,5)

Computes

L(11,0), L(19,0)

U(0,11), U(0,19)

4

5

6

7

8

9

 (0,1,18) (1,2,19) (0,2,5) (2,18,11) (1,5,11) (11,19,0) (18,19,5)

BUS

L(0,0),U(0,0)

sent to

(13,14,0)
(15,0,24)

L(0,0),U(0,0)
sent to

(26,28,0)

(30,0,17)

Computes

L(1,0), L(18,0)

U(0,1), U(0,18)

L(18,0), U(0,18)L(1,0), U(0,1)L(1,0), U(0,1)

L(2,0), U(0,2) L(5,0), U(0,5)

L(19,0), U(0,19) L(19,0), U(0,19)

10

11

Computes Computes Computes

A’(18,1)

A’(1,18),

A’(5,2)

A’(2,5)

A’(2,19),A’(19,2)

A’(1,19),A’(19,1)
A’(11,19)

A’(19,11)

 PM

NO TRANSFER OF DATA

NO TRANSFER OF DATA

NO TRANSFER OF DATA

NO TRANSFER OF DATA

ON THIS BUS

ON THIS BUS

ON THIS BUS

L(2,0), U(0,2)

L(18,0), U(0,18)

L(5,0), U(0,5)

L(11,0), U(0,11)L(11,0), U(0,11)

A’(1,2), A’(2,1)

L(1,0), L(18,0)
Broadcasts

U(0,1), U(0,18)
 on

L(1,0), L(18,0)
Broadcasts

U(0,1), U(0,18)
 on

 on

 on

L(1,0), L(18,0)
U(0,1), U(0,18)

 on

ON THIS BUS

Broadcasts
L(1,0), L(18,0)
U(0,1), U(0,18)

(30,0,1,4,10,17,18)

Broadcasts
L(1,0), L(18,0)
U(0,1), U(0,18)

 on
(0,16,1,18,21,9,25)

Broadcasts
L(1,0), L(18,0)
U(0,1), U(0,18)

(27,29,0,6,18,1,3)

Broadcasts

(23,0,8,1,18,12,20)

(18,22,26,7,0,28,1)

(13,14,15,18,24,0,1)

Broadcasts
L(2,0), L(5,0)

(0,2,4,10,22,5,7)

U(0,2), U(0,5)
 on

A’(18,11),A’(11,18)
A’(2,11),A’(11,2)

A’(2,18), A’(18,2)

A’(5,11),A’(11,5)

A’(1,11),A’(11,1)

A’(1,5), A’(5,1)

L(2,0), L(5,0)
U(0,2), U(0,5)

Broadcasts

(26,28,30,5,17,0,2)

 on

Broadcasts
L(11,0), L(19,0)
U(0,11), U(0,19)

 on
(11,19,27,20,6,0,8)

Broadcasts
L(11,0), L(19,0)
U(0,11), U(0,19)

(11,15,19,0,24,21,25)
 on

Computes A’(2,2) Computes A’(1,1)

A’(19,5),A’(5,19)
A’(18,5),A’(5,18)
A’(18,19), A’(19,18)

Computes A’(1,1)
A’(18,18)
Computes

Figure 5: Scheme II: Execution of 0-th iteration on bus (0, 1, 2, 5, 11, 18, 19)

17

calculation of trailing matrix updates. This communication is carried out in 7
steps. In qth step, the processor with this information broadcasts it on the bus
mapped to it through perfect matching pattern S−1

q , q ∈ 1, . . . , 7. By the end of
these steps, the data has been broadcast once on each of the 7 busses connected
to a particular processor. A processor represented by line (x, y, z) will need Li,0

and U0,i, if one of its indices is same as i. Now, the line corresponding to this
processor and the line through the points 0 and i share a common point (i), and
hence, form a plane and the data transfer happens on its associated bus. So
at some point, this processor will get the required data. At the end of these 7
steps, each processor will have the entire information needed by it to calculate
the trailing matrix updates. All the 155 processors now parallely compute the
updates for the trailing matrix blocks that they possess, thus completing the
0th iteration. All these steps have been illustrated in fig. 5, which shows the
execution of the 0-th iteration on the bus (0, 1, 2, 5, 11, 18, 19).

As in the earlier design, for higher iteration indices, the scheme for data transfer
and distribution of computation is obtained by using shift automorphisms on
all the involved entities.

3.2.3 Design Analysis

The use of complete geometry and perfect matching sequences based on auto-
morphisms to create communication patterns indicates that this design will be
scalable. Because of this, a larger 4-dimensional projective geometry can be
applied in this design. Also, the distribution of computation is almost balanced
through most iterations and the source of imbalance is mainly the reduction
in the size of trailing matrix for higher iterations. The resource usage is high
compared to the earlier scheme and also the communication is limited.

The main issue in this design is the large number of buses involved and their
latencies in broadcasting data. Alternate interconnection patterns can also be
considered to alleviate this problem.

3.3 Simulation Results

To verify the functional correctness of our schemes, C++ programs were devel-
oped for both the schemes. For performance comparison, a mesh-based scheme
was also developed and simulated. Our schemes require 155 processors, and
hence, the mesh size was chosen to be 12×12. In our implementation, having
B(number of blocks per row/column) as multiple of 31 helps in one-to-one map-
ping to lines. Hence for comparability, a matrix size of 372(31×12) or multiples
of it is best suited. For simulations, we have taken the matrix size to be 744×744.

By simulation on a uniprocessing system, the three schemes were indeed found
to be working correctly. The performance of these schemes can be understood
as follows.

18

Block size
Normalized time
O(b3) O(b2)

62×62 17.2400 0.2776
31×31 2.1550 0.0694
24×24 1.0000 0.0416
12×12 0.1250 0.0104
8×8 0.0370 0.0046
6×6 0.0156 0.0026
4×4 0.0046 0.0012

Table 2: Block Sizes and Relative Time Periods

Scheme Block size
Total Cycles

Comp (O(b3)) Comm (O(b2)) Sub (O(b2))

Mesh
62×62 69 221 11
31×31 196 583 56

PG, 1st

24×24 856 2241 651
12×12 5023 12635 4427
8×8 15291 37981 14118
6×6 34450 84975 32514

PG, 2nd

24×24 393 846 188
12×12 1693 2994 1097
8×8 4458 6444 3285
6×6 9246 11196 7310
4×4 27123 24606 23103

Table 3: Total communication and computation cycle count for the three
schemes

The active period of each processor can be classified into three categories. A pro-
cessor either spends time doing O(b3) computations, or O(b2) computations, or
O(b2) communication. The O(b3) computations comprise of block LU decompo-
sitions, (block) matrix inversions and (block) matrix multiplications. The O(b2)
computations comprise of matrix subtraction done during trailing update. Each
block has b2 elements, and therefore, any transfer of a single block during the
algorithm’s run requires O(b2) cycles. Varying the block size results in different
relative values of b3 and b2. The block sizes that we consider, and these related
values have been tabulated in table 2. We take 243 as the normalization factor.

The total number of cycles taken, and the overall time taken for mesh scheme
as well as the two PG schemes are presented in tables 3 and 4. The overall time
for a computation or communication of particular complexity (O(b3) or O(b2))

19

Scheme Block size
Time required

Comp (O(b3)) Comm (O(b2)) Sub (O(b2))

Mesh
62×62 1189.56 61.35 3.05
31×31 422.38 40.46 3.89

PG, 1st

24×24 856.00 93.23 27.08
12×12 627.88 131.40 46.04
8×8 565.77 175.47 65.23
6×6 538.45 220.94 84.54

PG, 2nd

24×24 393.00 35.19 7.82
12×12 211.63 31.14 11.41
8×8 164.95 29.77 15.18
6×6 144.47 29.11 19.01
4×4 124.77 28.42 26.68

Table 4: Total time required for the three schemes

Scheme
Block Average Cycles
size Comp (O(b3)) Comm (O(b2)) Sub (O(b2))

Mesh
62×62 4 7 3
31×31 34 41 30

PG, 1st

24×24 82 171 73
12×12 669 1234 633
8×8 2319 4050 2238
6×6 5590 9485 5446

PG, 2nd

24×24 82 44 73
12×12 669 214 633
8×8 2319 510 2238
6×6 5590 932 5446
4×4 19227 2154 18903

Table 5: Average Active Processor Cycles

20

is calculated as total number of cycles multiplied by the normalized time for
that complexity and block size, as shown in table 2. The schemes presented in
this report are referred in this table by PG, 1st and PG, 2nd, respectively. One
can infer from this table that for comparable block sizes(such as 24 × 24 and
31 × 31), the number of cycles taken by the second scheme is somewhat more
than that taken by mesh scheme. This can be attributed to presence of more
blocks due to smaller block size and the extra computation done on diagonal
blocks in our schemes. If one compares the normalized time required for these
schemes and corresponding sizes, however, the PG scheme performs better than
the mesh scheme. Across all the schemes, one can further see that as block size
decreases, the performance improves due to more fine-grained distribution of
computational load.

We also calculated the average number of cycles in which each processor is
active for the three different categories. The results are shown in table 5. Aver-
age processor utilization in each category can be defined as the average number
of cycles taken by processor in that category, divided by total number of cycles
(from table 3) in which all processors finish that category’s job in parallel. Here
we see from the table that our schemes have higher processor utilization than
the mesh scheme for all different block sizes. Between the two schemes, for each
given block size, the 2nd scheme needs much less amount of average communica-
tion cycles while having same average computation cycles, and hence improves
upon the 1st scheme.

3.4 Conclusions

We have introduced two new schemes for processor interconnection based on
projective geometry graphs, which work efficiently for the computation of LU
decomposition. To do that, we make use of 4-dimensional projective spaces and
its automorphisms. Results show that in terms of total time required, the 2nd

scheme does better than the conventional mesh-based scheme. The schemes are
currently designed for well-conditioned matrices not requiring pivoting. It needs
to be seen whether pivoting can be implemented using perfect access sequences.
Also, issues related to synchronization of the data communication steps need to
be addressed. Another direction of research is to make these schemes handle
large-sized matrices and also, sparse matrices with varying sparsity structures.
Scalability of this architecture should also be evaluated by using 4-dimensional
geometries over higher fields. The current simulation-based performance evalu-
ation was done on a uniprocessor, but in future design of a parallel prototype
and its evaluation should be tried.

21

4 Perfect Difference Networks

Similar to the projective geometry based graphs, there is a family of networks
called perfect difference networks, which were introduced by Parhami and Rakov
[3],[4]. These networks have a diameter of 2 with node degree being O(n0.5)
and bisection width being Ω(n1.5) (where n is the total number of nodes in the
graph). In this section, we take a look at the construction and properties of
these networks.

4.1 Perfect Difference Sets

Perfect difference set (PDS) is a set of p + 1 distinct integers {s0, s1, . . . , sp}
which satisfy the condition that the p(p + 1) differences si − sj , 0 ≤ i, j ≤ p,
i 6= j are congruent to the numbers 0, 1, . . . , p2 +p mod p2 +p+1 in some order
[3]. Such set is guaranteed to exist for any power of a prime number. Given a
PDS {s0, . . . , sp}, the set {s0 − b, . . . , sp − b} also forms a PDS.

A PDS {s0, s1, . . . , sp} is said to be in its normalised form if it contains 0 and 1
and if its elements satisfy the property that si < si+1 ≤ δ2 + δ, 0 ≤ i < δ. Any
PDS can be converted into its normalised form by finding the pair sv, su such
that sv − su = 1 (mod p2 + p + 1) and subtracting su from each of the integers.
This normalized set is of the form {0, 1, s2, . . . , sp}. Two PDSs are said to be
equivalent if both have the same normal form. There are multiple normalised
PDSs possible for a particular order p. For example, for order 2, we have the
sets 0, 1, 3 and 0, 1, 5. Similarly, both the sets 0, 1, 3, 9 and 0, 1, 4, 6 form PDS
of order 3. This multiplicity gives us alternate network designs for the same
number of nodes.

The creation of these sets is based on projective planes. Consider the pro-
jective plane over GF(p = ab), where a is a prime and b is a positive integer.
To obtain this plane, first, a Galois field is generated using a primitive polyno-
mial of degree 3 over GF(p). Each element of the field can be expressed as a
power of the generator element. The points on the projective plane correspond
to 1-dimensional subspaces of GF(p). These subspaces and the corresponding
points are indexed by the smallest power of the generator element belonging
to it. Lines on the projective plane correspond to 2-dimensional subspaces of
the field. The indices of the points lying on a particular line form a perfect
difference set. Some normalized PDSs are shown in the table 6 below.

4.2 Networks based on PDS

We now define perfect difference networks based on these sets. The network
has n = p2 + p + 1 nodes, numbered 0 to n − 1. Node i is connected to nodes
i± 1 (mod n) and i ± sj (mod n) where 2 ≤ j ≤ p. The links connecting i to
i + sj are called forward links, while the links connecting it to i− sj are called
backward links. The smallest such network with 7 nodes is shown in fig. 6.

22

p p2 + p + 1 Perfect Difference Set of order p

2 7 {0,1,3}
3 13 {0,1,3,9}
4 21 {0,1,4,14,16}
5 31 {0,1,3,8,12,18}
7 57 {0,1,3,13,32,36,43,52}
8 73 {0,1,3,7,15,31,36,54,63}

Table 6: Normalized Perfect Difference Sets [3]

Figure 6: Perfect Difference Network with 7 nodes [3]

This network has a degree d = 2p. Hence, its node degree is O(n0.5). The
diameter of the network is 2 as to reach node y from node x, the intermediate
node is obtained by first expressing the difference y−x as su−sv (su, sv belonging
to the PDS) and then taking x + su mod n or x− sv mod n. In addition to the
small diameter, PDN has the following topological properties [3]:

1. Average internode distance of a PDN of order p is 2p2

p2+p+1 .

2. A lower bound on the bisection width of PDN is ⌈ (p+1)(p2+p+2)
4 ⌉.

4.3 Routing Algorithms

In this section, routing algorithms suited for perfect difference networks have
been discussed [4]. We first consider the oblivious shortest-path routing algo-
rithm from source node x to destination y. If y is of the form x ± 1 or x ± sj ,
then a direct link exists between the two nodes, which forms the shortest path
between them. If this is not the case, then a two-hop path exists between the
nodes. To find the intermediate node, we find two numbers, su and sv belong-
ing to the PDS such that su − sv = x − y. Using this, we get two paths - one
through x+ sv mod n and another through x− su mod n. The first path uses a
forward link followed by a backward link while the second path uses a backward

23

link first. If we consider that the first path (with the forward link being used
first) is taken in all such two hop cases, then we find that, for random traffic
between nodes, each link is used in the forward as well as backward directions
for δ nodes. Therefore, under a random communication pattern, this algorithm
will show a balanced distribution of communication load. If the messages are
evenly distributed among the n(n − 1) possible messages, the number of hops

required per message is (n(n−1−2p)∗2)+(2pn∗1)
n(n−1) = 2p2

(n−1) and the number of mes-

sages passing over each link is
2p2

(n−1)
∗n(n−1)

np
= 2p. Hence, a PDN can emulate a

complete graph with a slowdown of 2p. Pipelining the data transfer can reduce
the slowdown to p.

Another class of important communication algorithms are broadcasting algo-
rithms. In this network, a one-to-all broadcast can be carried out in 2 steps
as the diameter is 2. In the first step, the broadcasting node x sends data to
its forward neighbours using the forward links. In the second step, each of the
p+1 nodes with the data send it to the rest of the nodes on the backward links.
The number of steps required in this case is 2p, p for the data transmission over
forward links and p for the second step.

For all-to-all broadcast, the number of steps required is p2 + p. First, each
node transmits the packets to each of its p forward neighbours in p steps. This
transmission is conflict-free if done using perfect access patterns[2]. Then, each
node transmits p packets to each of its p backward neighbours, requiring p2

steps. This step is also carried out using perfect access patterns.

To implement complete exchange (where a personalized message is sent by each
node to every other node) in a PDN, in the first 2p transmissions, each node
sends personalized messages to its neighbours. For the messages that need two
hops, each node first sends p − 1 messages to each of its forward neighbours,
which in turn send them on their backward links to their intended recipients.
Both steps use perfect access patterns and in all, there will be 2p+2p(p−1) = 2p2

message transmissions, which is optimal as each node sends p2 +p messages and

each message requires 2p2

p2+p
hops on an average.

Implementation of shift permutation, where each node x communicates with
node x + c (c being a constant), in a PDN can also be done through perfect
access patterns. If c = si, then all nodes can parallely send their messages in
a single step. For any other c, two elements, su and sv, of the PDS need to
be identified such that c = su − sv, and the path for data transmission then
becomes x→ x + su → x + c.

These communication primitives can be used to develop more involved algo-
rithms and also for mapping algorithms created for other networks such as
complete graph, hypercube, etc. onto these networks.

24

4.4 Edge Expansion of Perfect Difference Networks

A family G = {G1, G2, . . .} of d-regular graphs is an edge expander family if
there is a constant c > 0 such that the edge expansion h(G) ≥ c for all G ∈ G.
The edge expansion is calculated as

h(G) = min
1≤|S|≤n

2

|∂(S)|

|S|
(24)

where the minimum is over all non-empty sets S of atmost n
2 vertices from G

and ∂(S) is the set of edges with exactly one endpoint in S.

By choosing different values for p, we get a family of PDNs such that the de-
gree d = O(|G|0.5

). We now prove that this family of PDNs satisfy the edge
expansion condition and hence, form an expander family. For this, we consider
two graphs, each with p2 + p +1 nodes. In each graph, the nodes are numbered
from 0 to p2 + p. The first graph G1 is a complete graph such that any two
vertices are connected by one and only one edge. The second graph G2 is the
perfect difference network over GF(p). For the case of GF(2), the two graphs
are as shown in fig. 7. We also look at the projective plane over GF(p) with
p2 + p + 1 points and as many lines, the points are numbered as in the other
graphs.

1

 2

34

5

6

0

(a)

1

 2

34

5

6

0

(b)

Figure 7: (a)Complete Graph, G1 (b)Perfect Difference Network, G2

Let us now consider a cut in the two graphs, separating the nodes into two
sets, x and S−x (without loss of generality, let |x| < |S−x|). In G1, the number
of edges passing across this cut is |x| ∗ |S − x|. Now, any line in the projective

plane consists of p + 1 points and corresponds to (p+1)p
2 edges in G1. Of these,

atmost ⌊p+1
2 ⌋⌈

p+1
2 ⌉ edges can pass across the cut (when ⌊p+1

2 ⌋ nodes are on

one side of the cut and ⌈p+1
2 ⌉ are on the other side). Therefore, the minimum

25

number of lines, whose corresponding edges in G1 pass across the cut, are

|x| × |S − x|

⌊p+1
2 ⌋⌈

p+1
2 ⌉

(25)

1

 2

34

5

6

0

(a)

line 1 − 1 2 4
line 0* − 0 1 3

line 2* − 2 3 5

line 4* − 4 5 0
line 5* − 5 6 1
line 6* − 6 0 2

line 3* − 3 4 6

(b)

1

 2

34

5

6

0

(c)

Figure 8: (a)Cut shown in Complete Graph, G1 (b)Lines in PG with points on
either side of the cut(marked with *) (c)Cut in Perfect Difference Network, G2

Each of these lines of the projective geometry has points corresponding to
nodes lying on both sides of the cut. Therefore, in G2, each of these lines will
contribute to atleast one edge passing across the cut. Therefore, the edges in G2

passing across the cut are atleast equal to the minimum number of lines given
in 25. The edge expansion of the graph, therefore, is

h(G2) = min
1≤|x|≤p2+p+1

2

|x| × |S − x|

⌊p+1
2 ⌋⌈

p+1
2 ⌉ × |x|

(26)

and the minimum, achieved when the difference between |S − x| and |x| is

26

minimum (i.e. |x| = p2+p
2 and |S − x| = p2+p

2 + 1), is

h(G2) =
p2 + p + 2

2⌊p+1
2 ⌋⌈

p+1
2 ⌉

(27)

≥
p2 + p + 2

2(p+1
2)(p+1

2)
(28)

≥ 1.75 for p ∈ N (29)

4.5 Conclusions

Perfect Difference Networks exhibit some good properties such as diameter 2,
node degree O(n0.5) and bisection width Ω(n1.5). Parhami and Rakov have
suggested some good communication primitives, using perfect access patterns,
using which a complete graph of the same size can be simulated on a PDN
with a slowdown of p. The use of these communication primitives and good
topological properties in the development of fast algorithms for this network
should be researched. The expansion properties of PDNs should also be studied
further for their application as expander graphs.

27

5 Expander Graphs and Expander Codes

Expander codes, introduced by Sipser and Spielman in [5], are an asymptot-
ically good family of linear error-correcting codes based on expander graphs.
The formulation of the code is similar to Gallager’s Low-Density Parity Check
(LDPC) codes. Sipser and Spielman suggested an iterative decoding algorithm
which corrected a constant fraction of errors. In a later paper [6], Zemor re-
ported a new decoding algorithm, built on a special type of expander graphs,
which improved the fraction by a factor of 12. We first study the relevant proofs
and results from [5] and [6] and then understand a MATLAB implementation
of these ideas.

5.1 Characteristics of a Linear Code

A q-ary linear error-correcting code of length n and rank k is a linear subspace
S of Fn of dimension k, where F = GF(q). Each codeword belonging to this
code will have k message symbols and the other n− k symbols are determined
by the message. The total number of codewords in S is qk. Another important
characteristic of the code is the minimum hamming distance d between any two
codewords, which implies that the code can correct upto ⌊d−1

2 ⌋ errors. The rate

of the code is given by r = k
n
. A linear code is generally described by the triplet

(n, k, d).

5.2 Expander Graph

Let G = (V, E) be a graph on n vertices. The expansion property of the graph
is characterised by ǫ and δ such that for every S ⊂ V

|S| ≤ ǫn⇒ |y ∈ V : ∃x ∈ S such that (x, y) ∈ E| > δ|S| (30)

Consider a (g, h)-regular unbalanced bipartite graph. Its vertices can be divided
into two sets - one set having degree g and the other with degree h - such that no
two vertices in the same set share an edge. Considering the expansion of one of
these vertex sets, in a (g, h, ǫ, δ) expander, every subset of ǫ fraction of g-regular
vertices expands by a factor of atleast δ. One method for obtaining such graphs
is to take the edge-vertex incidence graph of an h-regular graph. The edge-
vertex incidence graph of a graph G = (V, E) is the bipartite graph with vertex
set E ∪ V and edge set {(e, v) ∈ E × V : v is an endpoint of e}. Hence, the
edge-vertex incidence graph of an h-regular graph on n vertices gives a (2, h)-
regular unbalanced bipartite graph with n vertices on one side and nh

2 on the
other.

5.3 Construction of Expander Codes

Assume that G is a (g, h)-regular unbalanced bipartite graph with n g-regular
vertices and gn

h
h-regular vertices and h > g. Each of the n nodes on the larger

side of the graph is associated with one of the symbols, called variable, of a code

28

of length n. The nodes on the other side represent constraints that the variables
have to satisfy. Each constraint restricts the h variables connected to it in such
a way that they form a codeword belonging to a linear code of length h. As all
the constraints are linear, the resulting expander code is linear. A more formal
definition is as follows [5]:

Let G be a (g, h)-regular unbalanced bipartite graph between n nodes {v1, . . . , vn}
called variables and gn

h
nodes {C1, . . . , C gn

h
} called constraints. Define a func-

tion b(i, j) such that for every constraint Ci, the set {vb(i,1), . . . , vb(i,h)} gives its
neighbouring variables. Consider an error correcting code S of block length h.
The expander code C(G, S) is a code of block length n given by (x1, . . . , xn) such
that for each i ∈ {1, . . . , gn

h
}, the symbols (xb(i,1), . . . , xb(i,d)) form a codeword

in S.

If the underlying graph has good expansion properties and the sub-code is
sufficiently good, the generated expander codes exhibit good properties. An
important result in this regard is as follows [5]:

Let G be a (g, h, α, g

hǫ
) expander and S be a linear code of block length h,

rate r > g−1
g

and minimum distance ǫh. Then, C(G, S) of block length n has

rate atleast gr − (g − 1) and minimum distance atleast αn.

Considering an edge-vertex incidence graph obtained from an h-regular graph,
the following result can be obtained [5].

If S is a linear code of rate r, block length h and minimum distance ǫh and
if G is the edge-vertex incidence graph obtained from an h-regular graph with
second largest eigenvalue λ, then the expander code C(G, S) has rate atleast

2r − 1 and minimum distance atleast h(
ǫ−λ

h

1−λ
h

)2.

5.4 Sipser and Spielman’s Decoding Algorithm

For a binary expander code constructed as described above, Sipser and Spielman
suggested the following parallel decoding algorithm: Let S be a (h, rh, ǫh) code
with its symbols belonging to GF(2). In each decoding round, the ensuing steps
are carried out.

• For every constraint Ci, if the variables (vb(i,1), . . . , vb(i,h)) differ from a

valid codeword in S in atmost hǫ
4 symbols, then a flip message is sent to

all the differing variables.

• Parallely, any variable, which receives atleast one flip message, is flipped.

The following result elaborates on the error-correcting capability of each decod-
ing round of the above algorithm [5].

29

Let S be a linear code (h, rh, ǫh) and let G be the edge-vertex incidence graph
of an h-regular graph with second largest eigenvalue λ. If a word of distance
αh from a valid codeword is given as input, one round of the parallel decoding
algorithm will output a word of relative distance atmost

α(
2

3
+

16α

ǫ2
+

4λ

ǫh
) (31)

By limiting the sum of the second two terms in the parentheses in equation 31
to be less than 1

3 (so that the distance from the codeword decreases after one
round), we get the upper bound on the fraction of errors that the algorithm

can correct as α < ǫ2

48 . By introducing the Gilbert-Varshamov bound, it can be
proved that for all ǫ such that 1 − 2H(ǫ) > 0 (H(.) being the binary entropy
function), there exists a family of expander codes of rate 1−2H(ǫ) and minimum

relative distance arbitrarily close to ǫ2 in which any α < ǫ2

48 fraction of error can
be corrected using the above decoding algorithm [5].

5.5 Zemor’s Construction and Decoding Algorithm

Zemor’s construction is based on a h-regular balanced bipartite graph, G′ =
(V, E). The set V is divided into two sets A and B, with |A| = |B| = n such
that every edge has one endpoint in A and another in B. For any vertex t, the
set of edges incident on t is denoted by Et. As the graph is bipartite, the sets
Et ∀t ∈ A induce a partition on E. A similar partition can be created using the
edge sets of the vertices belonging to B. The expander code, C(G, S) is created
on the edge-vertex incidence graph G of the graph G′ with a binary subcode S.
The block length of code C is N = nh. As before, the second largest eigenvalue
of G′ is denoted by λ.

The steps in one decoding round of the algorithm suggested by Zemor are as
follows:

• Each constraint t in set A completely decodes the subvector associated
with the set of h variables, Et, and replaces it with the closest codeword
in S. This step can be carried out in parallel by all constraints in A as no
symbol is shared between two constraints.

• The constraints in set B replace the subvector associated with its edge
sets, Et, t ∈ B, with the closest codeword in S. This again can be carried
out in parallel by all constraints.

The following result expresses the reduction in unsatisfied constraints in each
step of this algorithm.

Suppose S is a linear code (h, rh, d) and d ≥ 3λ. Let P be a subset of A

such that

|P | ≤ βn(
d− 2λ

2h
) (32)

30

where β < 1. Let Q be a subset of B and suppose that there exists a set Y ⊂ E

such that

1. Every edge of Y has one endpoint in P .

2. Every vertex of Q has atleast d
2 edges of Y incident on it.

Then

|Q| ≤
1

2− β
|P | (33)

Using this result, Zemor [6] proves that suppose d ≥ 3λ, the total fraction of
errors that can be corrected using the above algorithm is α ≤ β d

2h
(d−2λ

2h
) for

β < 1.

5.6 MATLAB Implementation: Code Construction

The construction of an expander code C(G, S) consists of two parts: selecting
an expander graph G and selecting a suitable subcode S. We derive the ex-
pander graph using projective geometry. A projective space P(d,GF(q)) has the
following two properties:

1. The number of subspaces of dimension m is equal to the number of sub-
spaces of dimension d−m− 1.

2. The number of m-dimensional subspaces incident on each d − m − 1-
dimemsional subspace is equal to the number of d − m − 1-dimensional
subspaces incident on each m-dimensional subspace.

We use these two properties of projective subspaces to create regular bipartite
graphs. We associate one vertex of the graph with each m-dimensional subspace
and one with each d−m− 1-dimensional subspace. Two vertices are connected
by an edge if the corresponding subspaces are incident on each other. As edges
lie only between subspaces of different dimensions, the graph is bipartite with
vertices associated with m-dimensional subspaces forming one set and vertices
associated with d−m−1-dimensional subspaces forming another. Also, the two
properties, listed above, ensure that both the vertex sets have the same number
of elements and that each vertex has the same degree.

We consider the graph, G′ = (V, E) obtained by taking the points and hy-
perplanes of P(5,GF(2)). This projective space is generated from GF(26). The
motivation behind selecting this projective space was to create a code simi-
lar to the RS coding scheme used in CDROM, which currently implements a
(32,28) Cross-Interleaved Reed Solomon code. Also, as burst errors are more
important in the case of CD decoding, our focus is mainly on improving burst
error performance. In this projective space, the number of points (= number
of hyperplanes) is φ(5, 0, 2) = 63. Each point is incident on φ(4, 3, 2) = 31
hyperplanes and each hyperplane has φ(4, 0, 2) = 31 points. Therefore, we
have |V | = 126 and |E| = 1953. This implies that the block length of code

31

C is 1953 and the number of constraints in the code is 126. The calculation
of elements of GF(26) and the generation of incidence relations between points
and hyperplanes in P(5,GF(2)) has been elucidated in section 3 of the appendix.

As the graph G′ is 31-regular, the block length of the subcode should be 31.
We have chosen the 31 symbol Reed Solomon code as the subcode, each symbol
consisting of five bits. We use the built-in RS decoding and encoding functions
from MATLAB. For testing the error correcting capability of the code, we in-
troduce errors into the zero vector and check its convergence to the zero vector.
As the code is linear, the performance obtained in these tests will be valid for
the entire code.

5.7 MATLAB Implementation: Results

We have varied the minimum distance and rate of the subcode and the variation
in the parameters of C have been tabulated in table 7.

Our MATLAB implementation differs from Zemor’s construction in two as-
pects:

1. We have used a non-binary RS code instead of a binary code.

2. Zemor suggests that the minimum distance of the subcode should be
atleast 3λ. The second largest eigenvalue (λ) of the generated graph G′

is 4, which translates to a high minimum distance of 12 for the subcode
and at such high distances, the rate of the code will suffer. Therefore, we
tried using subcodes with lesser distances and found them to work in this
scheme.

The bounds stated in table 7 are worst-case bounds for the given d0 and cause
decoding failure under specific error distributions, which are unlikely to occur.
Simulations have shown that many more errors can be corrected if they are ran-
domly distributed. Also, for d0 = 11, we see that the number of errors corrected

Minimum distance Subcode Lower bound on Error-correcting Zemor’s
of subcode (d0) rate rate of C capability bound

3 0.94 0.87 3 –
5 0.87 0.74 8 –
7 0.81 0.61 15 –
9 0.74 0.48 24 –
11 0.68 0.35 35 –
13 0.61 0.23 48 32
15 0.55 0.1 63 52

Table 7: Change in parameters of C with variation in minimum distance of
subcode

32

by the code is more than Zemor’s bound for d0 = 13, which indicates a better
error correcting capability at a higher code rate.

These bounds can also be derived geometrically. We will calculate the bounds
for d0 = 5 and d0 = 11 by logically looking at the worst-case scenario possible.
It follows similarly for the other cases. Let us first consider the case of d0 = 5,
i.e., a vertex can correct atmost 2 errors. Consider 3 vertices corresponding to
3 points lying on a line. If each of these constraints gets 3 errors, they will
fail to decode the errors and in the worst-case, corrupt the rest of the variables
associated with these constraints. The PG line corresponding to these points
lies on φ(5− 1− 1, 4− 1− 1, 2) = 15 hyperplanes. Hence, the errors introduced
by these 3 vertices may translate to 3 errors each on atleast 3 vertices on the
other side. These errors will continue to propagate from one side to the other,
thus causing the decoding to fail. Hence, we have a case in which introduction
of 9 errors causes the decoding to fail. Also, if we introduce 8 or less errors,
atmost 2 constraints can introduce more errors, which will result in a maximum
of 2 errors on the other side. These errors will get corrected as d0 = 5 and the
codeword will get decoded in one iteration itself.

In the case of d0 = 11, we consider 6 vertices on one side that get 6 errors
each. In such a case, if all the 6 points(corressponding to these vertices) lie on a
plane, there will be φ(5− 2− 1, 4− 2− 1, 2) = 7 hyperplanes which will contain
each of these points. Each of the corresponding 7 vertices in the graph might
receive 6 errors each causing them to introduce more errors into the overall code.
With 35 or less error symbols, atmost 5 vertices will have 6 errors which will
result in atmost 5 errors for any constraint on the other side after the first step.
These will get corrected in the first iteration.

The burst error performance of the code depends on the sequence in which
the symbols are transmitted. For example, if the code transmission is done
subcode by subcode, in the case of d0 = 3, the code can correct upto 3 burst
errors. However, this performance can be improved by interleaving the subcode
symbols on transmission. In the case of d0 = 3, on interleaving, the code can
correct upto 64 errors.

5.8 Conclusions

From the simulations, we have seen that projective geometry based expander
codes perform better than the bounds suggested by Zemor by correcting more
errors with a faster code rate. This could be due to the high regularity of PG-
based graphs and it can be exploited to create good PG-based expander codes.
Further research should look at evaluating these codes by comparing them with
the (32, 28) Cross Interleaved Reed Solomon code to see if they can be applied to
CD decoding. Another important problem is the design of an encoder for these
codes, which is complicated by the greater dependency between constraints due
to the good expansion properties of the graph.

33

Bibliography

[1] B. S. Adiga. Matlab programs. 2008.

[2] Narendra Karmarkar. A new parallel architecture for sparse matrix com-
putation based on finite projective geometries. In Supercomputing ’91:
Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pages
358–369. ACM, 1991.

[3] B. Parhami and M. Rakov. Perfect difference networks and related intercon-
nection structures for parallel and distributed systems. IEEE Transactions
on Parallel and Distributed Systems, 16(8):714–724, 2005.

[4] B. Parhami and M. Rakov. Performance, algorithmic, and robustness at-
tributes of perfect difference networks. IEEE Transactions on Parallel and
Distributed Systems, 16(8):725–736, 2005.

[5] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Transactions
on Information Theory, 42:1710–1722, 1996.

[6] G. Zemor. On expander codes. Information Theory, IEEE Transactions on,
47(2):835–837, Feb 2001.

34

A Appendix

A.1 Generation of GF(25) from GF(2)

We start with x, a root of the equation x5 + x2 + 1 = 0. By taking successive
powers of x and substituting x5 with x2 +1 (equivalent to taking the remainder
of the power of x with respect to the polynomial as in GF(2), −1 = 1), we
generate the rest of the elements in the field. These elements are shown in table
8

Power of x Element of GF(25)

x0 1

x1 x1

x2 x2

x3 x3

x4 x4

x5 x2 + 1

x6 x3 + x

x7 x4 + x2

x8 x3 + x2 + 1

x9 x4 + x3 + x

x10 x4 + 1

x11 x2 + x + 1

x12 x3 + x2 + x

x13 x4 + x3 + x2

x14 x4 + x3 + x2 + 1

x15 x4 + x3 + x2 + x + 1

Power of x Element of GF(25)

x16 x4 + x3 + x + 1

x17 x4 + x + 1

x18 x + 1

x19 x2 + x

x20 x3 + x2

x21 x4 + x3

x22 x4 + x2 + 1

x23 x3 + x2 + x + 1

x24 x4 + x3 + x2 + x

x25 x4 + x3 + 1

x26 x4 + x2 + x + 1

x27 x3 + x + 1

x28 x4 + x2 + x

x29 x3 + 1

x30 x4 + x

x31 1

Table 8: Elements of GF(25)

35

A.2 Projective Geometry Structure

The points in the geometry are enlisted in table 9.

Index 1-D subspace

0 {0, 1}

1 {0, x1}

2 {0, x2}

3 {0, x3}

4 {0, x4}

5 {0, x2 + 1}

6 {0, x3 + x}

7 {0, x4 + x2}

8 {0, x3 + x2 + 1}

9 {0, x4 + x3 + x}

10 {0, x4 + 1}

11 {0, x2 + x + 1}

12 {0, x3 + x2 + x}

13 {0, x4 + x3 + x2}

14 {0, x4 + x3 + x2 + 1}

15 {0, x4 + x3 + x2 + x + 1}

Index 1-D subspace

16 {0, x4 + x3 + x + 1}

17 {0, x4 + x + 1}

18 {0, x + 1}

19 {0, x2 + x}

20 {0, x3 + x2}

21 {0, x4 + x3}

22 {0, x4 + x2 + 1}

23 {0, x3 + x2 + x + 1}

24 {0, x4 + x3 + x2 + x}

25 {0, x4 + x3 + 1}

26 {0, x4 + x2 + x + 1}

27 {0, x3 + x + 1}

28 {0, x4 + x2 + x}

29 {0, x3 + 1}

30 {0, x4 + x}

Table 9: Points of P(4,GF(2))

36

The lines are 2-dimensional subspaces of GF(25). The first line is generated by
combining the 1-dimensional subspaces corresponding to points 0 and 1. From
these two points, we get the line (0, 1, 18). By applying shift and Frobenius
automorphisms on this line, we can get the other lines in the geometry. The
planes are 3-dimensional subspaces of GF(25). The first plane is generated by
finding the linear combinations of 3 non-collinear points (0, 1 and 2). The other
planes are obtained using automorphisms. The following table 10 shows the
planes and also the perfect matching patterns S1, . . . , S7. The entire list of lines
can be obtained from any map Si.

Index Plane
Mapping under

S1 S2 S3 S4 S5 S6 S7

1 (0,1,2,5,11,18,19) (0,1,18) (1,2,19) (0,2,5) (2,18,11) (1,5,11) (11,19,0) (18,19,5)
2 (1,2,3,6,12,19,20) (1,2,19) (2,3,20) (1,3,6) (3,19,12) (2,6,12) (12,20,1) (19,20,6)
3 (2,3,4,7,13,20,21) (2,3,20) (3,4,21) (2,4,7) (4,20,13) (3,7,13) (13,21,2) (20,21,7)
4 (3,4,5,8,14,21,22) (3,4,21) (4,5,22) (3,5,8) (5,21,14) (4,8,14) (14,22,3) (21,22,8)
5 (4,5,6,9,15,22,23) (4,5,22) (5,6,23) (4,6,9) (6,22,15) (5,9,15) (15,23,4) (22,23,9)
6 (5,6,7,10,16,23,24) (5,6,23) (6,7,24) (5,7,10) (7,23,16) (6,10,16) (16,24,5) (23,24,10)
7 (6,7,8,11,17,24,25) (6,7,24) (7,8,25) (6,8,11) (8,24,17) (7,11,17) (17,25,6) (24,25,11)
8 (7,8,9,12,18,25,26) (7,8,25) (8,9,26) (7,9,12) (9,25,18) (8,12,18) (18,26,7) (25,26,12)
9 (8,9,10,13,19,26,27) (8,9,26) (9,10,27) (8,10,13) (10,26,19) (9,13,19) (19,27,8) (26,27,13)
10 (9,10,11,14,20,27,28) (9,10,27) (10,11,28) (9,11,14) (11,27,20) (10,14,20) (20,28,9) (27,28,14)
11 (10,11,12,15,21,28,29) (10,11,28) (11,12,29) (10,12,15) (12,28,21) (11,15,21) (21,29,10) (28,29,15)
12 (11,12,13,16,22,29,30) (11,12,29) (12,13,30) (11,13,16) (13,29,22) (12,16,22) (22,30,11) (29,30,16)
13 (12,13,14,17,23,30,0) (12,13,30) (13,14,0) (12,14,17) (14,30,23) (13,17,23) (23,0,12) (30,0,17)
14 (13,14,15,18,24,0,1) (13,14,0) (14,15,1) (13,15,18) (15,0,24) (14,18,24) (24,1,13) (0,1,18)
15 (14,15,16,19,25,1,2) (14,15,1) (15,16,2) (14,16,19) (16,1,25) (15,19,25) (25,2,14) (1,2,19)
16 (15,16,17,20,26,2,3) (15,16,2) (16,17,3) (15,17,20) (17,2,26) (16,20,26) (26,3,15) (2,3,20)
17 (16,17,18,21,27,3,4) (16,17,3) (17,18,4) (16,18,21) (18,3,27) (17,21,27) (27,4,16) (3,4,21)
18 (17,18,19,22,28,4,5) (17,18,4) (18,19,5) (17,19,22) (19,4,28) (18,22,28) (28,5,17) (4,5,22)
19 (18,19,20,23,29,5,6) (18,19,5) (19,20,6) (18,20,23) (20,5,29) (19,23,29) (29,6,18) (5,6,23)
20 (19,20,21,24,30,6,7) (19,20,6) (20,21,7) (19,21,24) (21,6,30) (20,24,30) (30,7,19) (6,7,24)
21 (20,21,22,25,0,7,8) (20,21,7) (21,22,8) (20,22,25) (22,7,0) (21,25,0) (0,8,20) (7,8,25)
22 (21,22,23,26,1,8,9) (21,22,8) (22,23,9) (21,23,26) (23,8,1) (22,26,1) (1,9,21) (8,9,26)
23 (22,23,24,27,2,9,10) (22,23,9) (23,24,10) (22,24,27) (24,9,2) (23,27,2) (2,10,22) (9,10,27)
24 (23,24,25,28,3,10,11) (23,24,10) (24,25,11) (23,25,28) (25,10,3) (24,28,3) (3,11,23) (10,11,28)
25 (24,25,26,29,4,11,12) (24,25,11) (25,26,12) (24,26,29) (26,11,4) (25,29,4) (4,12,24) (11,12,29)
26 (25,26,27,30,5,12,13) (25,26,12) (26,27,13) (25,27,30) (27,12,5) (26,30,5) (5,13,25) (12,13,30)
27 (26,27,28,0,6,13,14) (26,27,13) (27,28,14) (26,28,0) (28,13,6) (27,0,6) (6,14,26) (13,14,0)
28 (27,28,29,1,7,14,15) (27,28,14) (28,29,15) (27,29,1) (29,14,7) (28,1,7) (7,15,27) (14,15,1)
29 (28,29,30,2,8,15,16) (28,29,15) (29,30,16) (28,30,2) (30,15,8) (29,2,8) (8,16,28) (15,16,2)
30 (29,30,0,3,9,16,17) (29,30,16) (30,0,17) (29,0,3) (0,16,9) (30,3,9) (9,17,29) (16,17,3)
31 (30,0,1,4,10,17,18) (30,0,17) (0,1,18) (30,1,4) (1,17,10) (0,4,10) (10,18,30) (17,18,4)

37

Index Plane
Mapping under

S1 S2 S3 S4 S5 S6 S7

32 (0,2,4,10,22,5,7) (0,2,5) (2,4,7) (0,4,10) (4,5,22) (2,10,22) (22,7,0) (5,7,10)
33 (1,3,5,11,23,6,8) (1,3,6) (3,5,8) (1,5,11) (5,6,23) (3,11,23) (23,8,1) (6,8,11)
34 (2,4,6,12,24,7,9) (2,4,7) (4,6,9) (2,6,12) (6,7,24) (4,12,24) (24,9,2) (7,9,12)
35 (3,5,7,13,25,8,10) (3,5,8) (5,7,10) (3,7,13) (7,8,25) (5,13,25) (25,10,3) (8,10,13)
36 (4,6,8,14,26,9,11) (4,6,9) (6,8,11) (4,8,14) (8,9,26) (6,14,26) (26,11,4) (9,11,14)
37 (5,7,9,15,27,10,12) (5,7,10) (7,9,12) (5,9,15) (9,10,27) (7,15,27) (27,12,5) (10,12,15)
38 (6,8,10,16,28,11,13) (6,8,11) (8,10,13) (6,10,16) (10,11,28) (8,16,28) (28,13,6) (11,13,16)
39 (7,9,11,17,29,12,14) (7,9,12) (9,11,14) (7,11,17) (11,12,29) (9,17,29) (29,14,7) (12,14,17)
40 (8,10,12,18,30,13,15) (8,10,13) (10,12,15) (8,12,18) (12,13,30) (10,18,30) (30,15,8) (13,15,18)
41 (9,11,13,19,0,14,16) (9,11,14) (11,13,16) (9,13,19) (13,14,0) (11,19,0) (0,16,9) (14,16,19)
42 (10,12,14,20,1,15,17) (10,12,15) (12,14,17) (10,14,20) (14,15,1) (12,20,1) (1,17,10) (15,17,20)
43 (11,13,15,21,2,16,18) (11,13,16) (13,15,18) (11,15,21) (15,16,2) (13,21,2) (2,18,11) (16,18,21)
44 (12,14,16,22,3,17,19) (12,14,17) (14,16,19) (12,16,22) (16,17,3) (14,22,3) (3,19,12) (17,19,22)
45 (13,15,17,23,4,18,20) (13,15,18) (15,17,20) (13,17,23) (17,18,4) (15,23,4) (4,20,13) (18,20,23)
46 (14,16,18,24,5,19,21) (14,16,19) (16,18,21) (14,18,24) (18,19,5) (16,24,5) (5,21,14) (19,21,24)
47 (15,17,19,25,6,20,22) (15,17,20) (17,19,22) (15,19,25) (19,20,6) (17,25,6) (6,22,15) (20,22,25)
48 (16,18,20,26,7,21,23) (16,18,21) (18,20,23) (16,20,26) (20,21,7) (18,26,7) (7,23,16) (21,23,26)
49 (17,19,21,27,8,22,24) (17,19,22) (19,21,24) (17,21,27) (21,22,8) (19,27,8) (8,24,17) (22,24,27)
50 (18,20,22,28,9,23,25) (18,20,23) (20,22,25) (18,22,28) (22,23,9) (20,28,9) (9,25,18) (23,25,28)
51 (19,21,23,29,10,24,26) (19,21,24) (21,23,26) (19,23,29) (23,24,10) (21,29,10) (10,26,19) (24,26,29)
52 (20,22,24,30,11,25,27) (20,22,25) (22,24,27) (20,24,30) (24,25,11) (22,30,11) (11,27,20) (25,27,30)
53 (21,23,25,0,12,26,28) (21,23,26) (23,25,28) (21,25,0) (25,26,12) (23,0,12) (12,28,21) (26,28,0)
54 (22,24,26,1,13,27,29) (22,24,27) (24,26,29) (22,26,1) (26,27,13) (24,1,13) (13,29,22) (27,29,1)
55 (23,25,27,2,14,28,30) (23,25,28) (25,27,30) (23,27,2) (27,28,14) (25,2,14) (14,30,23) (28,30,2)
56 (24,26,28,3,15,29,0) (24,26,29) (26,28,0) (24,28,3) (28,29,15) (26,3,15) (15,0,24) (29,0,3)
57 (25,27,29,4,16,30,1) (25,27,30) (27,29,1) (25,29,4) (29,30,16) (27,4,16) (16,1,25) (30,1,4)
58 (26,28,30,5,17,0,2) (26,28,0) (28,30,2) (26,30,5) (30,0,17) (28,5,17) (17,2,26) (0,2,5)
59 (27,29,0,6,18,1,3) (27,29,1) (29,0,3) (27,0,6) (0,1,18) (29,6,18) (18,3,27) (1,3,6)
60 (28,30,1,7,19,2,4) (28,30,2) (30,1,4) (28,1,7) (1,2,19) (30,7,19) (19,4,28) (2,4,7)
61 (29,0,2,8,20,3,5) (29,0,3) (0,2,5) (29,2,8) (2,3,20) (0,8,20) (20,5,29) (3,5,8)
62 (30,1,3,9,21,4,6) (30,1,4) (1,3,6) (30,3,9) (3,4,21) (1,9,21) (21,6,30) (4,6,9)

38

Index Plane
Mapping under

S1 S2 S3 S4 S5 S6 S7

63 (0,4,8,20,13,10,14) (0,4,10) (4,8,14) (0,8,20) (8,10,13) (4,20,13) (13,14,0) (10,14,20)
64 (1,5,9,21,14,11,15) (1,5,11) (5,9,15) (1,9,21) (9,11,14) (5,21,14) (14,15,1) (11,15,21)
65 (2,6,10,22,15,12,16) (2,6,12) (6,10,16) (2,10,22) (10,12,15) (6,22,15) (15,16,2) (12,16,22)
66 (3,7,11,23,16,13,17) (3,7,13) (7,11,17) (3,11,23) (11,13,16) (7,23,16) (16,17,3) (13,17,23)
67 (4,8,12,24,17,14,18) (4,8,14) (8,12,18) (4,12,24) (12,14,17) (8,24,17) (17,18,4) (14,18,24)
68 (5,9,13,25,18,15,19) (5,9,15) (9,13,19) (5,13,25) (13,15,18) (9,25,18) (18,19,5) (15,19,25)
69 (6,10,14,26,19,16,20) (6,10,16) (10,14,20) (6,14,26) (14,16,19) (10,26,19) (19,20,6) (16,20,26)
70 (7,11,15,27,20,17,21) (7,11,17) (11,15,21) (7,15,27) (15,17,20) (11,27,20) (20,21,7) (17,21,27)
71 (8,12,16,28,21,18,22) (8,12,18) (12,16,22) (8,16,28) (16,18,21) (12,28,21) (21,22,8) (18,22,28)
72 (9,13,17,29,22,19,23) (9,13,19) (13,17,23) (9,17,29) (17,19,22) (13,29,22) (22,23,9) (19,23,29)
73 (10,14,18,30,23,20,24) (10,14,20) (14,18,24) (10,18,30) (18,20,23) (14,30,23) (23,24,10) (20,24,30)
74 (11,15,19,0,24,21,25) (11,15,21) (15,19,25) (11,19,0) (19,21,24) (15,0,24) (24,25,11) (21,25,0)
75 (12,16,20,1,25,22,26) (12,16,22) (16,20,26) (12,20,1) (20,22,25) (16,1,25) (25,26,12) (22,26,1)
76 (13,17,21,2,26,23,27) (13,17,23) (17,21,27) (13,21,2) (21,23,26) (17,2,26) (26,27,13) (23,27,2)
77 (14,18,22,3,27,24,28) (14,18,24) (18,22,28) (14,22,3) (22,24,27) (18,3,27) (27,28,14) (24,28,3)
78 (15,19,23,4,28,25,29) (15,19,25) (19,23,29) (15,23,4) (23,25,28) (19,4,28) (28,29,15) (25,29,4)
79 (16,20,24,5,29,26,30) (16,20,26) (20,24,30) (16,24,5) (24,26,29) (20,5,29) (29,30,16) (26,30,5)
80 (17,21,25,6,30,27,0) (17,21,27) (21,25,0) (17,25,6) (25,27,30) (21,6,30) (30,0,17) (27,0,6)
81 (18,22,26,7,0,28,1) (18,22,28) (22,26,1) (18,26,7) (26,28,0) (22,7,0) (0,1,18) (28,1,7)
82 (19,23,27,8,1,29,2) (19,23,29) (23,27,2) (19,27,8) (27,29,1) (23,8,1) (1,2,19) (29,2,8)
83 (20,24,28,9,2,30,3) (20,24,30) (24,28,3) (20,28,9) (28,30,2) (24,9,2) (2,3,20) (30,3,9)
84 (21,25,29,10,3,0,4) (21,25,0) (25,29,4) (21,29,10) (29,0,3) (25,10,3) (3,4,21) (0,4,10)
85 (22,26,30,11,4,1,5) (22,26,1) (26,30,5) (22,30,11) (30,1,4) (26,11,4) (4,5,22) (1,5,11)
86 (23,27,0,12,5,2,6) (23,27,2) (27,0,6) (23,0,12) (0,2,5) (27,12,5) (5,6,23) (2,6,12)
87 (24,28,1,13,6,3,7) (24,28,3) (28,1,7) (24,1,13) (1,3,6) (28,13,6) (6,7,24) (3,7,13)
88 (25,29,2,14,7,4,8) (25,29,4) (29,2,8) (25,2,14) (2,4,7) (29,14,7) (7,8,25) (4,8,14)
89 (26,30,3,15,8,5,9) (26,30,5) (30,3,9) (26,3,15) (3,5,8) (30,15,8) (8,9,26) (5,9,15)
90 (27,0,4,16,9,6,10) (27,0,6) (0,4,10) (27,4,16) (4,6,9) (0,16,9) (9,10,27) (6,10,16)
91 (28,1,5,17,10,7,11) (28,1,7) (1,5,11) (28,5,17) (5,7,10) (1,17,10) (10,11,28) (7,11,17)
92 (29,2,6,18,11,8,12) (29,2,8) (2,6,12) (29,6,18) (6,8,11) (2,18,11) (11,12,29) (8,12,18)
93 (30,3,7,19,12,9,13) (30,3,9) (3,7,13) (30,7,19) (7,9,12) (3,19,12) (12,13,30) (9,13,19)

39

Index Plane
Mapping under

S1 S2 S3 S4 S5 S6 S7

94 (0,8,16,9,26,20,28) (0,8,20) (8,16,28) (0,16,9) (16,20,26) (8,9,26) (26,28,0) (20,28,9)
95 (1,9,17,10,27,21,29) (1,9,21) (9,17,29) (1,17,10) (17,21,27) (9,10,27) (27,29,1) (21,29,10)
96 (2,10,18,11,28,22,30) (2,10,22) (10,18,30) (2,18,11) (18,22,28) (10,11,28) (28,30,2) (22,30,11)
97 (3,11,19,12,29,23,0) (3,11,23) (11,19,0) (3,19,12) (19,23,29) (11,12,29) (29,0,3) (23,0,12)
98 (4,12,20,13,30,24,1) (4,12,24) (12,20,1) (4,20,13) (20,24,30) (12,13,30) (30,1,4) (24,1,13)
99 (5,13,21,14,0,25,2) (5,13,25) (13,21,2) (5,21,14) (21,25,0) (13,14,0) (0,2,5) (25,2,14)
100 (6,14,22,15,1,26,3) (6,14,26) (14,22,3) (6,22,15) (22,26,1) (14,15,1) (1,3,6) (26,3,15)
101 (7,15,23,16,2,27,4) (7,15,27) (15,23,4) (7,23,16) (23,27,2) (15,16,2) (2,4,7) (27,4,16)
102 (8,16,24,17,3,28,5) (8,16,28) (16,24,5) (8,24,17) (24,28,3) (16,17,3) (3,5,8) (28,5,17)
103 (9,17,25,18,4,29,6) (9,17,29) (17,25,6) (9,25,18) (25,29,4) (17,18,4) (4,6,9) (29,6,18)
104 (10,18,26,19,5,30,7) (10,18,30) (18,26,7) (10,26,19) (26,30,5) (18,19,5) (5,7,10) (30,7,19)
105 (11,19,27,20,6,0,8) (11,19,0) (19,27,8) (11,27,20) (27,0,6) (19,20,6) (6,8,11) (0,8,20)
106 (12,20,28,21,7,1,9) (12,20,1) (20,28,9) (12,28,21) (28,1,7) (20,21,7) (7,9,12) (1,9,21)
107 (13,21,29,22,8,2,10) (13,21,2) (21,29,10) (13,29,22) (29,2,8) (21,22,8) (8,10,13) (2,10,22)
108 (14,22,30,23,9,3,11) (14,22,3) (22,30,11) (14,30,23) (30,3,9) (22,23,9) (9,11,14) (3,11,23)
109 (15,23,0,24,10,4,12) (15,23,4) (23,0,12) (15,0,24) (0,4,10) (23,24,10) (10,12,15) (4,12,24)
110 (16,24,1,25,11,5,13) (16,24,5) (24,1,13) (16,1,25) (1,5,11) (24,25,11) (11,13,16) (5,13,25)
111 (17,25,2,26,12,6,14) (17,25,6) (25,2,14) (17,2,26) (2,6,12) (25,26,12) (12,14,17) (6,14,26)
112 (18,26,3,27,13,7,15) (18,26,7) (26,3,15) (18,3,27) (3,7,13) (26,27,13) (13,15,18) (7,15,27)
113 (19,27,4,28,14,8,16) (19,27,8) (27,4,16) (19,4,28) (4,8,14) (27,28,14) (14,16,19) (8,16,28)
114 (20,28,5,29,15,9,17) (20,28,9) (28,5,17) (20,5,29) (5,9,15) (28,29,15) (15,17,20) (9,17,29)
115 (21,29,6,30,16,10,18) (21,29,10) (29,6,18) (21,6,30) (6,10,16) (29,30,16) (16,18,21) (10,18,30)
116 (22,30,7,0,17,11,19) (22,30,11) (30,7,19) (22,7,0) (7,11,17) (30,0,17) (17,19,22) (11,19,0)
117 (23,0,8,1,18,12,20) (23,0,12) (0,8,20) (23,8,1) (8,12,18) (0,1,18) (18,20,23) (12,20,1)
118 (24,1,9,2,19,13,21) (24,1,13) (1,9,21) (24,9,2) (9,13,19) (1,2,19) (19,21,24) (13,21,2)
119 (25,2,10,3,20,14,22) (25,2,14) (2,10,22) (25,10,3) (10,14,20) (2,3,20) (20,22,25) (14,22,3)
120 (26,3,11,4,21,15,23) (26,3,15) (3,11,23) (26,11,4) (11,15,21) (3,4,21) (21,23,26) (15,23,4)
121 (27,4,12,5,22,16,24) (27,4,16) (4,12,24) (27,12,5) (12,16,22) (4,5,22) (22,24,27) (16,24,5)
122 (28,5,13,6,23,17,25) (28,5,17) (5,13,25) (28,13,6) (13,17,23) (5,6,23) (23,25,28) (17,25,6)
123 (29,6,14,7,24,18,26) (29,6,18) (6,14,26) (29,14,7) (14,18,24) (6,7,24) (24,26,29) (18,26,7)
124 (30,7,15,8,25,19,27) (30,7,19) (7,15,27) (30,15,8) (15,19,25) (7,8,25) (25,27,30) (19,27,8)

40

Index Plane
Mapping under

S1 S2 S3 S4 S5 S6 S7

125 (0,16,1,18,21,9,25) (0,16,9) (16,1,25) (0,1,18) (1,9,21) (16,18,21) (21,25,0) (9,25,18)
126 (1,17,2,19,22,10,26) (1,17,10) (17,2,26) (1,2,19) (2,10,22) (17,19,22) (22,26,1) (10,26,19)
127 (2,18,3,20,23,11,27) (2,18,11) (18,3,27) (2,3,20) (3,11,23) (18,20,23) (23,27,2) (11,27,20)
128 (3,19,4,21,24,12,28) (3,19,12) (19,4,28) (3,4,21) (4,12,24) (19,21,24) (24,28,3) (12,28,21)
129 (4,20,5,22,25,13,29) (4,20,13) (20,5,29) (4,5,22) (5,13,25) (20,22,25) (25,29,4) (13,29,22)
130 (5,21,6,23,26,14,30) (5,21,14) (21,6,30) (5,6,23) (6,14,26) (21,23,26) (26,30,5) (14,30,23)
131 (6,22,7,24,27,15,0) (6,22,15) (22,7,0) (6,7,24) (7,15,27) (22,24,27) (27,0,6) (15,0,24)
132 (7,23,8,25,28,16,1) (7,23,16) (23,8,1) (7,8,25) (8,16,28) (23,25,28) (28,1,7) (16,1,25)
133 (8,24,9,26,29,17,2) (8,24,17) (24,9,2) (8,9,26) (9,17,29) (24,26,29) (29,2,8) (17,2,26)
134 (9,25,10,27,30,18,3) (9,25,18) (25,10,3) (9,10,27) (10,18,30) (25,27,30) (30,3,9) (18,3,27)
135 (10,26,11,28,0,19,4) (10,26,19) (26,11,4) (10,11,28) (11,19,0) (26,28,0) (0,4,10) (19,4,28)
136 (11,27,12,29,1,20,5) (11,27,20) (27,12,5) (11,12,29) (12,20,1) (27,29,1) (1,5,11) (20,5,29)
137 (12,28,13,30,2,21,6) (12,28,21) (28,13,6) (12,13,30) (13,21,2) (28,30,2) (2,6,12) (21,6,30)
138 (13,29,14,0,3,22,7) (13,29,22) (29,14,7) (13,14,0) (14,22,3) (29,0,3) (3,7,13) (22,7,0)
139 (14,30,15,1,4,23,8) (14,30,23) (30,15,8) (14,15,1) (15,23,4) (30,1,4) (4,8,14) (23,8,1)
140 (15,0,16,2,5,24,9) (15,0,24) (0,16,9) (15,16,2) (16,24,5) (0,2,5) (5,9,15) (24,9,2)
141 (16,1,17,3,6,25,10) (16,1,25) (1,17,10) (16,17,3) (17,25,6) (1,3,6) (6,10,16) (25,10,3)
142 (17,2,18,4,7,26,11) (17,2,26) (2,18,11) (17,18,4) (18,26,7) (2,4,7) (7,11,17) (26,11,4)
143 (18,3,19,5,8,27,12) (18,3,27) (3,19,12) (18,19,5) (19,27,8) (3,5,8) (8,12,18) (27,12,5)
144 (19,4,20,6,9,28,13) (19,4,28) (4,20,13) (19,20,6) (20,28,9) (4,6,9) (9,13,19) (28,13,6)
145 (20,5,21,7,10,29,14) (20,5,29) (5,21,14) (20,21,7) (21,29,10) (5,7,10) (10,14,20) (29,14,7)
146 (21,6,22,8,11,30,15) (21,6,30) (6,22,15) (21,22,8) (22,30,11) (6,8,11) (11,15,21) (30,15,8)
147 (22,7,23,9,12,0,16) (22,7,0) (7,23,16) (22,23,9) (23,0,12) (7,9,12) (12,16,22) (0,16,9)
148 (23,8,24,10,13,1,17) (23,8,1) (8,24,17) (23,24,10) (24,1,13) (8,10,13) (13,17,23) (1,17,10)
149 (24,9,25,11,14,2,18) (24,9,2) (9,25,18) (24,25,11) (25,2,14) (9,11,14) (14,18,24) (2,18,11)
150 (25,10,26,12,15,3,19) (25,10,3) (10,26,19) (25,26,12) (26,3,15) (10,12,15) (15,19,25) (3,19,12)
151 (26,11,27,13,16,4,20) (26,11,4) (11,27,20) (26,27,13) (27,4,16) (11,13,16) (16,20,26) (4,20,13)
152 (27,12,28,14,17,5,21) (27,12,5) (12,28,21) (27,28,14) (28,5,17) (12,14,17) (17,21,27) (5,21,14)
153 (28,13,29,15,18,6,22) (28,13,6) (13,29,22) (28,29,15) (29,6,18) (13,15,18) (18,22,28) (6,22,15)
154 (29,14,30,16,19,7,23) (29,14,7) (14,30,23) (29,30,16) (30,7,19) (14,16,19) (19,23,29) (7,23,16)
155 (30,15,0,17,20,8,24) (30,15,8) (15,0,24) (30,0,17) (0,8,20) (15,17,20) (20,24,30) (8,24,17)

Table 10: Planes of P(4,GF(2)) and the mappings S1, . . . , S7

41

A.3 Graph for expander codes

We have chosen the 31-regular bipartite graph between the point and hyperplane
subspaces of the projective space P(5,GF(2)). The primitive polynomial used
to generate GF(26) is x6 + x + 1. The points of this projective space are given
in table 11. The points lying on a hyperplane can be obtained by taking a 5-
dimensional vector subspace of the 6-dimensional vector space GF(26) and then
taking the points from the table that correspond to vectors belonging to that
subspace. One such hyperplane is (0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 18, 19, 24,

26, 27, 28, 32, 33, 35, 36, 38, 41, 45, 48, 49, 52, 54, 56). Other hyperplanes can be
obtained by applying shift automorphism to this hyperplane.

42

Index 1-D subspace
0 {0,1}
1 {0, x1}
2 {0, x2}
3 {0, x3}
4 {0, x4}
5 {0, x5}
6 {0, x1 + 1}
7 {0, x2 + x}
8 {0, x3 + x2}
9 {0, x4 + x3}
10 {0, x5 + x4}
11 {0, x5 + x1 + 1}
12 {0, x2 + 1}
13 {0, x3 + x}
14 {0, x4 + x2}
15 {0, x5 + x3}
16 {0, x4 + x1 + 1}
17 {0, x5 + x3 + x2}
18 {0, x3 + x2 + x + 1}
19 {0, x4 + x3 + x2 + x}
20 {0, x5 + x4 + x3 + x2}
21 {0, x5 + x4 + x3 + x + 1}
22 {0, x5 + x4 + x2 + 1}
23 {0, x5 + x3 + 1}
24 {0, x4 + 1}
25 {0, x5 + x1}
26 {0, x2 + x1 + 1}
27 {0, x3 + x2 + x1}
28 {0, x4 + x3 + x2}
29 {0, x5 + x4 + x3}
30 {0, x5 + x4 + x + 1}
31 {0, x5 + x2 + 1}

Index 1-D subspace
32 {0, x3 + 1}
33 {0, x4 + x}
34 {0, x5 + x2}
35 {0, x3 + x + 1}
36 {0, x4 + x2 + x}
37 {0, x5 + x3 + x2}
38 {0, x4 + x3 + x + 1}
39 {0, x5 + x4 + x2 + x}
40 {0, x5 + x3 + x2 + x + 1}
41 {0, x4 + x3 + x2 + 1}
42 {0, x5 + x4 + x3 + x}
43 {0, x5 + x4 + x2 + x + 1}
44 {0, x5 + x3 + x2 + 1}
45 {0, x4 + x3 + 1}
46 {0, x5 + x4 + x}
47 {0, x5 + x2 + x + 1}
48 {0, x3 + x2 + 1}
49 {0, x4 + x3 + x}
50 {0, x5 + x4 + x2}
51 {0, x5 + x3 + x + 1}
52 {0, x4 + x2 + x}
53 {0, x5 + x3 + x}
54 {0, x4 + x2 + x + 1}
55 {0, x5 + x3 + x2 + x}
56 {0, x4 + x3 + x2 + x + 1}
57 {0, x5 + x4 + x3 + x2 + x}
58 {0, x5 + x4 + x3 + x2 + x + 1}
59 {0, x5 + x4 + x3 + x2 + 1}
60 {0, x5 + x4 + x3 + 1}
61 {0, x5 + x4 + 1}
62 {0, x5 + 1}

Table 11: Points of P(5,GF(2))

43

